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Abstract. In 1958, E. Heinz obtained a lower bound for |∂xF |2 + |∂yF |2 , where F is a one-
to-one harmonic mapping of the unit disc onto itself keeping the origin fixed. Assuming additionally
that F is a K -quasiconformal mapping we aim at giving a variant of Heinz’s inequality which is
asymptotically sharp as K tends to 1 . To this end we prove a variant of Schwarz’s lemma for
such a mapping F .

Introduction

Assume that F is a one-to-one harmonic mapping of the unit disc D := {z ∈
C : |z| < 1} onto itself normalized by F (0) = 0. In 1958, E. Heinz proved that
the inequality

(0.1) |∂xF (z)|2 + |∂yF (z)|2 ≥ 2

π2

holds for every z = x+ iy ∈ D ; cf. [2]. Given a function f : T → C integrable on
the unit circle T := {z ∈ C : |z| = 1} we denote by P [f ](z) the Poisson integral
of f at z ∈ D , i.e.

(0.2) P [f ](z) :=
1

2π

∫

T

f(u) Re
u+ z

u− z
|du|, z ∈ D.

Write Hom+(T) for the class of all sense-preserving homeomorphic self-mappings
of T . In case F = P [f ] for some f ∈ Hom+(T) the estimation (0.1) may be
improved as follows:

(0.3) inf
z∈D

(

|∂xF (z)|2 + |∂yF (z)|2
)

≥ 2

π2
+

1

2
d2

f +
1

2
max{df , 2d

3
f},

2000 Mathematics Subject Classification: Primary 30C55, 30C62.

The research of the second named author was supported by Grant-in-Aid for Scientific

Research No. 13640185, Japan Society for the Promotion of Science.



168 Dariusz Partyka and Ken-ichi Sakan

where

(0.4) df := ess inf
z∈T

|f ′(z)|;

cf. [10, Theorem 0.4]. Here for every z ∈ T

(0.5) f ′(z) := lim
u→z

f(u) − f(z)

u− z

provided the limit exists and f ′(z) := 0 otherwise. If the mapping F coincides
with a rotation (around the origin), then the left-hand side in (0.3) equals 2,
while the right-hand side equals 2/π2 + 3/2, because df = 1. As shown in [10,
Lemma 0.1], for every f ∈ Hom+(T), df ≤ 1, so the constant 2/π2 + 3/2 is the
best possible, and thereby the estimation (0.3) is not so precise at least for F close
to a rotation in the sense that df is close to 1.

It is a natural problem to study estimations of the type (0.1) in two cases:

(i) F is a K -quasiconformal mapping for some K ≥ 1;
(ii) F = P [f ] for some f ∈ Hom+(T) which admits a K -quasiconformal exten-

sion to D for some K ≥ 1.

In the first case F has a continuous extension F ∗ to a homeomorphic self-mapping
of the closure D ; cf. [5, Chapter I, Theorem 8.2]. Thus the limiting valued function
f := F ∗

|T belongs to Hom+(T), and so F = P [f ] . Conversely, for each K > 1

there exists f ∈ Hom+(T) which admits a K -quasiconformal extension to D , but
F = P [f ] is not a quasiconformal mapping; cf. [6], [12], [4], [8], [9]. Therefore
the second case yields the essentially wider class of F than the first one. In what
follows we consider only the first, simpler case.

For K ≥ 1 set QCH(D;K) for the class of all K -quasiconformal and har-
monic self-mappings of D . We wish to find a lower bound of the left-hand side
in (0.1) by means of K ≥ 1 only, provided F ∈ QCH(D;K) satisfies F (0) = 0.
According to [10, Theorem 0.6],

(0.6) |∂xF (z)|2 + |∂yF (z)|2 ≥ 2

π2

(

1 +
1

K

)2

, z ∈ D.

If K = 1, then the mapping F coincides with a rotation, so the left-hand side in
(0.6) equals 2 for all z ∈ D , while the right-hand side equals 8/π2 . Thus there
is a big gap between the both sides in (0.6), and in consequence, the estimation
(0.6) is not satisfactory for small K close to 1.

In this work we are interested in finding a continuous decreasing function
M : [1; +∞) → (0; 1] such that

(0.7) |∂xF (z)|2 + |∂yF (z)|2 ≥ 2M(K), z ∈ D,
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and M(K) → M(1) = 1 as K → 1+ . Theorem 2.2 in Section 2, which is our
main result, gives a solution. In general, the proof of Theorem 2.2 borrows from
techniques developed in [10]. The progress now is due to new results discussed
in Section 1. The first result (cf. Lemma 1.1) deals with a variant of Schwarz’s
lemma for F ∈ QCH(D;K) normalized by F (0) = 0. The estimation (1.4)
improves essentially for z close to the boundary T and small K close to 1, the
classical one ([2, Lemma])

(0.8) |F (z)| ≤ 4

π
arctan |z|, z ∈ D,

used by Heinz in the proof of (0.1). The second and third results (cf. Lemmas 1.3
and 1.4) give an asymptotically sharp lower bound of the value

(0.9) inf
z∈T

lim inf
r→1

|F ∗(z) − F (rz)|
1 − r

.

The estimation (1.15) also leads to Theorem 2.1 in Section 2, which is our second
main result. It provides an asymptotically sharp lower estimation of df in terms
of K for f = F ∗|T .

1. Auxiliary results

In the theory of plane quasiconformal mappings the Hersch–Pfluger distortion
function ΦK , K > 0, plays important roles; cf. e.g. the book of Vuorinen [11]. It
is defined by the equalities

(1.1) ΦK(r) := µ−1
(

µ(r)/K
)

, 0 < r < 1; ΦK(0) := 0, ΦK(1) := 1,

where µ stands for the module of the Grötzsch extremal domain D \ [0, r] ; cf. [3]
and [5, pp. 53 and 63]. The function µ can be expressed explicitly by means of
the complete elliptic integral of the first kind

(1.2) K (r) :=

∫ 1

0

dx
√

(1 − x2)(1 − r2x2)
, 0 < r < 1,

in the form

(1.3) µ(r) =
π

2

K
(√

1 − r2
)

K (r)
, 0 < r < 1.

Lemma 1.1. If K ≥ 1 , F ∈ QCH(D;K) and F (0) = 0 , then

(1.4) |F (z)| ≤ P [ΨK ](|z|), z ∈ D,
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where

(1.5) ΨK(eit) :=

{

2ΦK

(

cos 1
2 t

)2 − 1, 0 ≤ |t| ≤ 1
2π,

2Φ1/K

(

cos 1
2 t

)2
+ 4ΦK

(

1/
√

2
)2 − 3, 1

2π ≤ |t| ≤ π.

Proof. Defining f := F ∗|T we have

F (z) = P [f ](z), z ∈ D.

Hence, using the polar coordinates in (0.2), we obtain

(1.6) F (reiϕ) =
1

2π

∫ π

−π

f(eit)Pr(ϕ− t) dt, 0 ≤ r < 1, ϕ ∈ R,

where

Pr(θ) := Re
1 + reiθ

1 − reiθ
=

1 − r2

1 − 2r cos θ + r2
, 0 ≤ r < 1, θ ∈ R.

Setting for any ϕ ∈ R , fϕ(t) := f
(

ei(ϕ+t)
)

+ f
(

ei(ϕ−t)
)

, t ∈ R , we conclude from
(1.6) that for a given z = reiϕ ∈ D ,

2πF (z) =

∫ π

−π

Pr(t− ϕ)f(eit) dt

=

∫ π

−π

Pr(t)f(ei(ϕ+t)) dt

=

∫ π

0

Pr(t)fϕ(t) dt

=

∫ π/2

0

Pr(t)fϕ(t) dt+

∫ π/2

0

Pr(π − t)fϕ(π − t) dt

=

∫ π/2

0

(

Pr(t) − Pr(π − t)
)

fϕ(t) dt

+

∫ π/2

0

Pr(π − t)[fϕ(t) + fϕ(π − t)] dt.

Hence

(1.7)

|F (z)| ≤ 1

2π

∫ π/2

0

(

Pr(t) − Pr(π − t)
)

|f(ei(ϕ+t)) + f(ei(ϕ−t))| dt

+
1

2π

∫ π/2

0

Pr(π − t)|f(ei(ϕ+t)) + f(ei(ϕ−π+t))| dt

+
1

2π

∫ π/2

0

Pr(π − t)|f(ei(ϕ−t)) + f(ei(ϕ+π−t))| dt.
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If z, w ∈ T and if w = zeis for some s ∈ R , then

(1.8)
|z + w| = |z + zeis| = |z| |eis/2| |eis/2 + e−is/2|

= 2
∣

∣cos 1
2
s
∣

∣ = 2
∣

∣2
(

cos 1
4
s
)2 − 1

∣

∣.

Since F is a K -quasiconformal mapping normalized by F (0) = 0, we see by the
quasi-invariance of the harmonic measure that

(1.9) Φ1/K

(

cos 1
4
(β − α)

)

≤ cos 1
4
γ ≤ ΦK

(

cos 1
4
(β − α)

)

,

provided α, β, γ ∈ R are any numbers such that α ≤ β < α + 2π , 0 ≤ γ < 2π
and

(1.10) f(eiβ) = eiγf(eiα);

see e.g. [7, (2.3.9)]. Applying now (1.8), (1.9), (1.10) and the identity ([1, Theo-
rem 3.3])

(1.11) ΦK(t)2 + Φ1/K

(

√

1 − t2
)2

= 1, 0 ≤ t ≤ 1,

we obtain for every t ∈
[

0; 1
2π

]

,

1

2
|f(ei(ϕ+t)) + f(ei(ϕ−π+t))| ≤ 2ΦK

(

cos
π

4

)2

− 1 = 2ΦK

(

1√
2

)2

− 1,

1

2
|f(ei(ϕ−t)) + f(ei(ϕ+π−t))| ≤ 2ΦK

(

cos
π

4

)2

− 1 = 2ΦK

(

1√
2

)2

− 1,

1

2
|f(ei(ϕ+t)) + f(ei(ϕ−t))| ≤ 2ΦK

(

cos
t

2

)2

− 1.

Hence by (1.7) we have

|F (z)| ≤ 1

π

∫ π/2

0

(

Pr(t) − Pr(π − t)
)(

2ΦK

(

cos( 1
2 t)

)2 − 1
)

dt

+
2

π

∫ π/2

0

Pr(π − t)
(

2ΦK

(

1/
√

2
)2 − 1

)

dt

=
1

π

∫ π/2

0

Pr(t)
(

2ΦK

(

cos( 1
2 t)

)2 − 1
)

dt

+
1

π

∫ π

π/2

Pr(t)
(

4ΦK

(

1/
√

2
)2 − 1 − 2ΦK

(

sin( 1
2
t)

)2)
dt.

Applying now (1.11) and (1.5) we obtain

(1.12) |F (z)| ≤ 1

π

∫ π

0

Pr(t)ΨK(eit) dt.

Since ΨK(eit) = Ψ(e−it) for t ∈ R , (1.12) leads to (1.4), which ends the proof.
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Remark 1.2. From (1.5) it follows that |ΨK(eit)| ≤ 1 for all K ≥ 1 and
eit ∈ T . This combined with (1.4) yields 0 ≤ P [ΨK ](|z|) < 1 for all K ≥ 1 and
z ∈ D . Thus the estimation (1.4) gives a good control for |z| close to 1. In the
case where K = 1 we have Ψ1(eit) = cos t for t ∈ [0;π] and hence

|F (z)| = |z| = P [Ψ1](|z|), z ∈ D.

Thus the estimation (1.4) is asymptotically sharp for K close to 1.

Let L1(T) denote the space of all complex-valued functions Lebesgue inte-
grable on T . For every f ∈ L1(T) define

(1.13) fT :=
1

2π

∫

T

f(u) |du|

and write CT[f ] for the Cauchy singular integral of f , i.e. for every z ∈ T ,

(1.14) CT[f ](z) := P.V.
1

2πi

∫

T

f(u)

u− z
du := lim

ε→0+

1

2πi

∫

T\T(z,ε)

f(u)

u− z
du

whenever the limit exists and CT[f ](z) := 0 otherwise. Here and subsequently,
T(eix, ε) := {eit ∈ T : |t − x| < ε} and integration along any arc I ⊂ T is
understood under counterclockwise orientation.

Lemma 1.3. If K ≥ 1 , F ∈ QCH(D;K) and F (0) = 0 , then the inequality

(1.15) lim inf
r→1

|F ∗(z) − F (rz)|
1 − r

≥ max

{

2

π
, LK

}

,

holds for every z ∈ T , where

(1.16) LK :=
2

π

∫ Φ1/K

(

1/
√

2
)2

0

dt

ΦK

(√
t
)

Φ1/K

(√
1 − t

) .

Proof. By [10, (2.11)] the left-hand side in (1.15) is not less than 2/π , thus
we have to show only that it is equal to or greater than LK . Fix K ≥ 1. By
(1.1), (1.2) and (1.3) we see that the function ΦK is continuously differentiable
on (0; 1). Moreover, ΦK is continuous and increasing on [0; 1] . Thus the function
ΦK is absolutely continuous on [0; 1] , and so is ΨK . Setting ψ(t) := ΨK(eit),
t ∈ [−π;π] , we have ψ′(t) = iΨ′

K(eit)eit for t ∈ [−π;π] . Hence

(1.17)

2 CT[Ψ′
K ](1) =

1

πi
lim

ε→0+

∫

T\T(1,ε)

Ψ′
K(z)

z − 1
dz

=
1

πi
lim

ε→0+

∫

ε<|t|≤π

ψ′(t)

eit − 1
dt.
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Since ψ(t) = ψ(−t) for t ∈ [−π;π] , we have ψ′(t) = −ψ′(−t) for t ∈ [−π;π] .
Then by (1.17),

(1.18)

2 CT[Ψ′
K ](1) =

1

πi
lim

ε→0+

(
∫ π

ε

ψ′(t)

eit − 1
dt+

∫ −ε

−π

ψ′(t)

eit − 1
dt

)

=
1

πi
lim

ε→0+

(
∫ π

ε

ψ′(t)

eit − 1
dt−

∫ π

ε

ψ′(t)

e−it − 1
dt

)

=
1

πi
lim

ε→0+

∫ π

ε

(

1

eit − 1
− 1

e−it − 1

)

ψ′(t) dt

=
1

πi
lim

ε→0+

∫ π

ε

e−it − eit

|eit − 1|2 ψ
′(t) dt

= − 1

π
lim

ε→0+

∫ π

ε

ψ′(t) cot
t

2
dt.

Fix ε ∈
(

0; 1
2π

]

. From (1.5) it follows that

(1.19) − 1

π

∫ π/2

ε

ψ′(t) cot
t

2
dt =

2

π

∫ π/2

ε

ΦK

(

cos 1
2
t
)

Φ′
K

(

cos 1
2
t
)

cos 1
2
t dt.

Applying the identity (1.11) and substituting x := ΦK

(

cos 1
2 t

)

we conclude from
(1.19) that

2

π

∫ π/2

ε

ΦK

(

cos 1
2
t
)

Φ′
K

(

cos 1
2
t
)

cos 1
2
t dt =

4

π

∫ ΦK(cos ε/2)

ΦK(cos π/4)

xΦ1/K(x)
√

1 − Φ1/K(x)2
dx

=
4

π

∫ ΦK(cos ε/2)

ΦK(1/
√

2 )

xΦ1/K(x)

ΦK

(√
1 − x2

) dx.(1.20)

Substituting t := 1 − x2 in the last integral we have

(1.21)
4

π

∫ ΦK(cos ε/2)

ΦK(1/
√

2 )

xΦ1/K(x)

ΦK

(√
1 − x2

) dx =
2

π

∫ Φ1/K(1/
√

2 )2

Φ1/K(sin ε/2)2

Φ1/K

(√
1 − t

)

ΦK

(√
t
) dt.

By the Hübner inequality (cf. [1, (3.2)] or [5, p. 65, (3.6)])

(1.22) x1/K ≤ ΦK(x) ≤ 41−1/Kx1/K , 0 ≤ x ≤ 1, K ≥ 1,

we get ΦK

(√
t
)−1 ≤ t−1/2K for t ∈ (0; 1] . Thus the last integral in (1.21) is

convergent as ε→ 0, and combining (1.19), (1.20) and (1.21) we obtain

(1.23) − 1

π
lim

ε→0+

∫ π/2

ε

ψ′(t) cot
t

2
dt =

2

π

∫ Φ1/K(1/
√

2 )2

0

Φ1/K

(√
1 − t

)

ΦK

(√
t
) dt.
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Similar calculations to that in (1.19), (1.20) and (1.21) lead, in view of (1.5), to

(1.24)

− 1

π

∫ π

π/2

ψ′(t) cot
t

2
dt =

2

π

∫ 1

ΦK(1/
√

2 )2

ΦK

(√
1 − t

)

Φ1/K

(√
t
) dt

=
2

π

∫ Φ1/K(1/
√

2 )2

0

ΦK

(√
t
)

Φ1/K

(√
1 − t

) dt.

Combining (1.18) with (1.23) and (1.24) we see by (1.11) and (1.16) that

(1.25) 2 CT[Ψ′
K ](1) = LK .

From [8, (1.3)] it follows that

(1.26) ∂P [ΨK ](z) =
1

2πi

∫

T

dΨK(u)

u− z
=

1

2πi

∫

T

Ψ′
K(u)

u− z
du, z ∈ D.

Given δ ∈
(

0; 1
2π

)

and r ∈ [0; 1) we have

(1.27)

∣

∣

∣

∣

1

2πi

∫

T(1,δ)

Ψ′
K(u)

u− r
du

∣

∣

∣

∣

≤ 1

2π

∫

T(1,δ)

|u− 1|
|u− r|

|Ψ′
K(u)|

|u− 1| |du|

≤ 1

π

∫ δ

−δ

|ψ′(t)|
2| sin( 1

2 t)|
dt

≤
√

2

π

∫ δ

0

|ψ′(t)| cot
t

2
dt.

Since ψ′(t) ≤ 0 for t ∈
[

0; 1
2
π
]

, we conclude from (1.23) that

√
2

π

∫ π/2

0

|ψ′(t)| cot
t

2
dt < +∞.

Combining this with (1.27) and (1.25) with (1.14) we see that for a given ε > 0
there exists δ ∈

(

0; 1
2π

)

such that

(1.28)

∣

∣

∣

∣

1

2πi

∫

T(1,δ)

Ψ′
K(u)

u− r
du

∣

∣

∣

∣

<
ε

3
, r ∈ [0; 1),

and

(1.29)

∣

∣

∣

∣

1

2πi

∫

T\T(1,δ)

Ψ′
K(u)

u− 1
du− CT[Ψ′

K ](1)

∣

∣

∣

∣

<
ε

3
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as well as for r ∈ [0; 1) sufficiently close to 1,

(1.30)

∣

∣

∣

∣

1

2πi

∫

T\T(1,δ)

Ψ′
K(u)

u− r
du− 1

2πi

∫

T\T(1,δ)

Ψ′
K(u)

u− 1
du

∣

∣

∣

∣

<
ε

3
.

Combining (1.28) with (1.29) and (1.30) we see that for r ∈ [0; 1) sufficiently close
to 1,

∣

∣

∣

∣

1

2πi

∫

T

Ψ′
K(u)

u− r
du− CT[Ψ′

K ](1)

∣

∣

∣

∣

< ε.

Then by (1.26),

lim
r→1−

∂P [ΨK ](r) = CT[Ψ′
K ](1).

Since Ψ′
K(1) = 0, ΨK(1) = 1 and the limit limr→1− ∂P [ΨK](r) exists, it follows

from the proof of [9, Lemma 2.1] that

lim
r→1−

1 − P [ΨK ](r)

1 − r
= 2 lim

r→1−

∂P [ΨK ](r).

Hence by (1.25) we obtain

(1.31) lim
r→1−

1 − P [ΨK ](r)

1 − r
= LK .

From Lemma 1.1 it follows that the estimate (1.4) holds. Hence for all z ∈ T and
r ∈ (0; 1),

|F ∗(z) − F (rz)|
1 − r

≥ |F ∗(z)| − |F (rz)|
1 − r

≥ 1 − P [ΨK ](|rz|)
1 − r

=
1 − P [ΨK ](r)

1 − r
.

This combined with (1.31) leads to (1.15), and the lemma follows.

Lemma 1.4. For every K ≥ 1 ,

(1.32)

LK =
2

π

∫ 1/
√

2

0

dΦ1/K(s)2

s
√

1 − s2

=
4

π
Φ1/K

(

1√
2

)2

+
2

π

∫ 1/
√

2

0

1 − 2s2

s2(1 − s2)3/2
Φ1/K(s)2 ds.

Moreover, LK is a strictly decreasing function of K ≥ 1 such that

(1.33) lim
K→1

LK = L1 = 1 and lim
K→+∞

LK = 0
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as well as

(1.34) |LK2
− LK1

| ≤ L|K2 −K1|, K1, K2 ≥ 1,

where

(1.35) L :=
4

π
(1 + 65 ln 2).

Proof. Fix K ≥ 1. By (1.1) we get

(1.36) ΦK

(

Φ1/K(s)
)

= Φ1(s) = s, 0 ≤ s ≤ 1,

and hence using (1.11) we have

Φ1/K

(
√

1 − Φ1/K(s)2
)

=

√

1 − ΦK

(

Φ1/K(s)
)2

=
√

1 − s2 , 0 ≤ s ≤ 1.

Since the function [0; 1] 3 s 7→ Φ1/K(s)2 is absolutely continuous, we thus see,
integrating by substitution, that

(1.37) LK =
2

π

∫ 1/
√

2

0

1

s
√

1 − s2

dΦ1/K(s)2

ds
ds =

2

π

∫ 1/
√

2

0

dΦ1/K(s)2

s
√

1 − s2
.

Note that (1.22) and (1.36) lead to

(1.38) 41−KxK ≤ Φ1/K(x) ≤ xK , 0 ≤ x ≤ 1, K ≥ 1.

Then, integrating by parts, we obtain

LK = lim
r→0−

2

π

∫ 1/
√

2

r

dΦ1/K(s)2

s
√

1 − s2

= lim
r→0−

2

π

Φ1/K(s)2

s
√

1 − s2

∣

∣

∣

s=1/
√

2

s=r
− lim

r→0−

2

π

∫ 1/
√

2

r

2s2 − 1

s2(1 − s2)3/2
Φ1/K(s)2 ds

=
4

π
Φ1/K

(

1√
2

)2

+
2

π

∫ 1/
√

2

0

1 − 2s2

s2(1 − s2)3/2
Φ1/K(s)2 ds.

This and (1.37) yield (1.32). Fix K2, K1 ≥ 1. Then by (1.32),

(1.39)

LK2
− LK1

=
4

π

(

Φ1/K2

(

1/
√

2
)2 − Φ1/K1

(

1/
√

2
)2)

+
2

π

∫ 1/
√

2

0

1 − 2s2

s2(1 − s2)3/2

(

Φ1/K2
(s)2 − Φ1/K1

(s)2
)

ds.
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If K1 < K2 then Φ1/K2
(s) < Φ1/K1

(s) for 0 < s < 1, and by (1.39) we have
LK2

< LK1
. Thus LK is a strictly decreasing function of K .

Assume now that K1 ≤ K2 ≤ 2K1 and set R := K1/K2 . By (1.1) and (1.22)
we have for every s ∈ [0; 1] ,

(1.40)
0 ≤ Φ1/K1

(s)2 − Φ1/K2
(s)2 = Φ1/R

(

Φ1/K2
(s)

)2 − Φ1/K2
(s)2

≤ 161−R
(

Φ1/K2
(s)2

)R − Φ1/K2
(s)2.

Since 1
2 ≤ R ≤ 1 it follows that the function [0; 1] 3 t 7→ 161−RtR−t is increasing,

and hence (1.40) and (1.38) yield

(1.41) 0 ≤ Φ1/K1
(s)2 − Φ1/K2

(s)2 ≤ 161−Rs2K1 − s2K2 , 0 ≤ s ≤ 1.

Since

(1.42)
1 − 2s2

(1 − s2)3/2
≤ 1√

1 − s2
≤

√
2 , 0 ≤ s ≤ 1√

2
,

we conclude from (1.41) that

(1.43)

∫ 1/
√

2

0

1 − 2s2

s2(1 − s2)3/2

(

Φ1/K1
(s)2 − Φ1/K2

(s)2
)

ds

≤
√

2

∫ 1/
√

2

0

(

161−Rs2K1−2 − s2K2−2
)

ds

= 2

[

161−R 2−K1

2K1 − 1
− 2−K2

2K2 − 1

]

=
21−K1

2K1 − 1
[161−R − 1] + 2

[

2−K1

2K1 − 1
− 2−K2

2K2 − 1

]

.

From (1.41) we also see that

(1.44)
Φ1/K1

(

1/
√

2
)2 − Φ1/K2

(

1/
√

2
)2 ≤ 161−R2−K1 − 2−K2

= 2−K1(161−R − 1) + 2−K1 − 2−K2 .

Applying Lagrange’s mean-value theorem we have

(1.45) 161−R − 1 ≤ K2 −K1

K2
16 ln 16 ≤ (K2 −K1)16 ln 16

and

(1.46)

2−K1

2K1 − 1
− 2−K2

2K2 − 1
≤ K2 −K1

2K1

[

ln 2

2K1 − 1
+

2

(2K1 − 1)2

]

≤ 2 + ln 2

2
(K2 −K1)
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as well as

(1.47) 2−K1 − 2−K2 ≤ (K2 −K1)2−K1 ln 2 ≤ (K2 −K1) 1
2
ln 2.

Combining (1.44), (1.45), (1.47) and (1.43), (1.45), (1.46) with (1.39) we obtain
the following estimate

(1.48) 0 ≤ LK1
− LK2

≤ L(K2 −K1), 1 ≤ K1 ≤ K2 ≤ 2K1,

with the constant L given by (1.35).
Assume now that 2K1 < K2 . Then 2m ≥ K2/K1 for some natural number

m ≥ 2, and so R := (K2/K1)(1/m) ≤ 2. Replacing K1 by Rn−1K1 and K2 by
RnK1 in (1.48) we get

0 ≤ LRn−1K1
− LRnK1

≤ L(RnK1 −Rn−1K1), n = 1, 2, . . . ,m,

and hence

0 ≤ LK1
− LK2

=
m

∑

n=1

(LRn−1K1
− LRnK1

)

≤
m

∑

n=1

L(RnK1 −Rn−1K1) = L(K2 −K1).

Thus the inequalities in (1.48) hold for all K1, K2 ≥ 1 satisfying K1 ≤ K2 , which
yields (1.34).

From (1.34) and (1.32) it follows that

lim
K→1

LK = L1 =
2

π

∫ 1/
√

2

0

2ds√
1 − s2

= 1,

which implies the first part in (1.33). The second part in (1.33) follows from (1.32)
combined with (1.38) and (1.42), which completes the proof.

Remark 1.5. It is worth noting that Lemma 1.1 still holds provided the
assumption “F ∈ QCH(D;K) and F (0) = 0” is replaced by the weaker one:
F = P [f ] for some f ∈ Hom+(T) which admits a K -quasiconformal extension
G to D satisfying G(0) = 0. This may be achieved after simple modification of
the proof of Lemma 1.1. As a matter of fact the inequalities (1.9) are still valid
under the new assumption, and the remaining part of the proof of Lemma 1.1 runs
unchanged. Thus from the proof of Lemma 1.3, it follows that the left-hand side
in (1.15) is still not less than LK under the new assumption.
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2. Main estimations for QCH-maps

Lemmas 1.1 and 1.3 enable us to modify easily the proofs of [10, Lemma 0.5]
and [10, Theorem 0.6] to obtain, due to Lemma 1.4, their asymptotically sharp im-
provements. As a result we derive the following two theorems. For the convenience
of the reader we give however their proofs.

Theorem 2.1. Given K ≥ 1 let F be a K -quasiconformal and harmonic

self-mapping of D satisfying F (0) = 0 . If f is the boundary limiting valued

function of F , then

(2.1) df ≥ 1

K
max

{

2

π
, LK

}

.

Moreover, the right-hand side in (2.1) is a decreasing and continuous function of

K ≥ 1 with values in (0; 1] .

Proof. From [9, Lemma 2.1] it follows that for a.e. z ∈ T both the functions
∂P [f ] and ∂̄P [f ] have radial limiting values at z and the following equalities
hold:

(2.2)

2z lim
r→1−

∂P [f ](rz) = lim
r→1−

[

f(z) − P [f ](rz)

1 − r
+ zf ′(z)

]

,

2z̄ lim
r→1−

∂̄P [f ](rz) = lim
r→1−

[

f(z) − P [f ](rz)

1 − r
− zf ′(z)

]

.

Hence for a.e. z ∈ T ,

(2.3)
lim

r→1−

[z∂F (rz) + z̄∂̄F (rz)] = lim
r→1−

f(z) − F (rz)

1 − r
,

lim
r→1−

[z∂F (rz) − z̄∂̄F (rz)] = zf ′(z).

Since F is a K -quasiconformal mapping, we see from (2.3) that for a.e. z ∈ T ,

|f ′(z)| = lim
r→1−

|z∂F (rz) − z̄∂̄F (rz)| ≥ lim
r→1−

(

|∂F (rz)| − |∂̄F (rz)|
)

≥ 1

K
lim

r→1−

(

|∂F (rz)| + |∂̄F (rz)|
)

≥ 1

K
lim

r→1−

(

|z∂F (rz) + z̄∂̄F (rz)|
)

=
1

K
lim

r→1−

∣

∣

∣

∣

f(z) − F (rz)

1 − r

∣

∣

∣

∣

.

Thus (2.1) follows immediately from Lemma 1.3. The remaining part of the the-
orem is a simple conclusion from Lemma 1.4.
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Theorem 2.2. Given K ≥ 1 let F be a K -quasiconformal and harmonic

self-mapping of D satisfying F (0) = 0 . Then the inequalities

(2.4) |∂F (z)| ≥ K + 1

2K
max

{

2

π
, LK

}

and

(2.5) |∂xF (z)|2 + |∂yF (z)|2 ≥ 1

2

(

1 +
1

K

)2

max

{

4

π2
, L2

K

}

hold for every z ∈ D . Moreover, the right-hand sides in (2.4) and (2.5) are de-

creasing and continuous functions of K ≥ 1 with values in (1/π; 1] and (2/π2; 2] ,
respectively.

Proof. Since F is a K -quasiconformal mapping, we have

(K + 1)|∂̄F (w)| ≤ (K − 1)|∂F (w)|, w ∈ D,

and hence

(2.6) 2(K2 + 1)|∂F (w)|2 ≥ (K + 1)2(|∂F (w)|2 + |∂̄F (w)|2), w ∈ D.

From (2.2) it follows that for a.e. z ∈ T the following limits exist and

(2.7) 2 lim
r→1−

(

|∂F (rz)|2 + |∂̄F (rz)|2
)

= |f ′(z)|2 + lim
r→1−

∣

∣

∣

∣

f(z) − F (rz)

1 − r

∣

∣

∣

∣

2

.

Combining (2.7) with (2.1) and (1.15) we see that for a.e. z ∈ T ,

(2.8) lim
r→1−

(

|∂F (rz)|2 + |∂̄F (rz)|2
)

≥ 1

2

(

1 +
1

K2

)

max

{

4

π2
, L2

K

}

.

From this and (2.6) it follows that for a.e. z ∈ T ,

(2.9) lim
r→1−

|∂F (rz)| ≥ K + 1

2K
max

{

2

π
, LK

}

.

Applying now [10, Lemma 0.3] we deduce (2.4). Then (2.5) follows directly from
(2.4) and the identity

|∂xF (z)|2 + |∂yF (z)|2 = 2
(

|∂F (z)|2 + |∂̄F (z)|2
)

, z ∈ D.

The remaining part of the theorem is a simple conclusion from Lemma 1.4.
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Applying the Lipschitz condition (1.34) we obtain the following estimate

(2.10) LK ≥ 1 − L(K − 1), K ≥ 1,

which is fairly good for small K close to 1. Due to (2.10) we may easily derive from
Theorems 2.1 and 2.2 the following corollaries that give more explicit estimates as
compared to (2.1), (2.4) and (2.5) for K sufficiently close to 1.

Corollary 2.3. Under assumptions of Theorem 2.1, if moreover 1 ≤ K ≤
1 + (1 − 2/π)/L , then

(2.11) df ≥ 1

K
− (K − 1)

L

K
.

Corollary 2.4. Under assumptions of Theorem 2.2, if moreover 1 ≤ K ≤
1 + (1 − 2/π)/L , then the inequalities

(2.12) |∂F (z)| ≥ 1 − (K − 1)

(

1

2K
+ L

)

and

(2.13) |∂xF (z)|2 + |∂yF (z)|2 ≥ 2 − (K − 1)

(

2

K
+ 4L

)

hold for every z ∈ D .
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Soc. Sci. Lett.  Lódź 47, 1997, 51–63, Sér. Rech. Déform. 23.
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