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Abstract. D. Marshall and S. Rohde have recently shown that there exists C0 > 0 so that
the Loewner equation generates slits whenever the driving term is Hölder continuous with exponent
1
2 and norm less than C0 [11]. In this paper, we show that the maximal value for C0 is 4 .

1. Introduction

When Loewner introduced his namesake differential equation in 1923, it greatly
impacted the theory of univalent functions. A univalent function f is a conformal
map of the unit disk, normalized by f(0) = 0 and f ′(0) = 1. In other words, it
has the following power series representation in the unit disk:

f(z) = z + a2z
2 + a3z

3 + · · · .
In 1916 Bieberbach [2] had shown that |a2| ≤ 2 and had conjectured that |an| ≤ n
for all n . It was Loewner’s differential equation that led to a proof of the case
n = 3 in 1923. See [1] or [5] for a proof of this and for more classical applications
of the Loewner equation. When the Bieberbach conjecture finally was proved for
general n in 1985 by de Branges [4], the Loewner equation again played a key role.

In addition to its importance in the theory of univalent functions, the Loewner
differential equation has gained recent prominence with the introduction of a
stochastic process called “Stochastic Loewner Evolution”, or SLE, by O. Schramm
[13]. Many results in this fast-growing field can be found in the recent work of
mathematicians such as Lawler, Rohde, Schramm, Smirnov, and Werner. See [7]
for a survey paper with an extensive bibliography.

In the next two sections, we will introduce two formulations of the determinis-
tic Loewner differential equation, the halfplane version and the disk version. This
is followed by a discussion of some problems associated with the geometry of the
solutions to the Loewner equation. The rest of the paper is concerned with proving
Theorem 2 below, which builds upon D. Marshall and S. Rohde’s recent work [11]
concerning when the Loewner equation can generate slits. The fifth section con-
tains examples and lemmas related to a natural obstacle to generating slits, the
sixth section includes lemmas about conformal welding and the Loewner equation,
and the final section is the proof of Theorem 3, which is equivalent to Theorem 2.
Some simplifications of the arguments in the fifth section were communicated to
us by O. Schramm and are discussed in the Appendix.
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2. The Loewner equation in the halfplane

Let γ(t) be a simple continuous curve in H∪{0} with γ(0) = 0 and t ∈ [0, T ] .
Then there is a unique conformal map gt: H \ γ[0, t] → H with the following
normalization, called the hydrodynamic normalization, near infinity:

gt(z) = z +
c(t)

z
+ O

(

1

z2

)

.

It is an easy exercise to check that c(t) is continuously increasing in t and that
c(0) = 0. Therefore γ can be reparametrized so that c(t) = 2t . Assuming this
normalization, one can show that gt satisfies the following form of Loewner’s
differential equation: for all t ∈ [0, T ] and all z ∈ H \ γ[0, t] ,

∂

∂t
gt(z) =

2

gt(z) − λ(t)
, g0(z) = z,

where λ is a continuous, real-valued function. Further, it can be shown that gt

extends continuously to γ(t) and gt

(

γ(t)
)

equals λ(t).
On the other hand, if we start with a continuous λ: [0, T ] → R , we can

consider the following initial value problem for each z ∈ H :

(1)
∂

∂t
g(t, z) =

2

g(t, z) − λ(t)
, g(0, z) = z.

For each z ∈ H there is some time interval [0, s) for which a solution g(t, z) exists.
Let Tz = sup{s ∈ [0, T ] : g(t, z) exists on [0, s)} . Set Gt = {z ∈ H : Tz > t}
and gt(z) = g(t, z). Then one can prove that the set Gt is a simply connected
subdomain of H and gt is the unique conformal map from Gt onto H with the
following normalization near infinity:

gt(z) = z +
2t

z
+O

(

1

z2

)

.

The function λ(t) is called the driving term, and the domains Gt as well as the
functions gt are said to be generated by λ .

The domains Gt generated by a continuous driving term λ are not necessarily
slit-halfplanes, i.e. domains of the form H \ γ[0, t] , for some simple continuous
curve γ in H ∪ {γ(0)} with γ(0) ∈ R . We will give an example later in the
paper where a non-slit-halfplane is generated by a driving term which is not only
continuous but also is in Lip

(

1
2

)

. Recall that Lip
(

1
2

)

is the space of Hölder
continuous functions with exponent 1

2
, that is the space of functions λ(t) satisfying

|λ(s)−λ(t)| ≤ c|s−t|1/2 , with ‖λ‖1/2 denoting the smallest such c . The necessary
and sufficient condition for a decreasing family of domains {Gt} to be generated
by a continuous driving term can be found in Section 2.3 of [10].
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3. The Loewner equation in the disk

The setup for the disk version of the Loewner equation is similar to that of the
halfplane version, but the normalization will be at an interior point rather than
at a boundary point. For the unit disk D slit by a simple curve γ(t) in D ∪ {1}
with γ(0) = 1 and γ(t) 6= 0 for any t , there is a unique family of conformal maps
{gt} so that gt: D \ γ[0, t] → D with the normalizations gt(0) = 0 and g′t(0) > 0.
Further, by reparametrizing γ if necessary, we can assume that g′t(0) = et . If we
again set λ(t) = gt

(

γ(t)
)

, then

(2)
∂

∂t
gt(z) = gt(z)

λ(t) + gt(z)

λ(t) − gt(z)
, g0(z) = z.

Given any continuous function λ: [0, T ] → ∂D , we can solve the initial value
problem (2) for z ∈ D . As in the halfplane version, this will generate a family of
conformal maps {gt} which map from a simply connected subdomain of the unit
disk onto the unit disk and which are normalized by gt(0) = 0 and g′t(0) = et .

4. Some results

We return to the halfplane version of the Loewner equation, which will be
the setting for the rest of this paper. For κ ≥ 0, set λ(t) =

√
κBt , where Bt is

standard Brownian motion. Then chordal SLEκ is the random family of conformal
maps generated by λ , that is, the family of maps solving the following stochastic
differential equation:

∂

∂t
gt(z) =

2

gt(z) −
√
κBt

, g0(z) = z.

For SLE, it is possible to define an almost surely continuous path γ: [0,∞) →
H such that the domains Gt generated by λ(t) =

√
κBt are the unbounded

components of H \ γ[0, t] for every t ≥ 0. See [12] and, for the case κ = 8, [10].
Further, S. Rohde and O. Schramm [12] have shown the following classification:

(1) For κ ∈ [0, 4], γ(t) is almost surely a simple path contained in H ∪ {0} .
(2) For κ ∈ (4, 8), γ(t) is almost surely a non-simple path.
(3) For κ ∈ [8,∞), γ(t) is almost surely a space-filling curve.

This result motivates a question in the deterministic setting. Can we classify
the kinds of domains generated by a driving term λ in terms of some characteristic
of λ? There is only a partial understanding of this question. In the case of a
domain slit by an analytic slit, the driving term is real analytic, and if the slit is
Cn then the driving term is at least Cn−1 . See [6] and [3].

D. Marshall and S. Rohde address the question of when the generated domains
Gt are quasislit-halfplanes in [11], where a quasislit-halfplane is the image of H \
[0, i] under a quasiconformal mapping fixing H and ∞ . They prove the following:
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Theorem 1. If Gt is a quasislit-halfplane for all t , then λ ∈ Lip
(

1
2

)

.

Conversely, there exists C0 such that if the driving term λ ∈ Lip
(

1
2

)

with

‖λ‖1/2 < C0 , then Gt is a quasislit-halfplane for all t .

Although they work with the technically more challenging disk version of the
Loewner equation, their techniques carry over to prove the result in the halfplane
version as well. In the remainder of this paper, working with the halfplane version
of Loewner’s equation, we will show that the maximal value for C0 is 4.

Theorem 2. If λ ∈ Lip
(

1
2

)

with ‖λ‖1/2 < 4 , then the domains Gt generated

by λ are quasislit-halfplanes.

Further, for each c ≥ 4, there exists a driving term λ ∈ Lip
(

1
2

)

with ‖λ‖1/2 =
c so that λ does not generate slit-halfplanes. We will see examples of this in the
next section. Similar examples were discovered independently by L. Kadanoff,
W. Kager, and B. Nienhuis [8]. Their work also includes descriptions and pictures
of the generated domains.

There is another version of the Loewner equation in the halfplane. Let
ξ: [0, T ] → R be continuous and consider the following initial value problem,
in which a negative sign has been introduced on the right-hand side of (1):

(3)
∂

∂t
f(t, z) =

−2

f(t, z) − ξ(t)
, f(0, z) = z

for z ∈ H . In this case, for each z ∈ H , the solution f(t, z) exists for all t ∈ [0, T ] .
Setting ft(z) = f(t, z), we have that ft is defined on all of H . As in the previous
case, it can be shown that ft is a conformal map from H into H , and near infinity
it has the form

ft(z) = z +
−2t

z
+ O

(

1

z2

)

.

We think of the functions ft as being generated by “running time backward”.
These two forms of Loewner’s differential equation are related. Given a con-

tinuous function λ on [0, T ] , set ξ(t) = λ(T−t). Let gt be the functions generated
by λ from (1), and let ft be the functions generated by ξ from (3). It is not true
that ft(z) = g−1

t (z) for all t ∈ [0, T ] , but it is true that fT (z) = g−1
T (z). Therefore

Theorem 2 is equivalent to the following:

Theorem 3. If ξ ∈ Lip
(

1
2

)

with ‖ξ‖1/2 < 4 , then ft(H) is a quasislit-

halfplane for all t , where ft are the maps generated by ξ .

5. When the singularity catches solutions

Let λ ∈ Lip
(

1
2

)

and suppose that the domains Gt generated by λ are slit-
halfplanes. Then the maps gt extend continuously to R \ {λ(0)} . Thus for each
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x0 ∈ R \ {λ(0)} , x(t) := gt(x0) is a solution to the following real-valued initial
value problem:

(4)
∂

∂t
x(t) =

2

x(t) − λ(t)
, x(0) = x0.

Further, if λ is defined on [0, T ] , then x(t) 6= λ(t) for any t ∈ [0, T ] , since
otherwise (4) would fail to have a solution for all t ∈ [0, T ] .

Note that if x0 > λ(0), then (∂/∂t)x(t) > 0 as long as x(t) 6= λ(t). So two
things can happen: either x(t) continues to move to the right, staying strictly
larger than the driving term, or the driving term moves fast enough to “catch”
x(t) and there is some time t0 where x(t0) = λ(t0). The case when x0 < λ(0) is
similar but with x(t) moving to the left. Thus, when the domains generated are
slit-halfplanes, we see that λ(t) cannot “catch” any solution x(t) to (4).

To build our intuition, let us briefly consider a particular example. Let Gt =
H \ γ[0, t] , where γ parametrizes the upper half-circle of radius 1

2
centered at 1

2
,

as pictured in Figure 1. In this case it is possible, although unpleasant, to compute
the maps gt and to ascertain that the driving term generating this scenario is the
function λ(t) = 3

2 − 3
2

√
1 − 8t , for t ∈ [0, 1

8 ] . The time t = 1
8 corresponds to the

moment that the circular arc touches back on the real line, and G1/8 = H\D
(

1
2 ,

1
2

)

.

10

Figure 1. One of the domains generated by λ(t) = 3
2 − 3

2

√
1 − 8t .

For t ∈
[

0, 1
8 − ε

]

, the domains Gt are slit-halfplanes, and therefore for any
x0 6= 0, the solutions x(t) to (4) exist on this time interval. What happens to
these solutions when t = 1

8 ? Clearly, g1/8 extends only to R \ [0, 1]. That is,

on
[

0, 1
8

]

, solutions to (4) exist only for x0 > 1 or x0 < 0. So if x0 ∈ (0, 1], the
function x(t) resulting from (4) must be caught by λ at time t = 1

8
. For example,

it is easy to check that the solution to (4) when x0 = 1 is x(t) = 3
2 − 1

2

√
1 − 8t .

Here we see that x
(

1
8

)

= 3
2

= λ
(

1
8

)

.
To determine an upper bound on the constant C0 in Theorem 1, we can

analyze the situations where this catching could occur, since this implies that the
family of domains Gt is not a family of slit-halfplanes. In the example above,
‖λ‖1/2 = 3

√
2 , which indicates that C0 ≤ 3

√
2 . Moreover, for any c ≥ 4, it

is easy to give an example of a driving term λ with ‖λ‖1/2 = c so that λ can

catch a function x(t) generated by (4) for some x0 . Let λ(t) = c− c
√

1 − t and
x(t) = c− a

√
1 − t where a = 1

2

(

c+
√
c2 − 16

)

. In particular, when c = 4, then

λ(t) = 4−4
√

1 − t and x(t) = 4−2
√

1 − t . One can check that x(t) is a solution
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to (4) with x0 = c− a > 0. However x(1) = c = λ(1). Therefore, since λ(t) has
caught x(t), λ cannot generate slit-halfplanes. This implies that the constant C0

in Theorem 1 cannot be greater than 4.
In contrast to the examples above, the following lemma shows that if λ can

catch some x(t), then ‖λ‖1/2 ≥ 4. To make things slightly simpler, we take
advantage of the fact that the halfplane version of the Loewner equation satisfies
a useful scaling property: If λ(t) and x(t) satisfy equation (4), then λ̂(t) :=
λ(r2t)/r and x̂(t) := x(r2t)/r also satisfy equation (4). Verifying this is an easy
exercise. Using this scaling property, we can assume that if a catching occurs,
then it happens at time 1. More precisely, if x(t0) = λ(t0) and x(t) 6= λ(t) for
t < t0 , then without loss of generality t0 = 1. Also, nothing is lost by assuming
that λ(0) = 0 and x0 > 0.

Lemma 1. Let λ ∈ Lip
(

1
2

)

with λ(0) = 0 and let x0 > 0 . Suppose that

x(t) is a solution to (4) and that x(1) = λ(1) . Then ‖λ‖1/2 ≥ 4 .

Proof. Let c=‖λ‖1/2 . From (4), we have that x(t) is increasing in t . So then

since λ ∈ Lip
(

1
2

)

,

x(t) − λ(t) ≤ x(1) − λ(1) + c
√

1 − t ≤ c
√

1 − t .

From (4) we have

ẋ(t) ≥ 2

c
√

1 − t
.

Integrating gives that

x(1) − x(t) ≥ 4

c

√
1 − t .

Letting t = 0 and using that x(1)−x0 < c , we see that c− 4/c > 0 and so c > 2.
But we also have a better estimate for x(t):

x(t) ≤ x(1) − 4

c

√
1 − t .

Now using this estimate, we can repeat the above argument. So

x(t) − λ(t) ≤
(

c− 4

c

)√
1 − t ,

which leads to a new estimate for ẋ(t). Then by integration,

x(1) − x(t) ≥ 4

c− 4

c

√
1 − t .
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This implies that c −
(

4/(c− 4/c)
)

> 0 and so c > 2
√

2 . Again we also get an
improved estimate for x(t):

x(t) ≤ x(1) − 4

c− 4

c

√
1 − t .

Repeating this procedure n times gives that hn(c) > 0 where hn is recursively
defined as follows:

h1(x) = x− 4

x
, hn(x) = x− 4

hn−1(x)
.

Note that h1(x) is an increasing function from (0,∞) onto R . It is easy to show
inductively that we can define an increasing sequence {xn} so that hn(xn) = 0,
and hn+1(x) is an increasing function from (xn,∞) onto R . Note that we have
shown that x1 = 2 and x2 = 2

√
2 . Since hn(c) > 0 for all n , c > xn for all n .

It simply remains to show that xn ↗ 4.
An easy inductive argument gives that hn(4) ≥ 2 for all n . If 4 ∈ (xk−1, xk]

for some k , then hk(4) ≤ 0. Therefore, the increasing sequence {xn} is bounded
above by 4, and hence there exists some a ≤ 4 such that xn ↗ a . Now, hn(a) >
hn(xn) = 0 for all n . If hk(a) ≤ 1 for some k , then hk+1(a) = a−

(

4/hn(a)
)

≤ 0.
So we must have hn(a) > 1 for all n . Since hn(a) is decreasing in n and bounded
below by 1, hn(a) ↘ L for some L ≥ 1. So then,

L = lim
n→∞

hn(a) = lim
n→∞

a− 4

hn−1(a)
= a− 4

L
.

Solving the above for L gives that

L =
a±

√
a2 − 16

2
.

Since we know the real-valued limit L exists, we must have a ≥ 4. Hence, a = 4,
completing the proof.

Note that in the proof above, we have also shown the following: if hn(c) > 0
for all n , then c ≥ 4. This follows since hn(c) > 0 for all n implies that c > xn

for all n and since xn ↗ 4. We mention this here, since we will use this fact in
the proof of the next lemma.

Although Lemma 1 certainly suggests that the maximal value for C0 is 4, it
is not a proof of Theorem 2. In theory, there may be more obstacles to generating
quasislit-halfplanes than that of the driving term catching up to some solution
to (4). However, we will see that this is basically the only obstacle. Refining the
above argument gives Lemma 2, which combined with techniques in [11] will lead
to the proof of Theorem 2. The idea of Lemma 2 is that if λ can get close to
catching some x(t), then ‖λ‖1/2 must be close to being greater than or equal
to 4.
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Lemma 2. Let λ ∈ Lip
(

1
2

)

with λ(0) = 0 and ‖λ‖1/2 < 4 . Then there

exists ε = ε(‖λ‖1/2) > 0 so that x(1)−λ(1) > ε , where x(t) is the solution to (4)
with x0 > 0 .

Proof. Suppose x(t) is a solution to (4) for some x0 > 0 so that x(1)−λ(1) ≤
ε . We will show that there exists some ε > 0 so that this leads to a contradiction.
Again, let c = ‖λ‖1/2 . As in the previous proof, define hn recursively by

h1(c) = c− 4

c
, hn(c) = c− 4

hn−1(c)
.

Since c < 4, there is some minimal n so that hn(c) ≤ 0 (see the comment following
the proof of Lemma 1). If hn(c) = 0, replace c with a slightly larger value, that
is, recalling our notation from the previous proof, replace c with some number in
the interval (xn, xn+1). Then hn+1(c) < 0. We stop once we are in the case that
hk(c) < 0.

Also recursively define en by

e1(c, ε) = ε+
4ε

c2
ln

(

1 +
c

ε

)

, en(c, ε) = ε+
4en−1(c, ε)
(

hn−1(c)
)2 ln

(

1 +
hn−1(c)

en−1(c, ε)

)

.

The recursive definition for en is unpleasant, but all that we shall need is that for
c and n fixed, en(c, ε) → 0 as ε→ 0. This is easy to verify by induction.

To begin, we will prove by induction that

(5) x(1) − x(t) ≥ ε− en(c, ε) +
(

c− hn(c)
)√

1 − t .

First we show equation (5) when n = 1. We have

x(t) − λ(t) ≤ x(1) − λ(1) + c
√

1 − t ≤ ε+ c
√

1 − t

which implies that

ẋ(t) ≥ 2

ε+ c
√

1 − t
.

Since
∫ 1

t

2

a+ b
√

1 − s
ds =

4

b

√
1 − t − 4a

b2
ln

(

1 +
b

a

√
1 − t

)

,

integrating gives

x(1) − x(t) ≥ 4

c

√
1 − t − 4ε

c2
ln

(

1 +
c

ε

√
1 − t

)

,

and so, as desired (5) holds for n = 1.
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Next assume equation (5) holds for n = k . Then

x(t) ≤ x(1) − ε+ ek(c, ε) +
(

hk(c) − c
)√

1 − t ,

and so

x(t) − λ(t) ≤ ek(c, ε) + hk(c)
√

1 − t .

This again gives us an estimate for ẋ(t) and integrating yields

x(1) − x(t) ≥ 4

hk(c)

√
1 − t − 4ek(c, ε)

hk(c)2
ln

(

1 +
hk(c)

ek(c, ε)

√
1 − t

)

.

Thus equation (5) holds for n = k + 1, completing our verification of (5) by
induction.

Recall that x(1) ≤ c+ ε . Thus letting t = 0 in equation (5) gives

hn(c) + en(c, ε) > 0.

As mentioned before, by adjusting c slightly if necessary, there is some n such
that hn(c) < 0. Then since en(c, ε) → 0 as ε → 0, there exists some ε > 0 so
that en(c, ε) < −hn(c). But this contradicts the fact that hn(c) + en(c, ε) > 0.
Therefore, there exists ε > 0 so that x(1) − λ(1) > ε , for x(t) the solution to (4)
with x0 > 0.

Now we wish to run time backward, and so we must consider the second form
of the Loewner equation in the upper halfplane. Recall that from (3), the driving
term ξ(t) generates conformal functions ft , which map from H into H . If the
image of ft is a quasislit-halfplane, then we can extend ft continuously to R , and
for each x0 ∈ R \ {ξ(0)} , x(t) := ft(x) is a solution to

(6)
∂

∂t
x(t) =

−2

x(t) − ξ(t)
, x(0) = x0.

Note that the solution x(t) might not exist for all time. Indeed, in the case that
‖ξ‖1/2 < 4, the following corollary shows that x(t) will hit the singularity ξ(t) in
finite time. We define the hitting time T (x0) to be the first time that x(t) equals
ξ(t), that is, x

(

T (x0)
)

= ξ
(

T (x0)
)

and x(t) 6= ξ(t) for t < T (x0). If x(t) never
equals ξ(t), then T (x0) := ∞ .

Corollary 1. Let ξ ∈ Lip
(

1
2

)

with ‖ξ‖1/2 < 4 and ξ(0) = 0 . Suppose

that x(t) is a solution to (6), with x0 6= 0 . Then K1x
2
0 ≤ T (x0) ≤ K2x

2
0 , where

0 < Ki = Ki(‖ξ‖1/2) <∞ .
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Proof. For c = ‖ξ‖1/2 , let ε = εc > 0 be given as in Lemma 2, and let x(t)
be the solution to (6) with x(0) = ε . If T (ε) > 1, then λ(t) = ξ(1− t)− ξ(1) and
y(t) = x(1−t)−ξ(1) satisfy the differential equation (4), with y(0) = x(1)−ξ(1) >
0. Thus Lemma 2 implies that ε = y(1) − λ(1) > ε . This is a contradiction, and
so T (ε) ≤ 1.

Now suppose x0 > 0, with x(t) again the corresponding solution to (6). Then

by the scaling property, ξ̂(t) and x̂(t) satisfy equation (6), where

ξ̂(t) :=
ε

x0
ξ

(

x2
0

ε2
t

)

,

and

x̂(t) :=
ε

x0
x

(

x2
0

ε2
t

)

.

Note that x̂(0) = ε . Therefore

T (x0) =
x2

0

ε2
T (ε) ≤ K2x

2
0

where K2 = K2(c) <∞ .

For the lower bound, assume first that x0 = 1, and assume that T (1) = δ is
small. Then since ξ(t) ≤ c

√
t , we have x(δ) ≤ c

√
δ . Taking δ small enough so

that c
√
δ < 1

2 , let t0 be the time when x(t) = 1
2 . Then,

−1

2
=

∫ t0

0

−2

x(s) − ξ(s)
ds ≥ −2t0

1
2 − c

√
δ
,

and so,

1

2

(

1

2
− c

√
δ

)

≤ 2δ.

This leads to a contradiction if δ is sufficiently small. Therefore T (1) ≥ K1 for
some K1 = K1(c) > 0. Then by the scaling property, T (x0) ≥ K1x

2
0 .

In the previous corollary, we saw that if ‖ξ‖1/2 < 4 then solutions x(t) to (6)
will hit the singularity in finite time. Lemma 3 shows that there is more that is
true. For each finite time, there are exactly two initial points, one on each side of
the singularity, so that the solutions to (6) will hit the singularity at that time.

Lemma 3. Let ξ ∈ Lip
(

1
2

)

with ‖ξ‖1/2 < 4 . For each T > 0 , there exist

exactly two real numbers x0, x̂0 so that x(T ) = x̂(T ) = ξ(T ) .
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Proof. First notice that no two points on the same side of the singularity can
give rise to solutions to (6) that will hit at the same time. This follows from the
fact that δ(t) := y(t) − x(t) is increasing in t for ξ(0) < x0 < y0 , since

δ̇(t) = 2
y(t) − x(t)

(

y(t) − ξ(t)
)(

x(t) − ξ(t)
) .

Thus there are at most two points that can hit at time T .
Next we will show that there is one point x0 to the right of the singularity

with x(T ) = ξ(T ). For each n ∈ N , set wn = ξ(T ) + 1/n . Now, starting at wn ,
run time from T back to 0. This corresponds to solving (4) with initial value wn .
Since ‖ξ‖1/2 < 4, the driving term cannot catch up with this solution, gt(wn),
by Lemma 1, and so it is well-defined up through time T . Thus, xn := gT (wn) =
f−1

T (wn) is well-defined. Further, by Corollary 1, xn − ξ(0) ≥ K
√
T , for some

K > 0. Therefore, {xn} is a decreasing sequence bounded below by ξ(0)+K
√
T ,

and so it has a limit x0 . Then x0 > ξ(0) and clearly we have x(T ) = ξ(T ). This
completes the proof.

6. Conformal welding with the Loewner equation

The previous lemma allows us to define the welding homeomorphism φ: R →
R as the orientation-reversing map that satisfies φ(x) = y if and only if T (x) =
T (y). Thus the welding homeomorphism interchanges the two points which hit
the singularity at the same time. Note that if ξ is not defined for all time, but for
a finite interval [0, T ] , the welding homeomorphism will not be defined on all R .
However, we can overcome this technicality by setting ξ(t) := ξ(T ) for t > T .

This next lemma is an analogue of Lemma 3.2 found in [11].

Lemma 4. Let ξ ∈ Lip
(

1
2

)

with ‖ξ‖1/2 < 4 and ξ(0) = 0 . There exists

some constant A0 > 0 , depending only on ‖ξ‖1/2 , so that if 0 ≤ x < y < z with

y − x = z − y , then

(7)
1

A0
≤ φ(x) − φ(y)

φ(y) − φ(z)
≤ A0.

To prove this lemma, we will need the following.

Lemma 5. Let c < 4 and 0 < ε < 1 . Then there exists δ > 0 so that

φ(β)

φ(α)
≥ 1 + δ

for non-zero α and β satisfying β/α ≥ 1 + ε and for any Lip
(

1
2

)

driving term ξ
with ‖ξ‖1/2 ≤ c .
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Proof. Notice first that without loss of generality we can take α = −1 and
β ≤ −(1 + ε) by the scaling property.

Suppose there is no such δ as in the statement of the lemma. Then for each
n ∈ N there exists a driving term ξn and βn ≤ −(1+ε) so that bn < (1+1/n)an ,
where 0 < an := φ(−1) < bn := φ(βn). Set Tn = T (an) and Sn = T (bn).

By Ascoli–Arzela, there exists a subsequence of {ξn} which converges locally
uniformly to ξ . Note that ξ ∈ Lip

(

1
2

)

with ‖ξ‖1/2 ≤ c . Since T (x) � x2 by Corol-
lary 1, an , bn , βn , Tn and Sn are all bounded. Hence by taking subsequences
and renaming to avoid notational hazards, we have an → a , bn → b , βn → β ,
Tn → T and Sn → S . Note that a = b since an < bn < (1 + 1/n)an . If we had
that T (a) = T = T (−1) and T (b) = S = T (β), this would give us the desired con-
tradiction, since T (−1) < T (β). The same argument can be used to prove each of
these four equalities, and so we will simply show that T (a) = T . Since ξn → ξ lo-
cally uniformly, ξn(Tn) → ξ(T ). Hence limn→∞ an(Tn) = limn→∞ ξn(Tn) = ξ(T ),
where an(t) is the solution to (6) with an(0) = an . Thus it remains to show that
an(Tn) → a(T ).

Claim: Let ε > 0. Then an(T − ε) → a(T − ε).
Proof of Claim: We will assume without loss of generality that Tn ≥ T − 1

2
ε .

Then, an(T − ε) is well-defined and is bounded away from ξn(T − ε) by a factor
of

√
ε by Corollary 1.
Fix n for a moment. Then looking to solve the initial value problem (6) with

the method of successive approximations, let ψn
0 ≡ an and recursively define

ψn
k+1(t) = an +

∫ t

0

−2

ψn
k (s) − ξn(s)

ds.

Similarly, let ψk be the approximation for ξ with initial value a . Then for t ∈
[0, T − ε] , ψn

k (t) ≥ an(t) and ψk(t) ≥ a(t). By an easy induction argument, we
have that for t ∈ [0, T − ε] ,

|ψn
k (t) − ψk(t)| ≤ |an − a| + (|an − a| + ‖ξn − ξ‖∞)

k
∑

j=1

(Bt)j

j!

where B depends only on ε . So, for t ∈ [0, T − ε] ,

|an(t) − a(t)| = lim
k→∞

|ψn
k (t) − ψk(t)| ≤ |an − a| + (|an − a| + ‖ξn − ξ‖∞)(eBt − 1).

Therefore, an(T − ε) → a(T − ε), proving the claim.
Assuming Tn ∈

[

T − 1
2ε, T + 1

2ε
]

and using Corollary 1, we have

0 ≤ an(T − ε) − an(Tn) =
(

an(T − ε) − ξn(T − ε)
)

+
(

ξn(T − ε) − ξn(Tn)
)

≤ A
√
ε + c

√

Tn − (T − ε) ≤ A
√
ε

where A is a constant depending only on c . So by the claim above,

0 ≤ a(T − ε) − lim
n→∞

an(Tn) ≤ A
√
ε

implying that an(Tn) → a(T ).
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Now we are ready for the proof of Lemma 4.
Proof. In this proof, A ≥ 1 will stand for any constant which depends only

on ‖ξ‖1/2 . Let z(t) be the solution to (6) with z(0) = z , and ẑ(t) the solution to
(6) with ẑ(0) = φ(z). Define x(t), y(t), x̂(t) and ŷ(t) similarly.

First we consider the case x = 0. Instead of only taking z = 2y , we simply
assume that z/y ∈ [1 + ε, 2], since we will reduce the next case to this setting.
By the scaling invariance, we can assume that y = 1. Set T = T (1), and recall
that K1 ≤ T ≤ K2 from Corollary 1. Then z(T ) − ξ(T ) ≤ 2 + c

√
K2 . Abusing

notation a little, we have T (z) = T + T
(

z(T ) − ξ(T )
)

, where by T
(

z(T ) − ξ(T )
)

we mean the hitting time for the solution to (6) with initial value z(T ) and driving
term ξ(T + t). By Corollary 1,

φ(z)2 ≤ 1

K1
T

(

φ(z)
)

=
1

K1
T (z) ≤ K2

K1

(

1 +
(

2 + c
√
K2

)2)

and similarly,

φ(1)2 ≥ 1

K2
T

(

φ(1)
)

=
1

K2
T (1) ≥ K1

K2
.

Therefore,
φ(z)

φ(1)
≤ A.

By Lemma 5, we have
φ(z)

φ(1)
≥ 1 + δ

where δ depends only on c and ε . This gives (7) in the case x = 0.
Next we consider the case where x > 0 and z ≥ 2x . We will reduce this to

case 1 by letting time run for T = T (x) at which point x(T ) = ξ(T ). Since

∂

∂t
log

(

y(t) − x(t)

z(t) − y(t)

)

= 2
z(t) − x(t)

(

x(t) − ξ(t)
)(

y(t) − ξ(t)
)(

z(t) − ξ(t)
) ,

the quotient

q(t) :=
y(t) − x(t)

z(t) − y(t)

is increasing in t . Therefore q(T ) > 1. Also,

q(T ) =
y(T ) − x(T )

z(T ) − y(T )
≤ y + c

√
T

1
2
(z − x)

≤
(

1 + c
√
K2

)

z
1
4
z

≤ A.

Now we are back to case 1, since we have

(

1 +
1

A

)

(

y(T ) − ξ(T )
)

≤ z(T ) − ξ(T ) ≤ 2
(

y(T ) − ξ(T )
)

.
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Hence by case 1, there exists A depending only on c , so that

1

A
≤ x̂(T ) − ŷ(T )

ŷ(T ) − ẑ(T )
≤ A.

Now we would like to run time from T back to 0 to give (7) for case 2. Since the
quotient will be decreasing in t as time run backward, we immediately get the
upper bound. For the lower bound,

φ(x) − φ(y)

φ(y) − φ(z)
≥ φ(x) − φ(y)

ŷ(T ) − ẑ(T )
≥ 1

A

φ(x) − φ(y)

x̂(T ) − ŷ(T )
≥ 1

A

φ(x) − φ(y)

−φ(y)
≥ 1

A
,

where Lemma 5 gives the last inequality. Therefore (7) holds for case 2.
While these first two cases required more work than in the situation in [11],

the final case where x > 0 and z − x < x follows the arguments of Lemma 3.2
in [11] without any complications. The idea, similar to the strategy used in the
previous case, is to let time run for S , where S is the first time that x(S)−ξ(S) =
z(S) − x(S), and to show that the quotient q(t) is bounded on [0, S] . Thus, we
end up in a setting similar to case 2. It remains then to verify that case 2 still
applies and to run time backward from S to 0, again utilizing the boundedness
of q(t).

We include the statement of Lemma 2.2 from [11] below, since we will use it
in the proof of Theorem 3. It gives a condition in terms of the welding homeomor-
phism for when a slit-halfplane is a quasislit-halfplane.

Lemma 6. H\γ[0, T ] is a quasislit-halfplane if and only if there is a constant

1 ≤M <∞ such that
1

M
≤ x− ξ(0)

ξ(0) − φ(x)
≤M

for all x > ξ(0) and
1

M
≤ φ(x) − φ(y)

φ(y) − φ(z)
≤M

whenever ξ(0) ≤ x < y < z with y − x = z − y . Furthermore, the quasislit

constant K of H \ γ[0, T ] depends on M only.

7. Proof of Theorem 3

By the scaling property, it suffices to show that f1(H) is a quasislit plane.
Let n ∈ N , and set tk = k/n . Following the methods in [11], we wish to construct
ξn ∈ Lip

(

1
2

)

so that ξn(tk) = ξ(tk) and ‖ξn‖1/2 ≤ c := ‖ξ‖1/2 . There are at least
two ways to proceed. The first is by linear interpolation, and this is the method
we will use. Alternatively, setting ck =

(

ξ(tk) − ξ(tk+1)
)√
n , we can define ξ̂n(t)

for t ∈ [0, 1] by ξ̂n|[tk,tk+1](t) = ck
√
tk+1 − t + ξ(tk+1). Although ξ̂n ∈ Lip

(

1
2

)

, it
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may not be true that ‖ξ̂n‖1/2 ≤ c . However, it is possible to complete the proof

using this construction for ξ̂n by considering the larger space of locally Lip
(

1
2

)

functions and verifying that all the lemmas remain true for these functions as
well. The benefit to using this construction is that we know slightly more about
the generated domains. If φ̂k

t is the map generated by

ξ̂n(tk + t) = ck

√

1

n
− t + αk+1

for t ∈ [0, 1/n] , then φ̂k
1/n is a map from H onto the upper halfplane slit by a line

segment whose angle with the real line is bounded away from 0 and π .
Using our first method of linear interpolation, we set mk = n

(

ξ(tk+1)−ξ(tk)
)

and define ξn(t) for t ∈ [0, 1] by ξn|[tk,tk+1](t) = mk(t− tk)+ξ(tk). First we check
that ‖ξn‖1/2 ≤ c . Let x, y ∈ [0, 1]. If x, y ∈ [tk, tk + 1] for some k , then clearly

|ξn(y) − ξn(x)| ≤ c
√

|y − x| . So assume that tj ≤ x ≤ tj+1 ≤ tk ≤ y ≤ tk+1 , and
assume without loss of generality that ξn(y) ≥ ξn(x). If we maximize the function
h(x, y) := ξn(y)− ξn(x)− c√y − x over (x, y) ∈ [tj, tj+1]× [tk, tk+1] , we find that
h(x, y) ≤ 0, as desired.

Let φk
t be the maps generated by ξn(tk + t) = mkt + ξ(tk) for t ∈ [0, 1/n] .

Then φk := φk
1/n is a map from H onto the upper halfplane slit by a smooth

curve which makes an angle of 1
2π with the real line. If fn

t is the map generated
by ξn for t ∈ [0, 1], we have that fn

1 = φn ◦ φn−1 ◦ · · · ◦ φ2 ◦ φ1 . Hence, fn
1 (H) is

a slit-halfplane. By Corollary 1, the first condition of Lemma 6 is satisfied, while
the second condition is a result of Lemma 4. Therefore, we have that fn

1 (H) is a
K -quasislit-halfplane, with K independent of n . By compactness of the space of
K -quasislit-halfplanes, we have that f1(H) is a quasislit-halfplane.

Appendix

In this appendix, we briefly describe some simplifications of the arguments in
the fifth section of this paper, which were communicated to us by O. Schramm
(private communication). The main idea is to make a reduction so that we only
need to use properties of driving terms of the form c

√
1 − t or c

√
t which have

been studied in [8].
This reduction is based on a simple observation. Let λ1 and λ2 be two driving

terms defined on [0, T ] with λ1(t) ≤ λ2(t) for every t ∈ [0, t] . For any x0 ≥ λ2(0),
let x1(t) and x2(t) be the corresponding solutions to (4) with initial point x0 .
Notice then that we must have x1(t) ≤ x2(t) for all t for which x1 and x2 are
defined.

To simplify the argument for Lemma 1, suppose that λ2 is a Lip
(

1
2

)

driving
term with norm c that catches the solution x2(t) to (4) at time 1. We shift
our picture so that λ2(1) = 0. Then take λ1(t) = −c

√
1 − t , and note that

λ1(t) ≤ λ2(t). Note also that it is not possible for −c
√

1 − t to catch a solution
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to (4) before time 1, since it has bounded derivative on the interval [0, 1 − ε] .
Therefore by the observation in the previous paragraph, x1(1) ≤ x2(1). However,
since x2(t) is caught at time 1, x2(1) = 0 = λ1(1), and we have that x1(t) is
also caught at time 1. Therefore, we have reduced our problem to determining
the values of c for which the driving term −c

√
1 − t catches a solution to (4)

at time 1. In [8], L. Kadanoff, W. Kager, and B. Nienhuis have shown that this
occurs precisely when c ≥ 4.

Corollary 1 can be proved from a study of driving terms of the form c
√
t ,

aided by the computations done in [8]. Then Lemma 2 is no longer needed.
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[2] Bieberbach, L.: Über die Koeffizienten derjenigen Potenzreihen, welche eine schlichte
Abbildung des Einheitskreises vermitteln. - S.-B. Preuss. Akad. Wiss., 1916, 940–
955.

[3] Brickman, L., Y. J. Leung, and D.R. Wilken: On extreme points and support points
of the class S . - Ann. Univ. Mariae Curie-Sk lodowska Sect. A 36/37, 1982/83, 1985,
25–31.

[4] de Branges, L.: A proof of the Bieberbach conjecture. - Acta Math. 154, 1985, 137–152.

[5] Duren, P.: Univalent Functions. - Springer-Verlag, 1983.

[6] Earle, C., and A. Epstein: Quasiconformal variation of slit domains. - Proc. Amer.
Math. Soc. 129, 2001, 3363–3372 (electronic).

[7] Gruzberg, I., and L. Kadanoff: The Loewner equation: maps and shapes. - J. Statist.
Phys. 114, 2004, 1183–1198.

[8] Kadanoff, L., W. Kager, and B. Nienhuis: Exact solutions for Loewner evolutions.
- arXiv:math-ph/0309006.

[9] Lawler, G., O. Schramm, and W. Werner: Values of Brownian intersection expo-
nents. I. Half-plane exponents. - Acta Math. 187, 2001, 237–273.

[10] Lawler, G., O. Schramm, and W. Werner: Conformal invariance of planar loop-
erased random walks and uniform spanning trees. - Ann. Probab. (to appear).

[11] Marshall, D., and S. Rohde: The Loewner differential equation and slit mappings. -
Preprint, 2001.

[12] Rohde, S., and O. Schramm: Basic properties of SLE. - Ann. Math. (to appear).

[13] Schramm, O.: Scaling limits of loop-erased random walks and uniform spanning trees. -
Israel J. Math. 118, 2000, 221–288.

21 January 2004


