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Abstract. It is proved that an orientation-preserving homeomorphism ¢ of the real axis
can be extended to a quasiconformal harmonic homeomorphism of the upper half-plane if and only
if 1) is bi-Lipschitz and the Hilbert transformation of the derivative 1)’ is bounded.

1. Introduction

A homeomorphism f: D +— G, where D and G are subdomains of the com-
plex plane C, is said to be quasiconformal if f is absolutely continuous on a.e.
horizontal and a.e. vertical line, and there exists a constant K < oo such that
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g <KJ; ae.onD,

ox
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%—y

where J; is the Jacobian of f (cf. [1, pp. 23-24]). If D = G = U, where U
denotes the upper half-plane,

U={z+yic C:y >0},

then f extends to a homeomorphisms of U onto onself, where U is the closure
of U in CU{o0}.

We denote by QC(U) the group of all quasiconformal homeomorphisms of U
onto itself fixing the point co. By the famous theorem of Beurling and Ahlfors
[1], the ‘restriction” of QC(U) to the real axis R coincides with the class of all
quasisymmetric functions, i.e., of those strictly increasing homeomorphisms v of

R such that . b+ t) — ()
i — X
M) gt
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for some constant M > 1 and for all x € R and ¢t > 0.
In this paper we consider the classes

HQC(U) = {f € QC(U), f harmonic in U}

and
HQS(R) = {f|r : f € HQC(U)},

where f|r denotes the restriction of f to the real axis. The study of the analogous
classes of functions on the unit disc D was begun by Martio [6]. Various interesting
results and examples concerning that case can be found in Partyka and Sakan [7],
[8]. Information on univalent (not necessarily quasiconformal) harmonic mappings
can be read in [3].

The classes HQC(D) and HQS(OD) were characterized in [9]; in particular,
fisin HQC(D) if and only if f is bi-Lipschitz. The same holds for the half-plane.
In fact we can say somewhat more:

Theorem 1.1 ([5]). Let f be a quasiconformal harmonic mapping of U
into U. Then the following assertions are equivalent.

(a) f isin QC(U).

(b) There are positive constants ¢ and M such that v(z) = cy, and 1/M < u, <
M and |uy| < M for all z € U.

(¢) f is a bi-Lipschitz mapping of U onto U.

It follows that if ¢ € HQS(R), then 1 is bi-Lipschitz, i.e., ¥ is absolutely
continuous and

(1.1) 1/C<¢'(z) <C (z€R, ae),

for some constant C'. However this condition is far from being sufficient for ¢ to
be in HQS(R), as the following theorem shows.

Theorem 1.2. Let v be an increasing homeomorphism of R. Then
belongs to HQS(R) if and only if it is bi-Lipschitz and the Hilbert transformation
of ¢" belongs to L (R).

An analogous result holds in the case of the unit disc (see [9]).
The Hilbert transformation of ¢ € L>°(R) is defined by

He(x) = lim Heg(z),

where

1 1 t
HEQS(:C) - } /|x—t|>6 <x —t " 2+ 1)¢(t) "

It is known that the limit exists almost everywhere, but the function H¢ need not
be in L (cf. [4]).
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2. Proof of Theorem 1.1.

Lemma 2.1. If f = u+iv: U — U is a quasiconformal mapping of class C*
such that v(z) = cy for some constant ¢ > 0, then f is onto and bi-Lipschitz.

Proof. Since f is quasiconformal the following inequality holds:
[Vu(2)? + [Vo(2)? < K Jg(2),

where Jy is the Jacobi determinant of f and K is a constant independent of
z € U. In this case this means that

ul + u + ¢ < Kug,
where u, and u, are the partial derivatives of u. It follows that
(2.1) Uy > /K and wu, <K

and hence that |u,| < K. This implies that the function f satisfies a Lipschitz
condition.

On the other hand, it follows from (2.1) and the hypothesis v(z) = cy that f
is onto. Since the inverse mapping is of the same form as f the above argument
shows that f~! satisfies a Lipschitz condition. The result follows. o

Proof of Theorem 1.1. Assuming (a) we have that v is a positive har-
monic function on U and therefore, by the Riesz—Herglotz theorem (see [2, The-
orem 7.20]), v has the form

+00
v(z) =cy+m " / P(z,t)du(t),

— 00

where c is a non-negative constant, p is a non-decreasing function on R, and P
is the Poisson kernel,

Yy .
Therefore
Tty
o@) z eyt [ Pt du
1 vy Y

p(x +y) — p(x)
y

> 0.

= cy+7r_1
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On the other hand, since f is quasiconformal it is continuous up to the boundary
and in particular v(z,y) — 0 as y — 0 for any fixed € R. From this and (2.2) it
follows that the right derivative of u vanishes everywhere. That the left derivative
vanishes everywhere can be proved in a similar way. Hence p is constant, and this
proves that v(z) = cy for some ¢ > 0. Now Lemma 2.1 and its proof conclude the
proof that (a) implies (b).

That (a) implies (c) follows from Lemma 2.1 and the implication ‘(a) im-
plies (b)’. That (b) implies (a) follows from the definition of quasiconformality.
Finally, it is well known that that (c) implies (a). This completes the proof of
Theorem 1.1. o

3. A representation of HQC(U)

For a harmonic mapping f = u + iv defined on U let

(3.1) £() = b+ ic, ¢@pqmgy:ggzémf4%y

Since the function ¢ is holomorphic and

u(z) — ui) = 2Re [ T Q) e,

we have the following reformulation of Theorem 1.1.

Theorem 3.1. Each f € HQC(U) has a unique representation of the form

(3.2) f(z) =2Re /Z ©(€) d¢ + b+ icIm(z),

where
(i) b+ ic is a point in U,
(ii) ¢ is a holomorphic function on U such that ¢(U) is a relatively compact
subset of the right half-plane H.

Conversely, if (i) and (ii) are satisfied, then the function f defined by (3.2)
belongs to HCQ(U).

4. Proof of Theorem 1.2

Let U be a real-valued function harmonic in U. Then there exists a unique
harmonic function V', called the harmonic conjugate of U, such that V(i) = 0
and that the function U + ¢V is analytic in U.

Let U be the Poisson integral of ¢ € L>°(R), i.e., the harmonic function on
U defined by

+oo
(4.1) m@:—/ P(z,1)¢(t) dt.

— o0
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Then the harmonic conjugate of U is given by

(42) Ve =1 [ e+ 5 e

T J_ oo t2+1
where ;
x —
)= —

is the conjugate Poisson kernel. We have F' = U + ¢V, where F' is the analytic
function defined by

F(z) = %/“"(Zit 4 t211)¢(t) dt.

— 00

The Hilbert transformation of ¢ and the harmonic conjugate of U are con-
nected by the formulae

(4.3) lim (Hy0(e)  V(x + i) =0
and

+00
(4.4) V(z) = % /_ Pz ) H(6)(1) dt.

It is a simple but important fact that if a function « is harmonic in U, then so is
Uy := Ou/Ox, and the harmonic conjugate of u, is equal to wu, (i) — u,.

All the above facts can be found in Garnett [4]. ‘Only if’ part of Theorem 1.2
is a consequence of the following two lemmas.

Lemma 4.1. If f € HQC(U), then the restriction 1 of f to the real axis is
bi-Lipschitz and we have the relations

+oo
(4.5) wp(2) = % /_ P(z, )0/ (1) dt
and
+oo
(46) w(@) =)= [ (@0 + 5 e

Proof. The function 1) is bi-Lipschitz on R because the mapping f is bi-
Lipschitz on U. The function wu, is bounded on U and therefore, by Fatou’s
theorem, there exists the limit

lim u, (2,y) = ¢(z)
y—0
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for almost all x € R. Furthermore, we have

+oo
Uy (z) = —/ P(z,t)o(t) dt.

Thus in order to prove (4.5) we have to prove that ¢'(x) = ¢(x) almost everywhere.
We start from the relation

u(z,y) —u(0,y) = /Ox ug(t,y) dt.

Since u(t,y) is bounded we have
lim [ w(t,y)dt :/ o(t) dt,
y—=0Jo 0
by the dominated convergence theorem. On the other hand,
lim (u(, y) = u(0,y)) = () =¥ (0)
and therefore

¢m»wmm:1fmww

which proves (4.5).
The validity of (4.6) now follows from (4.2) and the fact that the function
V= —(uy — uy(z)) is equal to the harmonic conjugate of U = u,. o

Lemma 4.2. If f = u+iv € HQC(R), and v = f|r, then the function
H(') belongs to L>(R) and the following equality holds:

+00
(4.7) w(@) =@ =1 [ PEOHW)@

7T—OO

Proof. By Theorem 1.1 the function V(z) = u, (i) — uy,(z) is bounded on U.
Since V' is the harmonic conjugate of U = u,, we can use (4.5) and (4.3) (¢ =)
to conclude that H(¢)") is in L°°. Then formula (4.7) follows from (4.4). o

To prove the ‘if’ part of Theorem 1.2, assume that v is bi-Lipschitz, |H (¢)| <
M =const. a.e. on R, and define U by (4.1), where ¢ = ¢)’. Let V' be the harmonic
conjugate of U, let ¢(z) = 1 (U(z) +iV(z)) and define f by

f(z) =2Re /Z ©(¢) d¢ + iIm(z).

From the inequality 1/C < ¢’ < C and (4.1) it follows that 1/C < U(z) < C
(z € U). Since |V (2)| < M, by (4.4), we see that the function ¢ maps U onto a
relatively compact subset of H. From Theorem 3.1 it follows that f € HQC(U).
Then by Lemma 4.1, the restriction Y of F to Ris a bi-Lipschitz function and,
since (Ref), = U on U, ¢/ = ¢’ a.e. on R. Since ¢ and 1 are absolutely
continuous, ¢ = 1) + a for some a € R. Thus defining f = f + a we see that
Y = flr € HQC(R), which completes the proof.
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5. A question

The set QS(R) is a group with respect to composition. Is this true for

HQS(R)?
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