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Abstract. One of the main covering results asserts that if a holomorphic function f in
the unit disk satisfies |f ′(0)| ≥ A|f(0)| with A > 4, then f covers an annulus of the form
r < |w| < Kr for some r > 0, where K is a certain function of A . Extremals are furnished
by universal covering maps onto complements of certin discrete sets. The covering theorems are
proved by solving minimum problems for hyperbolic metrics.

1. Introduction

In this paper we prove sharp covering theorems for nonconstant holomorphic
functions f in the unit disk U . Theorem 1 asserts that if |f ′(0)| ≥ A|f(0)| ,
where A is a given number larger than 4, then f covers some annulus of the form
r < |w| < Kr , where K = K(A) is a number depending on A . The theorem is
sharp; extremals are furnished by universal covering maps from U onto the plane
minus a doubly-infinite geometric sequence with ratio K along a ray through
the origin. The covering theorem is proved by solving a minimum problem for
hyperbolic metrics. The crucial step is to prove that among all domains Ω of the
form C\(S×2πZ), where S is a closed subset of R which intersects every interval
of length logK , the hyperbolic density λΩ(z) is smallest when S consists of all
integer multiples of logK , and z = 1

2 logK + iπ . A second covering theorem,
Theorem 2, gives the precise value for a “real Landau constant” about covering
intervals on the real axis when f(0) is real. The covering and minimum problems
occupy Sections 2–7 of the paper. In Sections 8–11 we study some properties of
the function K(A).
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2. Covering theorems

For K > 1, consider the region DK = C∗\{−Kn+1/2 : n ∈ Z} , where
C∗ = C\{0} , and let FK : U → DK be the universal covering of DK by the unit
disc such that FK(0) = 1 and F ′

K(0) > 0. Put A(K) = F ′
K(0). We shall see that

A(K) is a strictly increasing continuous function on (1,∞), that

(1) lim
K→1+

A(K) = 4, and that lim
K→+∞

A(K) = +∞.

So the inverse function K(A) is defined for 4 < A <∞ .

Theorem 1. Let f be a nonconstant holomorphic function in the unit disc

U satisfying |f ′(0)| ≥ A|f(0)| where A > 4 . Then the image f(U) contains an

annulus of the form r < |w| < Kr for some r > 0 , where K = K(A) was defined

above.

Moreover, f(U) contains a closed annulus r ≤ |w| ≤ Kr for some r > 0 ,

unless f(z) = cFK(eiαz) for some c ∈ C∗ and α ∈ R .

The function FK shows that the estimate of the “thickness” of the annulus
in this theorem is best possible.

Set

F1(z) =

(

1 + z

1 − z

)2

.

Then F1
′(0) = 4 and F1(U) = C\(−∞, 0] contains no annulus centered at the

origin. Thus, there is no theorem like Theorem 1 when A ≤ 4.

The historical background begins with work of Valiron [31]:

Theorem A. For every non-constant entire function f and every number

N > 0 , there exists a branch of the inverse f−1 which has an analytic continuation

to a region of the form {w : r < |w| < Nr, |Argw| < N} (on the Riemann surface

of the logw ) for some r > 0 .

A. J. MacIntyre [25] proved a result of this type about covering of slit annuli.
We are grateful to David Minda for calling this paper to our attention.

A corollary to Theorem A is that there are branches of the inverse f−1 in
discs of arbitrarily large radii. A. Bloch [8] extended this corollary to functions
holomorphic in the unit disc:

Theorem B. For every holomorphic function f in U there exists a branch

of the inverse f−1 in some disc of radius b|f ′(0)| , where b is an absolute constant.

The following corollary of Theorem B is sometimes called Landau’s Theorem:

Theorem C. For every holomorphic function f in U , the image f(U) con-

tains a disc of radius l|f ′(0)| , where l is an absolute constant.
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Landau [24] stated extremal problems related to Theorems B and C. To state
the problem corresponding to Theorem C, we define l(f) to be the inradius of
f(U), that is, the least upper bound of radii of discs contained in f(U). Then
the extremal problem is to find

L = inf{l(f) : |f ′(0)| = 1}.
The constant L is called Landau’s constant. The solution of the analogous

extremal problem for Theorem B, denoted B , is called Bloch’s constant. Con-
jectures for the precise values of B and L , and for the corresponding extremal
domains, are given in the papers [3] and [28], respectively. Both conjectures remain
open. The best bounds known to us are

.43 . . . =

√
3

4
+ 2 · 10−4 < B ≤ Γ(1/3)Γ(11/12)

Γ(1/4)
(

1 +
√

3
)1/2

= .47 . . . ,

1

2
+ 10−335 < L ≤ Γ(1/3)Γ(5/6)

Γ(1/6)
= .54 . . . .

These inequalities imply that L > B . The upper bounds are the conjectural
correct values. The lower bound for B is due to Chen and Gauthier [11], the
lower bound for L to Yanagihara [35].

We consider Theorem 1 to be a theorem of Landau type which also bears
some resemblance to the original result of Valiron. The main point of Theorem 1
is that we have succeeded in solving the corresponding extremal problem.

Here is another sharp covering theorem. Its proof is essentially the same as
that of Theorem 1. For f holomorphic in U , define l0(f) to be the least upper
bound of lengths of subintervals of R contained in f(U), and define

L0 = inf{l0(f) : f(0) ∈ R, |f ′(0)| = 1}.
One could call L0 the “real Landau constant”.

Theorem 2. The real Landau constant L0 satisfies

L0 =
4π3

Γ(1/4)
4 = .718 . . . .

Theorem 1 is a consequence of Theorem 3, about hyperbolic metrics, which
will be stated in Section 4 and proved in Section 5. The main inequality underlying
Theorem 3 also produces an inequality for distribution functions of hyperbolic
densities on intervals. This is stated as Theorem 4, in Section 6. The proof
of Theorem 2, along with associated extremal problems for hyperbolic metrics, is
discussed in Section 7. Our principal tools are Ahlfors’s method of ultrahyperbolic
metrics and Weitsman’s theorem on symmetrization. Some of our proofs are near
neighbors to those found in [9] and [26]. The papers [10] and [30] also contain
some related results.



116 A. Baernstein II, A. Eremenko, A. Fryntov, and A. Solynin

3. The function A(K)

The domains DK , universal covering maps FK , and numbers A(K) = F ′
K(0)

were defined at the beginning of Section 2. Using a theorem of Hejhal, (Theorem 1
and the remark following its proof in [18]), one can prove that if K0 ∈ (1,∞),
then FK converges to FK0

locally uniformly in U when K → K0 . Thus, A(K)
is continuous on (1,∞). Similarly, as K → 1+, FK converges locally uniformly
in U to the conformal map

F1(z) =

(

1 + z

1 − z

)2

of U onto the plane minus the negative real axis. Thus,

lim
K→1+

A(K) = F ′
1(0) = 4.

Let GK be the universal cover from U onto the annulus K−1/2 < |w| < K1/2

with GK(0) = 1, G′
K(0) > 0. Then, by the principle of subordination, A(K) >

G′
K(0) for K > 1. Now GK = exp

(

(logK)H
)

, where H is the conformal map of
U onto the strip |Re ζ| < 1

2 with H(0) = 0, H ′(0) > 0. Thus, limK→∞G′
K(0) =

∞ and hence

lim
K→∞

A(K) = ∞.

We will derive the strict monotonicity of A(K) from Theorem 3 in the next
section.

4. Hyperbolic metrics

Each plane domain D for which C\D contains at least two points has a hy-
perbolic metric, that is, a complete conformal Riemannian metric of curvature −4.
Such a metric is unique and its length element will be denoted by λD(z) |dz| . Thus,
for example, λU(z) = 1/(1− |z|2). Whenever we speak of λD we shall be implic-
itly assuming that D has a hyperbolic metric. For z ∈ C\D set λD(z) = +∞ .
Then λD is defined in all of C .

Let f be holomorphic in U , and consider the region D = f(U). Then

(2) |f ′(0)| ≤ 1

λD

(

f(0)
)

by the invariant form of the Schwarz Lemma, with equality if and only if f is a
universal covering map from U onto D . See, for example, [2, p. 13]. In particular,
λDK

(1) = 1/A(K). Theorem 1 is consequence of
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Theorem 3. If D is a region in the plane which contains no annuli of the

form r ≤ |w| ≤ Kr for r > 0 , then for w ∈ D ,

|w|λD(w) ≥ λDK
(1),

with equality if and only if D = cDK and w = c for some c ∈ C∗ .

Corollary 1. The function K 7→ A(K) = 1/λDK
(1) is strictly increasing for

1 < K <∞ .

Concerning the equality statement in Theorem 3, note that KnDK = DK ,
from which it follows that λDK

(Knζ) = K−nλDK
(ζ) for all ζ ∈ C . Thus an

equivalent statement of the equality condition is: Equality holds for a given D
and w if and only if there exists c ∈ C∗ and n ∈ Z such that D = cDK and
w = cKn .

Assuming now that Theorem 3 is true, we shall show that it implies Theo-
rem 1. Take a function f satisfying the hypotheses of Theorem 1 for some A > 4.
Let K = K(A). If f(0) = 0 then f(U) contains a neighborhood of the origin,
hence an annulus of the form r ≤ |w| ≤ Kr , so that the conclusion of Theorem 1
is fulfilled. Suppose that |f(0)| > 0, and that f covers no annulus r ≤ |w| ≤ Kr .
Let D = f(U) and w0 = f(0). Then

A|w0| ≤ |f ′(0)| ≤ 1

λD(w0)
≤ |w0|A.

The first inequality is from the hypothesis of Theorem 1, the second from (2),
and the third from Theorem 3, together with the identity A(K) = 1/λDK

(1). We
conclude that equality holds in all three inequalities. The equality statements in
(2) and Theorem 3 imply existence of c ∈ C∗ such that f is a universal covering
map of U onto cDK with f(0) = c . This is the conclusion of Theorem 1. Thus,
Theorem 1 is proved, modulo Theorem 3.

The proof of Theorem 3 will be accomplished through several applications
of the Ahlfors–Schwarz Lemma [1], [2]. Recall that if λD is the density of the
hyperbolic metric in a domain D and we put u = logλD , then u satisfies in D
the Liouville equation

(3) ∆u = 4e2u.

Let v be a function in D . A C2 function ua defined in some neighborhood
N of a point a ∈ D is called a support function for v at a if ua(a) = v(a),
ua(z) ≤ v(z) for all z ∈ N , and ua is a classical subsolution of (3), that is,
∆ua ≥ 4e2ua in N . We shall call a function v in D ultrahyperbolic in D if it
is upper semicontinuous and has a support function at each point of D . The
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Ahlfors–Schwarz Lemma states that every ultrahyperbolic function v in a domain
D satisfies

v ≤ log λD.

Our use of the term “ultrahyperbolic” differs slightly from that in [2], where
“ultrahyperbolic metric” would refer to the Riemannian metric with length element
ev(z) |dz| , with v as above.

Returning now to our extremal domain DK , let us make a conformal change
of variable w = −eζ and put

L = 1
2 logK.

Then to DK ⊂ Cw corresponds the domain

ΩL = C\S(L) ⊂ Cζ , where S(L) = {(2m+ 1)L+ 2πin : m,n ∈ Z}.

The hyperbolic densities of these two domains are related by the equation

(4) λΩL
(ζ) = λDK

(−eζ)|eζ |.

From the uniqueness of the hyperbolic metric it follows that λΩL
is doubly

periodic with periods 2L and 2πi , and enjoys the symmetry properties

λΩL
(ζ) = λΩL

(±ζ̄).

One expects that λΩL
should have monotonicity properties along horizontal

and vertical lines. The lemma below confirms this. For fixed y ∈ R define
φ(x) = λΩL

(x+ iy), and for fixed x ∈ R define ψ(y) = λΩL
(x+ iy).

Lemma 1. The function φ(x) is strictly increasing on [0, L] for every y , and

the function ψ(y) is strictly decreasing on [0, π] for every x .

From symmetry and periodicity properties of λΩL
it follows that φ and ψ

are even functions, that φ has period 2L , and that ψ has period 2π . Together
with Lemma 1, these show that the minima of log λΩL

along horizontal lines are
achieved at x = 0 and the minima along vertical lines at y = π . Consequently,

inf
C

λΩL
= λΩL

(πi).

Proof of Lemma 1. Weitsman [33] proved that for circularly symmetric do-
mains D , λD(reiθ) is an even function of θ which is nondecreasing for 0 ≤ θ ≤ π .
Along with (4), this ensures that ψ is nonincreasing on [0, π] . A slightly different
change of variable shows that φ is nondecreasing on [0, L] . The same changes of
variables show that the monotonicities, this time strict, follow also from a theorem
of Minda, [26, Theorem 4(ii)], or, in a more general context, from a polarization
theorem of Solynin, [29, Theorem 13].
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Here is yet another proof of monotonicity, different from those of Weitsman
and Minda. For fixed L ∈ (0,∞) set u = logλΩL

. Define a function u∗ in ΩL as
follows: For z = x+ iy ∈ ΩL with 0 ≤ x ≤ L , set

u∗(x+ iy) = max{u(t+ iy) : 0 ≤ t ≤ x}.

Extend u∗ to ΩL by setting u∗(z) = u(z + 2L), u∗(x + iy) = u∗(−x + iy).
Then u∗ is continuous on ΩL .

Clearly, u ≤ u∗ in ΩL . We shall apply the Ahlfors–Schwarz Lemma to prove
the opposite inequality. Take a = x0 + iy0 ∈ ΩL with 0 ≤ x0 ≤ L . There exists
x1 ∈ [0, x0] such that u∗(a) = u(x1 + iy0). If x1 = x0 take ua = u . Then
ua(a) = u(a) = u∗(a) and ua(z) = u(z) ≤ u∗(z) for all z , so that ua is a support
function for u∗ at a . If 0 ≤ x1 < x0 , set b = x1 + iy0 and define

ua(z) = u(z + b− a) = u(z + x1 − x0).

Take δ > 0 so small that the disks |z − a| < δ and |z − b| < δ are disjoint.
Then again ua(a) = u∗(a), while the definition and symmetry properties of u∗

imply ua ≤ u∗ in |z − a| < δ . Thus, ua is again a support function for u∗ . We
have shown that u∗ has a support function at each point of ΩL with 0 ≤ x ≤ L .
Using symmetry and periodicities, we can construct a support function at each
point of ΩL . Thus, the Ahlfors–Schwarz Lemma implies that u ≥ u∗ in ΩL . The
opposite inequality was already noted. We deduce that u = u∗ in ΩL , which
implies that the function φ(x) is nondecreasing in [0, L] . A similar argument
shows that ψ(y) is nonincreasing on [0, π] .

To prove strict monotonicity, let g = ∂u/∂x and p(z) = 8eu(z) . Differen-
tiation of the Liouville equation shows that g satisfies in ΩL the Schrödinger
equation

∆g = pg.

Since φ is nondecreasing on (0, L), we have g ≥ 0 in the strip

ΠL = {z : 0 < Re z < L}.

The potential p(z) is positive. If g were zero at a point z0 ∈ ΠL , the Hopf
strong maximum principle applied to the operator L = ∆ − p , see, for example
[14, p. 35], would imply that g is identically zero in each compact subdomain
of ΠL which contains z0 , and hence g would be identically zero in ΠL . This is
impossible, since u(z) → ∞ as z → L . We conclude that g is strictly positive in
ΠL , so that φ(x) is strictly increasing in [0, L] . In the same way, one proves that
ψ is strictly decreasing in [0, π] .
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5. Proof of Theorem 3

Theorem 3 asserts that

(5) λDK
(1) ≤ |w|λD(w), w ∈ D,

when D is a domain in the plane which contains no annuli of the form r ≤ |w| ≤
Kr .

Let E ⊂ (−∞, 0] be the set of all numbers −r for which the circle |w| = r is
not contained in D . Let D′ = C\E , and let D∗ be the circular symmetrization
of D . A theorem of Weitsman [34] asserts that λD(w) ≥ λD∗(|w|). Solynin [29]
proved that equality in Weitsman’s theorem is possible only if D = D∗ and w =
|w| . Moreover, D∗ ⊂ D′ . From Theorem 7.1 of Heins’s paper [16] with F = D∗ ,
it follows that λD∗ ≥ λD′ everywhere in D∗ , with equality at some point if and
only if D∗ = D′ . Thus:

To prove Theorem 3 , it suffices to prove (5) when D has the form C\E , with

E a closed subset of (−∞, 0] which, for fixed K , intersects every interval of the

form [−r,−Kr] , and to show that equality in (5) is possible only for D = cDK

and w = c , where c ∈ R+ .

To obtain (5) for this special class of D , we shall prove some stronger inequal-
ities for the corresponding domains Ω = {ζ ∈ C : −eζ ∈ D} . Let

S = {x ∈ R : −ex ∈ E} = {log r : r ∈ −E}.

Then

(6) Ω = C\(S × 2πZ)

where S is a closed subset of R which intersects every closed interval of length
2L = logK . Let us call a set S of this type an L -set and a domain Ω of this type
an L -domain. The domains ΩL of Section 4 are L -domains. They will furnish
extremals for the problems we study.

For an L -set S and x ∈ R , let d(x) be the distance from x to S . Then
0 ≤ d(x) ≤ L .

Our main inequality for L -domains is embodied in the following lemma.

Lemma 2. For an L -domain Ω and z = x+ iy ∈ Ω ,

(7) λΩ(x+ iy) ≥ λΩL

(

L− d(x) + iy
)

,

with equality for some z ∈ Ω if and only if Ω is a translation of ΩL .
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Proof. For z = x + iy ∈ Ω, define v(z) = log λΩL

(

L − d(x) + iy
)

. Then v
is finite and continuous in Ω. Take a = x0 + iy0 ∈ Ω. There are two mutually
exclusive possibilities for x0 :

(a) There is a unique point of S closest to x0 . Then we put ua(z) = v(z) for
z in a small neighborhood of a , and it is evident that ua is a support function for
v at a .

(b) There are exactly two points of S closest to x0 . Then we set

ua(z) = log λΩL

(

L− d(x0) + z − x0

)

.

Evidently ua satisfies (3), and ua(a) = v(a). Now notice that

L− d(x) ≥ L− d(x0) + x− x0

in a neighborhood of x0 , and thus Lemma 1 implies that v(z) ≥ ua(z) in a neigh-
borhood of a . So ua is a support function for v at a . Thus, v is ultrahyperbolic
in Ω, and (7) holds by the Ahlfors–Schwarz lemma.

Suppose that equality in (7) holds for some z ∈ Ω. Then by Heins’s Theo-
rem 7.1 in [16], equality holds for all z ∈ Ω. Let I be a component interval of
R\S . Then |I| ≤ 2L . If |I| were strictly less than 2L , then the strict monotonic-
ity statement of Lemma 1 would imply that for each y the right-hand side of (7)
is not differentiable in x at the midpoint of I . But λΩ is real analytic in Ω. This
contradiction shows that the complement of S in R is the union of open intervals
each having length 2L .

Suppose now that S contains some nondegenerate interval I . Then d(x) = 0
on I . From equality in (7) and real analyticity of λΩ , it follows that λΩ is constant
on all vertical lines between the lines y = 0 and y = 2π . Hence, λΩ is constant
on R \ S . But this is impossible, since λΩ(x) → ∞ as x→ S from within Ω \ S .

We have shown that if equality holds in (7) for some z then S contains no
nondegenerate interval, and that each complementary interval of S has length 2L .
Such an S must be a translate of S(L). Hence, Ω is translate of ΩL . This
completes the proof of Lemma 2.

Returning now to the proof of Theorem 3, when Ω is an L -domain which is
not a translate of ΩL , Lemmas 2 and 1 imply that

(8) λΩ(x+ iy) > λΩL

(

L− d(x) + iy
)

≥ λΩL
(iy) ≥ λΩL

(iπ).

When Ω is a translate of ΩL and z = x + iy ∈ ΩL then Lemma 1 implies
λΩ(z) > λΩL

(iπ) unless x is a midpoint of a complementary interval of S and
y = π . Inequality (5) and the accompanying equality statement now follow from
(8) and the relations

λΩ(x+ iy) = λD(−ex+iy)ex, λΩL
(iπ) = λDK

(1),
(

L = 1
2 logK

)

.

The proof of Theorem 3 is complete.
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6. Distribution inequalities for hyperbolic metrics

Let Ω be an L -domain, as defined in Section 5. We just saw that from (7)
and (8), it follows that for each x ∈ R and y ∈ R ,

λΩ(x+ iy) ≥ λΩL
(iy) = min

x∈R

λΩL
(x+ iy).

In this section, we show that (7) implies a more general sharp inequality for the
distribution function of λΩ on sub-intervals of horizontal lines. For a measurable
real valued function f on an interval I ⊂ R of finite Lebesgue measure |I| , the
distribution function αf of f on I is defined to be

αf (t) = |{x ∈ I : f(x) > t}|, t ∈ R.

We shall denote by f# the symmetric decreasing rearrangement of f . Its
domain is the interval |x| ≤ 1

2 |I| and it satisfies αf = αf# . If f and g are two
such functions, defined on possibly different intervals I1 and I2 with the same
measure 2T , we have the following well-known lemma.

Lemma 3. For f and g as above, the following are equivalent.

(a) αf (t) ≥ αg(t) , for all t ∈ R .

(b) f#(x) ≥ g#(x) , for all |x| ≤ T .

(c)
∫

I1
Φ

(

f(x)
)

dx ≥
∫

I2
Φ

(

g(x)
)

dx

for every nondecreasing function Φ: R → R for which the integrals exist.

For information about distribution functions and symmetric decreasing rear-
rangements, the reader may consult, for example, [15].

Here now is our distribution inequality for hyperbolic densities.

Theorem 4. Let L > 0 , Ω be an L -domain, and I ⊂ R be a closed interval

of length 2T , where T ≤ L . Then for each y ∈ R and t ∈ R , we have

(9) |{x ∈ I : λΩ(x+ iy) > t}| ≥ |{x ∈ [−T, T ] : λΩL
(x+ iy) > t}|.

From Lemma 3, we see that an equivalent conclusion is

(10)

∫

I

Φ
(

λΩ(x+ iy)
)

dx ≥
∫ T

−T

Φ
(

λΩL
(x+ iy)

)

dx

for all nondecreasing Φ.
The methods in [5] and [13] involving “star-functions” can be adapted to

prove that (10) holds for all nondecreasing Φ(r) which are also concave functions
of log r . (The arguments in [5] and [13] show that for horizontal ∗ -functions,
(− logλΩ)∗ ≤ (− logλΩL

)∗ holds in the strip |Re z| < L .) Thus, for the problems
considered in this paper, ultrahyperbolic metrics furnish a more powerful tool than
star-functions.

Uniqueness statements associated with Theorem 4 exist, but we shall leave
their formulations and proofs to the interested reader.
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Proof of Theorem 4. Fix y ∈ R . Write

I = [a, b], f(x) = λΩL
(L− x+ iy), g(x) = f

(

d(x)
)

.

Then f is an even 2L -periodic function on R which, by Lemma 1, strictly
decreases on [0, L] . Here d(x) denotes the distance from x to S . Moreover, f
is continuous as a function into (0,∞] , and f and λΩL

(x + iy) have the same
distribution on [−L,L] . According to Lemma 2,

λΩ(x+ iy) ≥ g(x).

Assume for now that |I| = b − a = 2L . Then it suffices to prove (9) with
g(x) in place of λΩ(x + iy) and f(x) in place of λΩL

(x + iy). If t ≥ max[0,L] f
then both sides of (9) are zero, and if t ≤ min[0,L] f both sides are 2L , so assume
min[0,L] f < t < max[0,L] f . Let σ ∈ (0, L) be the unique solution of f(σ) = t ,
and let E = {x ∈ R : d(x) < σ} . Then g(x) > t if and only if x ∈ E . So to prove
(9) when T = L , it will suffice to prove

(11) |E ∩ I| ≥ 2σ.

Since S is a L -set, the intersection S ∩ I is nonempty. At least one of the
following three cases occurs: (a) [a+σ, b−σ]∩S is nonempty. (b) [a+σ, b−σ]∩S is
empty, but [a, a+σ)∩S is nonempty. (c) [a+σ, b−σ]∩S is empty but (b−σ, b]∩S
is nonempty.

Suppose case (a) occurs. Take x0 ∈ [a+σ, b−σ]∩S . Then d(x) ≤ |x−x0| < σ
for x ∈ (x0 − σ, x0 + σ), so (x0 − σ, x0 + σ) ⊂ E ∩ I . Thus, (11) holds in case (a).

Cases (b) and (c) can be handled symmetrically; we will treat (b). Let x1 be
the largest element of [a, a+σ)∩S . Then x1 < a+σ . Take x2 ∈ (x1, x1+2L]∩S .
Then x2 > b−σ and x2−σ ≤ x1+2L−σ < a+2L = b . Thus, b ∈ (x2−σ, x2+σ),
and hence

(a, x1 + σ) ∪ (x2 − σ, b) ⊂ E ∩ I.
The measure of the set on the left is the smaller of b− a and

(x1 + σ − a) + (b− x2 + σ) = 2σ + (b− a) − (x2 − x1).

Either way, the measure of the set on the left is at least as large as 2σ . Inequality
(11) is proved for case (b), and the proof of Theorem 4 when |I| = 2L is finished.

Suppose that |I| = 2T < 2L . Let J be the open interval with the same
center as I and length 2L . Set δ = L− T . If f(δ) ≤ t , then the right side of (9)
is zero, so we assume f(δ) > t . Then

|{x ∈ (−L,L) : f(x) > t}| = 2|{x ∈ (δ, L) : f(x) > t}| + 2δ,

while
|{x ∈ J : g(x) > t}| ≤ |{x ∈ I : g(x) > t}| + 2δ.

From |{x ∈ (−L,L) : f(x) > t}| ≤ |{x ∈ J : g(x) > t}| , it follows that

|{x ∈ I : g(x) > t}| ≥ 2|{x ∈ (δ, L) : f(x) > t}|,
and this implies (9).
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Numerous comparison theorems involving minima of hyperbolic metrics have
appeared in the literature. But except for the trivial case when one domain con-
tains the other, Theorem 4 is the first result we know of in which the distribution
function of the hyperbolic density of some domain is proved to be everywhere
larger than that of another domain. For related comparison theorems involving
various p.d.e.’s, the reader may consult [6].

7. More covering and distribution inequalities

For L > 0 let S ⊂ R be an L -set as defined in Section 5. Thus S is closed,
and S intersects every closed interval of length 2L . In this section we set

S(L) = (2Z + 1)L.

This set S(L) is different from the S(L) introduced in Section 4.
Let λm be the hyperbolic metric of C\(S×mZ). Then, by Hejhal’s theorem

as in Section 3,
lim

m→∞
λm(z) = λC\S(z), z ∈ C.

Similarly, λC\S(L) is the pointwise limit of hyperbolic metrics for
C\(S(L) ×mZ). The results we proved earlier are valid for each λm and
λC\(S(L)×mZ) . We conclude that λC\S(L) is even, 2L -periodic, nondecreasing on
horizontal segments [iy, L+iy] , and nonincreasing on vertical half-lines [x, x+i∞] .
Using Hopf’s maximum principle, as in the proof of Lemma 1, we see that the
monotonicities are strict. Since eπiS(1) = {−1} , the monotonicities in fact already
follow from the theorem of Hempel [17] about monotonicity of λC\{0,1} on circles
and rays through the origin.

Next, we note that inequality (7) is valid when Ω is replaced by C\S and
ΩL by C\S(L). Arguing as in Sections 5–6, we obtain

Theorem 5. Let S be an L -set on the real line. Then

(a) λC\S(x+ iy) ≥ λC\S(L)(iy) , x ∈ R , and this inequality is strict unless S is

a translate of S(L) .
(b) For each closed interval I ⊂ R with |I| = 2T ≤ 2L and each y, t ∈ R we

have

|{x ∈ I : λC\S(x+ iy) > t}| ≥ |{x ∈ (−T, T ) : λC\S(L)(x+ iy) > t}|.

To prove the strictness assertion, one first establishes the ≥ statement in (a),
then invokes Heins’s theorem.

Now let n be a positive integer, and let E be a closed subset of the unit
circle which intersects every closed arc of length 2π/n . Put En = {e2πik/n : k =
0, . . . , n− 1} . The mapping w = eiζ , which is the universal covering from C onto
C∗ , takes horizontal lines in the ζ -plane to circles |w| = r . Theorem 5(b) with
L = T = π/n , and Lemma 3, imply
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Corollary 2. Let E and n be as above. Then for each arc I of the unit

circle with |I| = 2π/n , each r > 0 , and each nondecreasing function Φ for which

the integrals exist, we have

∫

I

Φ
(

λC∗\E(reiθ)
)

dθ ≥
∫

I

Φ
(

λC∗\En
(reiθ)

)

dθ.

Since λC∗\En
(reiθ) has period 2π/n as a function of θ , the integral on the

right side has the same value over every interval of length 2π/n . The inequality
remains true if I has length 2πk/n for some k ∈ {0, . . . , n− 1} , in particular if
I = [−π, π] .

One can prove an analog of Corollary 2 with C∗ replaced by C or by C∪{∞} .
In the first case the additional condition n ≥ 2 is needed and in the second
case n ≥ 3. To establish these results, one can repeat the arguments proving
Theorems 3–5, with minor modifications.

Theorem 5(a) implies various covering theorems, of which the following is the
simplest to state. Let GL be the universal covering from U onto C\S(L) with
GL(0) = 0 and G′

L(0) > 0. Then GL = LG1 .

Corollary 3. For B ∈ (0,∞) let f be a holomorphic function in U with

f(0) ∈ R and |f ′(0)| ≥ B . Then f(U) ∩ R contains an open interval of length

2B/G′
1(0) . Moreover, f(U) ∩ R contains a closed interval of length 2B/G′

1(0)
unless f = GL + c , where c ∈ R and L = B/G′

1(0) .

An equivalent statement of Corollary 3 is L0 = 2/G′
1(0), where L0 is the

real Landau constant defined at the end of Section 2. Since eπiG1 is the universal
cover from U onto C\{−1, 0} , we deduce

G′
1(0) = 1/

(

πλC\{−1,0}(1)
)

.

When λ has curvature −4, then, see [15, p. 707],

(12) λC\{−1,0}(1) = λC\{0,1}(−1) =
2π2

Γ(1/4)4
.

Thus,

L0 = 2πλC\{0,1}(−1) =
4π3

Γ(1/4)4
.

Hence, Corollary 3 coincides with Theorem 2 in Section 2, and thus Theorem 2 is
proved.
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8. The function A(K)

In the rest of the paper we study the function A(K) = F ′
K(0), defined in Sec-

tion 2. We consider rectangular lattices {2mω + 2nω′} where ω = L = (lnK)/2,
K > 1, and ω′ = πi . Let f be a universal cover of the complement of the lattice
by the unit disc such that f(0) = ω+ ω′ , the center of the lattice, and f ′(0) > 0.
Then FK = −K−1/2ef . We are interested in the quantity A(K) = f ′(0) as a
function of lnK .

In our use of the standard notation of the theory of elliptic functions we follow
[20] (see also [4]): τ = ω′/ω , h = eπiτ ; θj(ζ) is the j th theta-function, θj = θj(0);
and Jacobi’s Modular Function is denoted by κ2 .

We denote

(13) k =
lnK

2π
=
L

π
=
i

τ
, a(k) = A(e2πk) = f ′(0) = A(K).

We may assume that f maps a circular quadrilateral Q (having zero angles,
inscribed in the unit circle, symmetric with respect to the reflections in the coor-
dinate axes) onto a fundamental rectangle R of the lattice, such that f(0) is the
center of R . Then a simple symmetry and rescaling argument gives the functional
equation

a(k−1) = k−1a(k), k > 0.

Using Hejhal’s theorem as in Section 3, it is easy to see that in the limit when
k → 0, f maps the unit disc onto the strip 0 < Imw < 2π , and we obtain

(14) a(0) = 4.

Together with the functional equation this implies

a(k) ∼ 4k, k → +∞,

that is

A(K) ∼ 2 lnK

π
, K → +∞.

Differentiating the functional equation we obtain

a′(1) = 1
2a(1).

In the next two sections we find a(1) and a′(0).
There is no closed form expression for a(k), and even its numerical compu-

tation is a non-trivial task. Finding the density of the hyperbolic metric in the
complement of a rectangular lattice is equivalent to finding a conformal map from
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a rectangle onto a hyperbolic quadrilateral with zero angles. This classical prob-
lem was investigated by Hilbert [19] and Klein [23], and in modern times in [22].
The mapping satisfies a Schwarz differential equation related to a Lamé equa-
tion. The problem of finding this mapping for a given circular quadrilateral (not
necessarily inscribed in a circle) requires determination of the so-called accessory
parameter which is a solution of a transcendental equation involving Hill’s deter-
minants. See [12], [27], [32] for results in this direction. The only paper we know
of where the accessory parameter was actually computed is [22], but this paper
does not contain a rigorous analysis of convergence of the algorithm. The authors
say on p. 217: “It should be emphasized that our remarks about the implicit equa-
tions are purely heuristic and that the actual computation proceeded, as it were,
fortuitously without any a priori justification.”

9. Finding a(1)

We use the upper half-plane rather than the unit disc. Let T be the open
triangle in the upper half-plane with zero angles and vertices 0, 1, ∞ . Let the
quadrilateral Q1 be the union of T with its reflection about its left vertical side
and with the positive imaginary axis. Take the “center” to be the point τ = i .

Let f be the mapping of Section 8 when k = 1. Then R is a square. Define
f1 on Q1 by

f1(τ) = f(ζ)e−iπ/4,

where τ(ζ) is a map from the unit disc onto the upper halfplane with τ(0) = i .
Then f1 maps Q1 onto the square R1 of side 2π which has a diagonal along the
positive real axis from 0 to 2π

√
2 . To construct f1 on Q1 , it suffices to find a

map f1 of T onto the upper half of R1 which carries the positive imaginary axis
to the real interval

(

0, 2π
√

2
)

, then reflect.
We define f1 as a composition of two functions:

f1 = g ◦ κ2,

where κ2 is the Modular Function of Jacobi. (In [4] this function has a double
notation, sometimes λ , sometimes κ2 .) κ2 maps T onto the upper half-plane and
sends (∞, 0, 1) to (0, 1,∞). It satisfies κ2(i) = 1

2 .
Our second component is a Schwarz–Christoffel map

g(w) = C

∫ w

0

ζ−3/4(1 − ζ)−3/4 dζ,

with

C =
2π

√
2

B
(

1
4
, 1

4

) ≈ 1.981,
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where B is Euler’s Beta-function. This g maps the upper half-plane onto the
right triangle constituting the upper half of R1 , and sends w = 1

2
to the middle

of the hypotenuse
(

0, 2π
√

2
)

. We have

g′
(

1
2

)

= C · 23/2 =
8π

B
(

1
4
, 1

4

) = 3.887.

Now κ2 is the restriction to Q1 of a universal cover from the upper half-plane
onto C\{0, 1}. Thus

|(κ2)′(i)| =
λH(i)

λC\{0,1}

(

1
2

) ,

where H denotes the upper half plane.
The Möbius transformation w = (z − 1)/z maps C\{0, 1} onto itself and

carries 1
2 to −1. Using this with (12), we obtain

λC\{0,1}

(

1
2

)

= 4λC\{0,1}(−1) =
8π2

Γ4
(

1
4

) .

Since λH(z) = 1/2y we have λH(i) = 1
2 . Thus,

|(κ2)′(i)| =
Γ4

(

1
4

)

16π2
=
B2

(

1
4
, 1

4

)

16π
.

Finally, |τ ′(0)| = 2, so

a(1) = A(e2π) = f ′(0) = 2|(κ2)′(i)|
∣

∣g′
(

1
2

)
∣

∣ = B
(

1
4
, 1

4

)

.

According to Matlab, the numerical value of a(1) = B
(

1
4
, 1

4

)

is ≈ 7.416.

10. Computation of a′(0)

Recall that for k > 0 the function f maps a certain circular quadrilateral Q
in the unit disk onto the rectangle R with vertices 0, 2πk , 2πk + 2πi , 2πi , and
that a(k) = f ′(0). Of course, Q and f are determined by k . We shall sketch a
proof that

(15) a(k) = 4 +
8k ln 4

π
+ o(k), k → 0.

Some details will be left to the reader.
Let g2(z) = 2 log(1 + z)/(1 − z). The map z → (1 + z)/(1 − z) maps geo-

desics of the unit disk symmetric with respect to the real axis onto semicircles
of constant modulus in the right half plane. Thus, g2 maps such geodesics onto
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vertical segments of length 2π which are symmetric with respect to the real axis.
We assume throughout this section that k is small. Then g2 maps the unit disk
onto the horizontal strip |Imw| < π and maps Q onto a narrow quadrilateral
Q2 which is symmetric with respect to both coordinate axes and is bounded by
two vertical segments each of length 2π and two small curves orthogonal to the
boundary of the strip which are almost semicircles. We have

g2
′(0) = 4.

Suppose that Q2 has width ε > 0. Then k and ε are functions of each other,
each tending to zero when one of them does. Define f2 by f = f2 ◦ g2 . Then f2
maps Q2 onto the rectangle R . By reflecting in vertical sides, we extend f2 to a
conformal map of a subdomain of |Im z| < π onto the strip 0 < Im z < 2π . As
k → 0, the maps converge locally uniformly to a conformal map of |Im z| < π onto
0 < Im z < 2π which carries 0 to iπ and has positive derivative at the origin.
This limit map must be z → z + iπ . In particular, the second derivatives of the
f2 converge locally uniformly to zero. It follows that

f2(z) − f2(0) = zf ′
2(0) + o(z2)

in a neighborhood of 0, where the error term is uniform in k . Taking z = 1
2
ε and

using f2
(

1
2ε

)

= 2πk + iπ , we deduce that

f ′
2(0) =

2πk

ε
+ o(ε), ε→ 0.

Since f ′
2(0) converges to 1, it follows that ε ∼ 2πk , and we can replace the

equation above by

(16) f ′
2(0) =

2πk

ε
+ o(k), k → 0.

Next, let us rescale both Q2 and R to the width 1, denoting the rescaled
quadrilaterals by Q′

2 and R′ , and let G be the conformal map from Q′
2 onto R′

with G′(0) > 0. These quadrilaterals are tall; we are interested in the difference of
their heights. If we cut Q′

2 and R′ by horizontal segments in the middle, the lower
half of Q′

2 will be conformally equivalent to the lower half of R′ (as curvilinear
quadrilaterals). Let us compare the restriction of G to these halves with the
conformal map F of the triangle T (see Section 9) onto a vertical halfstrip with
vertices 0, 1, ∞ (and right angles at 0 and 1). Such a map with the vertex
correspondence (0, 1,∞) → (0, 1,∞) is given by

F (τ) =
1

π
arccos

2 − κ2(τ)

κ2(τ)
.



130 A. Baernstein II, A. Eremenko, A. Fryntov, and A. Solynin

Using the notation from [4], [20], we have

κ2 = (θ2/θ3)
4, [20, II, 4, Section 5],

θ2 = 2h1/4(1 + h2 + h6 + h12 + . . .),

θ3 = 1 + 2h+ 2h4 + 2h9 + . . . , (see [20, II, 2, Section 6]),

where

h = exp(πiτ).

It follows that κ2(h) = 16h− 128h2 + O(h3) as h→ 0 and that

(17) F (τ) = τ − i
ln 4

π
+ o(1), τ → +∞, τ ∈ T.

Moreover, using (17) together with extremal length, or by some other argu-
ment, one can show that uniformly for z in the bottom half of R′ ,

G(z) = F

(

z +
1

2
+
πi

ε

)

+ o(1).

It follows that R′ is shorter than Q′
2 by

2

π
ln 4 + o(1).

The height of R′ equals 1/k and the height of Q′
2 equals 2π/ε . Thus

(18)
1

k
=

2π

ε
− 2

π
ln 4 + o(1).

The desired relation (15) now follows from (16), (18) and a(k) = f ′(0) =
4f ′

2(0). From (15) we recover the relation a(0) = 4 of (14) and also find that

a′(0) =
8 ln 4

π
= 3.5302 . . . .

Returning to our original notation, and using (14) we obtain

A(K) = 4 +
4 ln 4

π2
(K − 1) + o(K − 1), K → 1 + .
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11. A conjecture

Rademacher’s Conjecture for the exact value of Landau’s constant may be
formulated as follows: The ratio |f ′(0)|/l(f) is maximized over all holomorphic
functions f in the unit disk U when f is a universal cover from the disk onto the
complement of a hexagonal lattice and f(0) is the barycenter of one of its com-
plementary equilateral triangles. Here, as in Section 2, l(f) denotes the inradius
of the domain f(U). See, for example, [7] for discussion.

This formulation suggests a corresponding problem for rectangular lattices:
Maximize |f ′(0)|/l(f) when f runs through all universal covers from U onto the
complement of a rectangular lattice.

Conjecture. The maximum ratio is achieved when the lattice is square and

f(0) is the center of some fundamental complementary square.

We may restrict attention to lattices of the form {2mω+2nω′} with ω equal
to πk for some positive number k and ω′ = πi . Furthermore, from Lemma 1
in Section 4, it follows that we need only consider maps f which carry 0 to the
center of a fundamental complementary rectangle R . We are now in the situation
of Section 8, and have

|f ′(0)| = a(k).

The inradius l(f) equals half the length of the diagonal of R . Thus

l(f) = π(1 + k2)1/2.

The rectangle R is a square when k = 1. Thus, the conjecture above can be
restated as

a(k) ≤ 2−1/2(1 + k2)1/2a(1), 0 < k <∞.

Since a(0) = 4 and a(1) = 7.416, the conjecture is true for small values of k .
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