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Abstract. It is proved that an orientation-preserving homeomorphism ψ of the real axis
can be extended to a quasiconformal harmonic homeomorphism of the upper half-plane if and only
if ψ is bi-Lipschitz and the Hilbert transformation of the derivative ψ′ is bounded.

1. Introduction

A homeomorphism f :D 7→ G , where D and G are subdomains of the com-
plex plane C , is said to be quasiconformal if f is absolutely continuous on a.e.
horizontal and a.e. vertical line, and there exists a constant K <∞ such that
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≤ KJf a.e. on D,

where Jf is the Jacobian of f (cf. [1, pp. 23–24]). If D = G = U , where U

denotes the upper half-plane,

U = {x+ yi ∈ C : y > 0},

then f extends to a homeomorphisms of U onto onself, where U is the closure
of U in C ∪ {∞} .

We denote by QC(U) the group of all quasiconformal homeomorphisms of U

onto itself fixing the point ∞ . By the famous theorem of Beurling and Ahlfors
[1], the ‘restriction’ of QC(U) to the real axis R coincides with the class of all
quasisymmetric functions, i.e., of those strictly increasing homeomorphisms ψ of
R such that

1

M
≤
ψ(x+ t) − ψ(x)

ψ(x) − ψ(x− t)
≤M
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for some constant M ≥ 1 and for all x ∈ R and t > 0.
In this paper we consider the classes

HQC(U) = {f ∈ QC(U), f harmonic in U}

and
HQS(R) = {f |R : f ∈ HQC(U)},

where f |R denotes the restriction of f to the real axis. The study of the analogous
classes of functions on the unit disc D was begun by Martio [6]. Various interesting
results and examples concerning that case can be found in Partyka and Sakan [7],
[8]. Information on univalent (not necessarily quasiconformal) harmonic mappings
can be read in [3].

The classes HQC(D) and HQS(∂D) were characterized in [9]; in particular,
f is in HQC(D) if and only if f is bi-Lipschitz. The same holds for the half-plane.
In fact we can say somewhat more:

Theorem 1.1 ([5]). Let f be a quasiconformal harmonic mapping of U

into U . Then the following assertions are equivalent.

(a) f is in QC(U) .
(b) There are positive constants c and M such that v(z) = cy , and 1/M ≤ ux ≤

M and |uy| ≤M for all z ∈ U .

(c) f is a bi-Lipschitz mapping of U onto U .

It follows that if ψ ∈ HQS(R), then ψ is bi-Lipschitz, i.e., ψ is absolutely
continuous and

(1.1) 1/C ≤ ψ′(x) ≤ C (x ∈ R, a.e.),

for some constant C . However this condition is far from being sufficient for ψ to
be in HQS(R), as the following theorem shows.

Theorem 1.2. Let ψ be an increasing homeomorphism of R . Then ψ
belongs to HQS(R) if and only if it is bi-Lipschitz and the Hilbert transformation

of ψ′ belongs to L∞(R) .

An analogous result holds in the case of the unit disc (see [9]).
The Hilbert transformation of φ ∈ L∞(R) is defined by

Hφ(x) = lim
ε→0

Hεφ(x),

where

Hεφ(x) =
1

π

∫

|x−t|>ε

(

1

x− t
+

t

t2 + 1

)

φ(t) dt.

It is known that the limit exists almost everywhere, but the function Hφ need not
be in L∞ (cf. [4]).
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2. Proof of Theorem 1.1.

Lemma 2.1. If f = u+ iv:U 7→ U is a quasiconformal mapping of class C1

such that v(z) ≡ cy for some constant c > 0, then f is onto and bi-Lipschitz.

Proof. Since f is quasiconformal the following inequality holds:

|∇u(z)|2 + |∇v(z)|2 ≤ KJf (z),

where Jf is the Jacobi determinant of f and K is a constant independent of
z ∈ U . In this case this means that

u2
x + u2

y + c2 ≤ Kux,

where ux and uy are the partial derivatives of u . It follows that

(2.1) ux ≥ c2/K and ux ≤ K

and hence that |uy| ≤ K . This implies that the function f satisfies a Lipschitz
condition.

On the other hand, it follows from (2.1) and the hypothesis v(z) = cy that f
is onto. Since the inverse mapping is of the same form as f the above argument
shows that f−1 satisfies a Lipschitz condition. The result follows.

Proof of Theorem 1.1. Assuming (a) we have that v is a positive har-
monic function on U and therefore, by the Riesz–Herglotz theorem (see [2, The-
orem 7.20]), v has the form

v(z) = cy + π−1

∫ +∞

−∞

P (z, t) dµ(t),

where c is a non-negative constant, µ is a non-decreasing function on R , and P
is the Poisson kernel,

P (z, t) =
y

|z − t|2
(z = x+ iy ∈ U, t ∈ R).

Therefore

(2.2)

v(z) ≥ cy + π−1

∫ x+y

x

P (z, t) dµ(t)

≥ cy + π−1

∫ x+y

x

y

2y2
dµ(t)

= cy + π−1µ(x+ y) − µ(x)

y
≥ 0.
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On the other hand, since f is quasiconformal it is continuous up to the boundary
and in particular v(x, y) → 0 as y → 0 for any fixed x ∈ R . From this and (2.2) it
follows that the right derivative of µ vanishes everywhere. That the left derivative
vanishes everywhere can be proved in a similar way. Hence µ is constant, and this
proves that v(z) = cy for some c > 0. Now Lemma 2.1 and its proof conclude the
proof that (a) implies (b).

That (a) implies (c) follows from Lemma 2.1 and the implication ‘(a) im-
plies (b)’. That (b) implies (a) follows from the definition of quasiconformality.
Finally, it is well known that that (c) implies (a). This completes the proof of
Theorem 1.1.

3. A representation of HQC(U)

For a harmonic mapping f = u+ iv defined on U let

(3.1) f(i) = b+ ic, ϕ(z) = ∂u(z) :=
∂u

∂z
=

1

2
(ux − iuy).

Since the function ϕ is holomorphic and

u(z) − u(i) = 2 Re

∫ z

i

ϕ(ζ) dζ,

we have the following reformulation of Theorem 1.1.

Theorem 3.1. Each f ∈ HQC(U) has a unique representation of the form

(3.2) f(z) = 2 Re

∫ z

i

ϕ(ζ) dζ + b+ ic Im(z),

where

(i) b+ ic is a point in U ,

(ii) ϕ is a holomorphic function on U such that ϕ(U) is a relatively compact

subset of the right half-plane H .

Conversely, if (i) and (ii) are satisfied, then the function f defined by (3.2)
belongs to HCQ(U) .

4. Proof of Theorem 1.2

Let U be a real-valued function harmonic in U . Then there exists a unique
harmonic function V , called the harmonic conjugate of U , such that V (i) = 0
and that the function U + iV is analytic in U .

Let U be the Poisson integral of φ ∈ L∞(R), i.e., the harmonic function on
U defined by

(4.1) U(z) =
1

π

∫ +∞

−∞

P (z, t)φ(t) dt.
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Then the harmonic conjugate of U is given by

(4.2) V (z) =
1

π

∫ +∞

−∞

(

Q(z, t) +
t

t2 + 1

)

φ(t) dt,

where

Q(z, t) =
x− t

|z − t|2

is the conjugate Poisson kernel. We have F = U + iV , where F is the analytic
function defined by

F (z) =
1

π

∫ +∞

−∞

(

i

z − t
+

t

t2 + 1

)

φ(t) dt.

The Hilbert transformation of φ and the harmonic conjugate of U are con-
nected by the formulae

(4.3) lim
y→0

(

Hyφ(x) − V (x+ iy)
)

= 0

and

(4.4) V (z) =
1

π

∫ +∞

−∞

P (z, t)H(φ)(t) dt.

It is a simple but important fact that if a function u is harmonic in U , then so is
ux := ∂u/∂x , and the harmonic conjugate of ux is equal to uy(i) − uy .

All the above facts can be found in Garnett [4]. ‘Only if’ part of Theorem 1.2
is a consequence of the following two lemmas.

Lemma 4.1. If f ∈ HQC(U) , then the restriction ψ of f to the real axis is

bi-Lipschitz and we have the relations

(4.5) ux(z) =
1

π

∫ +∞

−∞

P (z, t)ψ′(t) dt

and

(4.6) uy(z) − uy(i) = −
1

π

∫ +∞

−∞

(

Q(z, t) +
t

t2 + 1

)

ψ′(t) dt.

Proof. The function ψ is bi-Lipschitz on R because the mapping f is bi-
Lipschitz on U . The function ux is bounded on U and therefore, by Fatou’s
theorem, there exists the limit

lim
y→0

ux(x, y) = φ(x)
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for almost all x ∈ R . Furthermore, we have

ux(z) =
1

π

∫ +∞

−∞

P (z, t)φ(t) dt.

Thus in order to prove (4.5) we have to prove that ψ′(x) = φ(x) almost everywhere.
We start from the relation

u(x, y) − u(0, y) =

∫ x

0

ut(t, y) dt.

Since ut(t, y) is bounded we have

lim
y→0

∫ x

0

ut(t, y) dt =

∫ x

0

φ(t) dt,

by the dominated convergence theorem. On the other hand,

lim
y→0

(

u(x, y)− u(0, y)
)

= ψ(x) − ψ(0)

and therefore

ψ(x) − ψ(0) =

∫ x

0

φ(t) dt,

which proves (4.5).
The validity of (4.6) now follows from (4.2) and the fact that the function

V = −
(

uy − uy(i)
)

is equal to the harmonic conjugate of U = ux .

Lemma 4.2. If f = u + iv ∈ HQC(R) , and ψ = f |R , then the function

H(ψ′) belongs to L∞(R) and the following equality holds:

(4.7) uy(z) − uy(i) = −
1

π

∫ +∞

−∞

P (z, t)H(ψ′)(t) dt.

Proof. By Theorem 1.1 the function V (z) = uy(i)− uy(z) is bounded on U .
Since V is the harmonic conjugate of U = ux , we can use (4.5) and (4.3) (φ = ψ′)
to conclude that H(ψ′) is in L∞ . Then formula (4.7) follows from (4.4).

To prove the ‘if’ part of Theorem 1.2, assume that ψ is bi-Lipschitz, |H(ψ′)| ≤
M=const. a.e. on R , and define U by (4.1), where φ = ψ′ . Let V be the harmonic
conjugate of U , let ϕ(z) = 1

2

(

U(z) + iV (z)
)

and define f by

f(z) = 2 Re

∫ z

i

ϕ(ζ) dζ + i Im(z).

From the inequality 1/C ≤ ψ′ ≤ C and (4.1) it follows that 1/C ≤ U(z) ≤ C
(z ∈ U). Since |V (z)| ≤M , by (4.4), we see that the function ϕ maps U onto a
relatively compact subset of H . From Theorem 3.1 it follows that f ∈ HQC(U).
Then by Lemma 4.1, the restriction ψ̃ of F to R is a bi-Lipschitz function and,
since (Re f)x = U on U , ψ̃′ = ψ′ a.e. on R . Since ψ and ψ̃ are absolutely
continuous, ψ = ψ̃ + a for some a ∈ R . Thus defining f̃ = f + a we see that
ψ = f̃ |R ∈ HQC(R), which completes the proof.
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5. A question

The set QS(R) is a group with respect to composition. Is this true for
HQS(R)?
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