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Abstract. A group H of (conformal/anticonformal) automorphisms of a closed Riemann
surface S of genus g ≥ 2 is said of Schottky type if there is a Schottky uniformization of S for
which it lifts. We observe that H is of Schottky type if and only if it leaves invariant a collection of
pairwise disjoint simple loops which disconnect S into genus zero surfaces. Moreover, in the case
that H is a cyclic group (either generated by a conformal or an anticonformal automorphism) we
provide a simple to check necessary and sufficient condition in order for it to be of Schottky type.

1. Introduction

Assume we have a collection of 2g > 0 pairwise disjoint simple loops in the
Riemann sphere Ĉ , say C1, C

′
1, . . . , Cg and C ′

g , bounding a common region D of
connectivity 2g , and that there are loxodromic transformations A1, . . . , Ag so that
Aj(Cj) = C ′

j and Aj(D) ∩ D = ∅ , for each j = 1, 2, . . . , g . The group G , gener-
ated by A1, . . . , Ap , is a Schottky group of genus g . The collection of loops C1 ,
C ′

1, . . . , Cg and C ′
g , is called a fundamental system of loops of G with respect to

the Schottky generators A1, . . . , Ag . Every set of g generators of a Schottky group
of genus g is a set of Schottky generators, that is, has associated a fundamental
system of loops [C]. In [M1] it is shown that a purely loxodromic Kleinian group
isomorphic to a free group of rank g is a Schottky group of genus g . The trivial
group is defined as the Schottky group of genus zero. If we denote by Ω the region
of discontinuity of a Schottky group G of genus g , then the quotient S = Ω/G
turns out to be a closed Riemann surface of genus g . The reciprocal is valid by the
retrosection theorem [Ko2] (see [B] for a modern proof using quasiconformal de-
formation theory). A triple (Ω, G, P : Ω → S) is called a Schottky uniformization

of a closed Riemann surface S if G is a Schottky group with Ω as its region of
discontinuity and P : Ω → S is a holomorphic regular covering with G as covering
group. Schottky uniformizations correspond to the lowest planar regular coverings
of S and also they correspond to geometrically finite hyperbolic structures on han-
dlebodies, with inner injectivity radii bounded below by a positive value, having
S as conformal border. In this note, by an automorphism of a Riemann surface
S we mean either a conformal or an anticonformal automorphism. A group of
automorphisms which only contains conformal automorphisms will be said to be a
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conformal group of automorphisms. A group H of automorphisms of S is said of
Schottky type if there is a Schottky uniformization of S , say (Ω, G, P : Ω → S),

so that H lifts, that is, for every h ∈ H there is an automorphism ĥ : Ω → Ω for
which h ◦ P = P ◦ ĥ . The main problem we are interested in is to decide when a
given group H of automorphisms of S is of Schottky type. As in genus 0 this is
trivial and in genus 1 this is completely known [H4], we restrict ourselves to the
situation of genus at least 2. For some particular classes of groups (for instance,
conformal cyclic, conformal abelian, conformal dihedral, and some anticonformal
cyclic groups) there are complete answers for the above lifting problem (see for
instance, [HC], [H1], [H2], [H4], [H5], [H6], [H8], [RZ1] and [RZ2]). In this note we
provide a necessary and sufficient condition for a group of automorphisms to be of
Schottky type. In the particular case of cyclic groups of automorphisms generated
by an anticonformal involution, we also provide a condition which is simple to
check for it to be of Schottky type, completing the work done in [HC].

This note is organized as follows. In Section 2 we provide a necessary and
sufficient condition for a given finite group of automorphisms to be of Schottky
type (see Theorem 1). Such a condition relays on the existence of certain collection
of pairwise disjoint simple loops on the surface, invariant under the group under
consideration, which dissects the surface into genus zero surfaces. In Section 3 we
restrict to the case of conformal automorphisms and we recall an already known
necessary condition (condition (A)), which turns out to be sufficient in many cases,
for instance for the cyclic case (see Theorems 2 and 3). In Section 4 we restrict
to groups containing anticonformal automorphisms and we mainly consider the
cyclic case. Necessary and sufficient conditions (simpler to check than the ones
given in Theorem 1) are given (see Theorems 5 and 6). In Section 5 we provide
the definition of Klein–Schottky pairings, needed in the necessary and sufficient
conditions for the anticonformal cyclic case. In Sections 6 and 7 we give the proof
of Theorem 6. In Section 8 we provide, as a consequence of Theorem 1, a method
to construct all Schottky type groups of automorphisms.

2. A necessary and sufficient condition

To give an answer to the Schottky lifting problem, we need the following
definition. Let us consider a closed Riemann surface S of genus g ≥ 2 together
a group H of automorphisms of it (then a finite group by Hurwitz). A collection
of pairwise disjoint simple loops on S , say L1, . . . , Lk ⊂ S , is called a Schottky

system of loops of H if

(1) each connected component of S −
⋃n

j=1 Lj is a genus zero bordered surface;
and

(2) the collection of loops {L1, . . . , Lk} is invariant under the action of H .

We have the following necessary and sufficient condition for a group of auto-
morphisms to be of Schottky type.
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Theorem 1. A group H of automorphisms of a closed Riemann surface S
of genus g ≥ 2 is of Schottky type if and only if there is a Schottky system of

loops of H .

Remark 1. (i) In the case of genus g = 1, Theorem 1 is still valid with
k = 1 and replacing the property of “invariant under H ” by the property of
“homotopically invariant under H ”.

(ii) If the group H is of Schottky type, then Theorem 1 asserts the existence
of a Schottky system of loops for H , say L1, . . . , Lk ⊂ S . Let us consider a
component X of S −

⋃k
j=1 Lj , and let HX be the stabilizer of X in H . We may

identify X with a subset of the Riemann sphere bounded by a finite collection
of pairwise disjoint simple loops and HX with a finite subgroup of the extended
Möbius group (the group of conformal and anticonformal automorphisms of Ĉ).
One may use this information to give a topological classification of all the possible
geometrically finite Kleinian groups we may obtain by the lifting process of H
under Schottky uniformizations. In the cyclic conformal case it is done in [H9]. In
the last section we provide a method to obtain all Schottky type automorphisms.
In this way, Theorem 1 may be used to obtain some of the results in [MMZ] from
a planar point of view.

(iii) As said before, a Schottky group of genus g defines a geometrically finite
complete hyperbolic structure on a handlebody of genus g with injectivity radii
bounded below by a positive value and vice-versa. In particular, we may interpret
the notion of a Schottky type group of automorphisms as follows. Assume we
have given a pair (S,H), where S is a closed orientable surface of genus g and
H is some finite group of its homeomorphisms. As a consequence of Nielsen’s
realization problem [Ke], we may give to S the structure of a Riemann surface so
that, up to homotopy, H is a group of (conformal/anticonformal) automorphisms.
The surface S may be thought as the conformal boundary of a handlebody of
genus g ; such a handlebody is not unique and corresponds to the different Schottky
uniformizations of the Riemann surface S . We may ask for the existence of one
of these handlebodies for which the group H extends continuously as a group of
hyperbolic isometries. The existence of such a handlebody is equivalent to the
existence of a Schottky uniformization of S for which H lifts.

(iv) Let Vg be a handlebody of genus g , Out(Fg) be the group of outer auto-
morphisms of the free group Fg of rank g , Diff+(Vg) be the group of orientation
preserving homeomorphisms of Vg and Ψ: Diff+(Vg) → Out(Fg) be the natural
homomorphism. Assume we are given a finite group H and a homomorphism
η: H → Out(Fg). In [MZ], [MMZ], [Z] the following question was studied and
solved: Is there an imbedding φ: H → Diff+(Vg) so that Ψφ = η? This problem is
related to ours by the fact that H solves positively the above if and only if φ(H)
restricted to the border S of Vg is of Schottky type. Unfortunately, in order to use
their ideas to solve our problem, we need to check at all possible homomorphisms
η: H → Out(Fg) for the (finite) group of (conformal) automorphisms of S , which
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seems to be not a good strategy. This problem makes our work different and not
a consequence of the above papers.

A simple consequence of Theorem 1 is the following reducibility necessary
condition on a Schottky type group of automorphisms.

Corollary 1. If a group H of automorphisms of a closed Riemann surface

S is not reducible, then it cannot be of Schottky type.

2.1. Proof of Theorem 1. Assume we have a group H of automorphisms
of a closed Riemann surface S of genus g ≥ 2.

Let us assume we have a collection of simple loops L1, . . . , Lk ⊂ S , so that:

(1) the connected components of S − (L1 ∪ L2 ∪ · · · ∪ Lk) consists of genus zero
bordered surfaces; and

(2) the collection of loops {L1, . . . , Lk} is invariant under the action of H .

Condition (1) ensures k ≥ g and that we are able to find a subcollection
L ⊂ {L1, . . . , Lk} consisting on g homologically independent loops. The same
condition ensures that the normalizer in the free homotopy class of L is generated
by the total collection of loops. Now condition (2) ensures that any Schottky
uniformization of S defined by L has the required lifting property.

Reciprocally, assume H is of Schottky type and let (Ω, G, P : Ω → S) be a
Schottky uniformization for which H lifts. As consequence of the uniformization
theorem, in S we have a hyperbolic metric for which H acts as group of isometries.
Let us consider a simple closed geodesic L1 ⊂ S of smallest hyperbolic length with
the property that it lifts to a loop on Ω. It follows that for each h ∈ H either:
(i) h(L1) = L1 , or (ii) h(L1) ∩ L1 = ∅ . In fact, assume that h(L1) ∩ L1 6= ∅ and
h(L1) 6= L1 . As h lifts to the Schottky uniformization we have that both L1 and
h(L1) lift to loops on Ω. Both of them have the same hyperbolic length as L1 . Let

us choose respective liftings L̂1 and ̂h(L1) so that they intersect. The planarity

of Ω asserts that the number of intersection points is even. Let us orient L̂1 ⊂ Ω

in counterclockwise order. We now fix an intersection point p ∈ L̂1 ∩ ̂h(L1).

Let us start from p and follow L̂1 , in the given orientation, until we arrive for
first time to a second intersection point, say q 6= p . These two points divide L̂1

(respectively, ̂h(L1)) into two pairwise disjoint arcs A1 and A2 (respectively, B1

and B2 ). We may assume that the hyperbolic length of A1 (respectively, of B1 )
is at most half the hyperbolic length of L1 . We may then consider the simple
loop L̂ = A1 ∪ B1 ∪ {p, q} . We have that the hyperbolic length of L̂ is at most
the hyperbolic length of L1 and that L̂ is not a simple closed geodesic. Also, L̂
projects on S to a simple closed curve L , which is not geodesic. We consider the
unique simple closed geodesic homotopic to L , say N . We then have that N lifts
to a loop on the above Schottky uniformization and has strictly smaller hyperbolic
length than L1 , a contradiction.
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Let us consider the collection of translates geodesics of L1 under the group H ,
say L1, . . . , Lr . We have that the collection of connected components of S− (L1∪
· · · ∪ Lr) is invariant under H . If some of such components, say X , has positive
genus, then we may find a simple closed geodesic Lr+1 ⊂ X of smallest hyperbolic
length with the property that it lifts to a loop on Ω. As for the case of L1 , we have
that for each h ∈ H either: (i) h(Lr+1) = Lr+1 , or (ii) h(Lr+1) ∩ Lr+1 = ∅ and
h(Lr+1) is disjoint from L1, . . . , Lr . We now consider the translates under H of
the geodesic Lr+1 , say Lr+1, . . . , Lr+s . The collection of connected components
of S − (L1 ∪ · · · ∪ Lr+s) still invariant under the action of H . As the genus of
S is finite, we may proceed with the above argument a finite number of times
until we get that each connected component (of the complement of the respective
collection of geodesics) has genus zero. The final collection of loops obtained with
such a procedure is the desired one.

2.2. Some generalities of Schottky type groups of automorphisms.
We end this section with some generalities on Schottky type groups of automor-
phisms. First, we need the following definition. Let q > 0 be any odd integer
number. An extended Möbius transformation η which is conjugated to a trans-
formation of the form

η̂(z) =
ekπi/q

z̄
,

where k ∈ {1, 3, . . . , q− 2} is odd and relatively prime with q , is called an imagi-

nary elliptic transformation. In this way, η2 is an elliptic transformation of order
q and ηq is an imaginary reflection. If k = 1, then we say that η is a geometric
imaginary elliptic transformation. In any case, if η is an imaginary reflection of
order 2q , then Ĉ/η is a real projective plane with exactly one branch value of

order q . When q = 1, we are in the presence of imaginary reflections and Ĉ/η is
a real projective plane without branch values.

Let us assume we have a Schottky type group H of automorphisms of a
Riemann surface S of genus g ≥ 2. Theorem 1 provides the existence of a Schottky
system of loops for H . To check the existence of such a collection of loops is in
general not so easy to get. It is for that reason one would like to have conditions,
which should be easy to check, ensuring the existence of a Schottky system of
loops. Let (Ω, G, P : Ω → S) be a Schottky uniformization of S for which H lifts.
We have the following facts.

(1) As the region of discontinuity Ω of a Schottky group is known to be a
domain of type OAD [AS], we have that for each h ∈ H , the lifted automorphism

ĥ should be either the restriction of (i) an extended Möbius transformation if h is
anticonformal or (ii) a Möbius transformation if h is conformal. In particular, the

group Ĝ , generated by all the lifted transformations ĥ , for all h ∈ H , contains G
as a finite index normal subgroup. If Ĝ+ denotes the subgroup of Ĝ consisting of
only the Möbius transformations, then we have, as Ĝ+ contains G as a finite index
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normal subgroup, that Ĝ+ turns out to be a geometrically finite function group.
Geometrically finite function groups have been classified by B. Maskit [M3].

(2) As Ĝ is a finite extension of G and G contains no parabolic transforma-

tions, then neither Ĝ does.

(3) If ĥ ∈ Ĝ+ is an elliptic transformation, then we know from [H3] that

either (i) both fixed points of ĥ belong to the region of discontinuity Ω of G or

(ii) there is a loxodromic transformation in G commuting with ĥ .

(4) If ĥ ∈ Ĝ+ is an elliptic transformation, Fix(ĥ) = {a, b} ⊂ Ω and there is

some t̂ ∈ Ĝ so that t̂(a) = b , then the non-existence of parabolics in Ĝ ensures

that t̂(b) = a . It follows that: (i) if t̂ ∈ Ĝ+ , then t̂2 = I ; and (ii) if t̂ /∈ Ĝ+ , then
t̂ is imaginary elliptic.

3. The conformal situation

In the case of conformal groups H a much simpler necessary condition, called
condition (A), was obtained in [H4]; this condition (A) can be obtained from the
arguments done at the end of last section.

3.1. Condition (A). Let S be a closed Riemann surface and H a finite
group of its conformal automorphisms. If a ∈ S is a fixed point of some h ∈
H − {I} , then we denote by R(h, a) ∈ (−π, π] the rotation number of h about
a , and we denote by H(a) the stabilizer subgroup of a in H . We say that H
satisfies the condition (A) if the set of all fixed points of the non-trivial elements
of H can be put into pairs satisfying the following properties.

(A1) If {p, q} is such a pair, then p 6= q , H(p) = H(q) = H{p,q} and, for each
h ∈ H{p,q} of order greater than two, R(h, p) = −R(h, q).

(A2) If {p, q} and {r, t} are two such pairs, then either {p, q} ∩ {r, t} = ∅ or
{p, q} = {r, t} .

(A3) If {p, q} is a pair and t ∈ H is so that t(p) = q , then t has order two.

(A4) If p is a fixed point of some non-trivial element of H , then there is another
fixed point q so that {p, q} is one of the above pairs.

A pairing of H satisfying (A1)–(A4) is called a Schottky pairing of H .

Theorem 2 ([H4]). Condition (A) is a necessary condition for a group H of

conformal automorphisms of a closed Riemann surface to be of Schottky type.

3.2. Condition (A*). The same as condition (A), but replacing (A3) with
the following:

(A3*) for each pair {p, q} there is no transformation t ∈ H so that t(p) = q .
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Remark 2. (1) If either (i) the order of H is odd or (ii) H is a cyclic
group, then (A3) cannot happen, in particular, condition (A) turns out to be
condition (A*) in this situation.

(2) If H satisfies condition (A*), then S/H cannot have signature (0, 3;m,n, t),
that is, it is not of genus zero with exactly three branch values (see Corollary 2).
An easy way to see that in this case H cannot be of Schottky type is the follow-
ing. Since every function group of such signature is a Fuchsian group of the first
kind [Kr], it contains no finite index Schottky subgroups. This observation and
Riemann–Hurwitz’s formula permits us to obtain that the order of every Schottky
type group of conformal automorphisms of a surface of genus g ≥ 2 has upper
bound equal to 12(g − 1) in contrast to Hurwitz’s bound 84(g − 1).

(3) If H is an Abelian group and there is a pair {p, q} in a Schottky pairing
which is permuted by some involution, then H{p,q} is necessarily a cyclic group of
order 2.

(4) Given a Schottky pairing for a group H , we may obtain a new Schottky
pairing with the following extra symmetrical property [H4]:

If {p, q} is a pair, then for all h ∈ H we have that {h(p), h(q)} is again a

pair.
(5) If H is a group of conformal automorphisms that satisfies condition (A),

then every subgroup K < H satisfies condition (A).
(6) Condition (A) trivially holds in the following cases: (i) H acts freely, i.e.,

no element of H−{I} has fixed points; (ii) H is a cyclic group of order 2; (iii) H
is a dihedral group.

As a consequence of part (1) and (2) of the above remark and Theorem 1 we
have the following easy fact.

Corollary 2. If H is a group of conformal automorphisms of a closed Rie-

mann surface S so that S/H is the Riemann sphere with exactly three branch

values, then H is not reducible.

Remark 3. The above fact tells us the difficulty of obtaining an explicit
example of both a Schottky group and an algebraic curve representing the same
conformal class of Riemann surface. This type of problem has been carried out
(numerically) in [H7].

Theorem 3 ([H2], [H5], [H6], [H8]). Condition (A) turns out to be necessary

and sufficient in the class of (i) Abelian groups, (ii) dihedral groups, (iii) the

alternating groups A4 and A5 and (iv) the symmetric group S4 .

In [RZ2] the above theorem is proved using 3-dimensional methods in the
case of dihedral and Abelian groups. Also, a general necessary condition for a
finite group to be of Schottky type is given in [RZ1].

Corollary 3. If H is either (i) a freely acting Abelian group, (ii) a cyclic

group of order 2 ; or (iii) a dihedral group, then H is of Schottky type.
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Remark 4. Condition (A) is not in general sufficient as was seen in [H8].

4. The anticonformal situation

Let us now consider a group H of automorphisms of a closed Riemann surface
S , containing necessarily anticonformal ones. We denote by H+ its index two
subgroup consisting of the conformal automorphisms. We start with the following
easy fact.

Theorem 4. If H is an Abelian group, then H+ is of Schottky type.

Proof. Choose τ ∈ H−H+ . Let h+ ∈ H+ be different from the identity. As an
involution has an even number of fixed points, we only need to see how to construct
pairings, satisfying condition (A), for h+ of order at least 3. Assume then that
h+ has order bigger than 2. Let a ∈ S be a fixed point of h+ . We have that τ(a)
is also a fixed point of h+ and R

(
h+, τ(a)

)
= R

(
τ ◦ h+ ◦ τ−1, τ(a)

)
= −R(h+, a).

It follows that, as R
(
h+, τ(a)

)
∈ (−π, π), that τ(a) 6= a and that the pairings of

type
(
a, τ(a)

)
will give us a Schottky pairing for the Abelian group H+ . As H+

is Abelian group we have, as consequence of Theorem 3, that H+ is of Schottky
type.

4.1. The cyclic case. If H is a cyclic group of order 2, say generated by
the anticonformal involution τ : S → S , then H is of Schottky type. In the case
that τ is a reflection (that is, has fixed points), this fact was already known to
Koebe [Ko1]. In the case that τ is an imaginary reflection (that is, has no fixed
points), this follows from the fact that the topological action of such an involution
is rigid. Some results in the case when τ is an imaginary reflection have been
obtained in [HM]. Not much is known in the general anticonformal case as it is in
the conformal situation. In [HC] we have considered the cyclic case. The following
summarizes the results obtained there.

Theorem 5 ([HC]). Let S be a closed Riemann surface and ψ: S → S be an

anticonformal automorphism of order 2p .

(i) If p = 2, 3 , then ψ is of Schottky type.

(ii) If S/ψ has non-empty border, then ψ is of Schottky type.

(iii) If no non-trivial power of ψ has fixed points, then ψ is of Schottky type.

Situation (ii) of the above takes care of the case when S/ψ has non-empty
border. Situations (i) and (iii) take care of some of the complementary cases. The
following, which is the subject of the rest of this paper (except for the last section),
complete the situation in the cyclic non-orientable case.

Theorem 6. Let S be a closed Riemann surface and ψ: S → S be an

anticonformal automorphism of order 2p so that S/ψ has no boundary.

(i) ψ is of Schottky type if and only if ψ has a Klein–Schottky pairing.

(ii) If p is a prime, then ψ is always of Schottky type.
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In Section 5 we give the definition of a Klein–Schottky pairing and in Sec-
tions 6 and 7 we give the proof of Theorem 6 (in those sections the sufficiency part
corresponds to Theorem 7 and the necessity part corresponds to Theorem 8).

5. Klein–Schottky pairings

In the rest of this section we fix a closed Riemann surface S , of positive genus
g , an anticonformal automorphism ψ: S → S of order 2p , where p is a positive
integer, so that S/ψ has empty boundary. If we set τ = ψp and φ = ψ2 , then we
have that:

(i) τ is either an imaginary reflection (if p is odd) or a conformal involution (if
p is even); and

(ii) φ is a conformal automorphism of order p .

Let us denote by H the cyclic group generated by ψ , by H+ the index
two subgroup generated by φ , by R = S/φ and by Q: S → R be the p -fold
holomorphic branched covering induced by the action of φ . Theorem 4 asserts
the existence of a Schottky pairing for the cyclic group H+ . If γ is the genus of
R and r is the number of pairs in a Schottky pairing for H+ , then we have that
R is an orbifold of genus γ with exactly 2r branch values (as a consequence of
part (1) of Remark 2). Let us denote by δ: R → R the anticonformal involution
induced by ψ .

Lemma 1. The anticonformal involution δ is an imaginary reflection. In

particular, (i) the non-trivial powers of ψ only have isolated fixed points, and

(ii) the odd powers ψ2k−1 have no fixed points.

Proof. As S/ψ = R/δ has no boundary, then δ cannot be a reflection. As
each odd power of ψ induces δ , we obtain part (ii). Now part (i) is clear since
even powers are conformal and odd powers have no fixed points.

5.1. Loops and arcs. Let us consider a simple loop L ⊂ R , disjoint from
the branching locus. We say that L lifts to a loop on S if the lifting of L consists
exactly of p pairwise disjoint simple loops. Otherwise, we say that L lifts to an

arc on S .

5.2. Oriented and non-oriented pairs of Schottky pairings. As a
consequence of Theorem 4 we have that φ = ψ2 satisfies condition (A) and, in
particular, we have the existence of Schottky pairings for φ .

Assume
{
{a1, b1}, . . . , {ar, br}

}
is one of such Schottky pairings. By part (1)

of Remark 2, we have Q(aj) 6= Q(bj). There are two possibilities:

(i) δ
(
Q(aj)

)
= Q(bj); or

(ii) δ
(
Q(aj)

)
6= Q(bj).

In case (i) we say that the pair {aj , bj} is a non-oriented pair and in case (ii)
we say it is an oriented pair. As the involution δ has no fixed points, we have that
the number of oriented pairs in any Schottky pairing is necessarily even.
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5.3. Cylinders. A cylinder C ⊂ S is a closed subset homeomorphic to the
set

{
z ∈ C : 1

2
≤ |z| ≤ 2

}
. Any simple loop on the interior of C homotopic to the

loop corresponding to {|z| = 1} is called a waist of C .

5.4. Petals. A simple loop L ⊂ R , either (i) containing no branch values
or (ii) containing Q(a) and Q(b), where {a, b} is a non-oriented pair of some
Schottky pairing of φ , but containing no other branch value of Q , is called a petal

if it is possible to find a cylinder C ⊂ R for which L is a waist and so that:

(i) the only branch values of Q in the closure of C are those contained in L ;
(ii) each of the two boundary loops of C , say A and B , lifts to a loop on S ;
(iii) δ(L) = L ; and
(iv) δ(C) = C (in particular, δ(A) = B ).

A set of petals L1, . . . , Lk are called disjoint if they are disjoint as loops. In
this case, we may choose their respective cylinders to be pairwise disjoint.

Remark 5. If we have a petal L , with respective cylinder C , then we have
that a connected component P of Q−1(C) is a genus zero surface with boundary.
The stabilizer of P in H+ is either trivial (if the petal L has no branch values
on it) or it is exactly H+(a) = H+(b), where {a, b} is the non-oriented pair for
which Q(a), Q(b) ∈ L .

5.5. Klein–Schottky pairing. As observed in Section 5.2, any Schottky
pairing for φ can be written as a collection

(∗)
{
{a1, b1}, . . . , {as, bs}, {c1, d1}, . . . , {c2t, d2t}

}

so that the pairs {aj, bj} are the non-oriented ones and the pairs {cj , dj} are the
oriented ones. We say that the Schottky pairing (∗) is a Klein-Schottky pairing

of 〈ψ〉 if:

(1) s ≤ γ + 1; and
(2) if s > 0, then it is possible to find a collection of pairwise disjoint petals

L1, . . . , Ls ⊂ R , so that:
(2.1) the loop Lj contains Q(aj) and Q(bj);

(2.2)
⋃γ+1

j=1 Lj divides R into two bordered surfaces R1 and R2 , which are
permuted by δ , and so that Q(ck), Q(dk) ∈ R1 and Q(ct+k), Q(dt+k) ∈
R2 , for k = 1, . . . , t .

Lemma 2. A Schottky pairing without non-oriented pairs is a Klein–Schottky

pairing. If the genus of S/φ is even, then any Schottky pairing with at most one

non-oriented pair is a Klein–Schottky pairing.

Proof. The first statement is clear by the definition. Now we assume the genus
of S/φ is even and that we have a Schottky pairing with exactly one non-oriented
pair, say {

{a1, b1}, {c1, d1}, . . . , {c2t, d2t}
}
,
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so that the pair {a1, b1} is the non-oriented one and the pairs {cj , dj} are the
oriented ones.

We have the following facts:

(i) A simple loop N ⊂ R which bounds a topological disc ∆N ⊂ R , containing
in its interior the branch values Q(cj) and Q(dj) and whose closure is disjoint
from all other branch values, must lift a loop on S ;

(ii) A diving simple loop M ⊂ R , disjoint from the branch locus, which
does not separate Q(cj) and Q(dj) (for all j ) also lifts to a loop on S . This
is consequence of the fact that such a loop will be homotopic to the product of
commutators and loops as in (i).

It is clear from the topology of the action of an imaginary reflection on an
even genus surface the existence of a dividing loop L ⊂ R satisfying that: (a) L
is invariant under δ , (b) Q(a1), Q(b1) ⊂ L , and (c) L is disjoint from all other
branch values. As a consequence of the above facts we have that the loop L
is necessarily a petal. This petal satisfies the conditions for the above Schottky
pairing being a Klein–Schottky pairing.

Proposition 1. If p is a prime, then there is a Klein–Schottky pairing for

〈ψ〉 .

Proof. Let us consider first the case p ≥ 3. In this case we have that τ is an
imaginary reflection. We may write the set of fixed points of φ as:

Fix(φ) =
{
x1, x2 = τ(x1), x3, x4 = τ(x3), . . . , x2r−1, x2r = τ(x2r−1)

}
,

so that (the rotation numbers) R(φ+, x2j−1) ∈ (0,+π). If r is even, say r = 2s ,
then the collection

{
{x1, x2r}, {x3, x2r−2}, . . . , {x2s−1, x2s+2}, {x2s+1, x2s}

}

is a Schottky pairing with no non-oriented pairs, then a Klein–Schottky pairing
as consequence of Lemma 2. If r is odd, say r = 2s − 1, then we consider the
collection

{
{x4s−3, x4s−2}, {x1, x4s−4}, {x3, x4s−6−4}, . . . , {x2s−1, x2s+2}, {x2s+1, x2s}

}
.

The above is a Schottky pairing with exactly one non-oriented pair, given
by ({x4s−3, x4s−2}). If S/φ has even genus (that is, if S has even genus by
Riemann–Hurwitz formula), then we have a Klein–Schottky pairing as consequence
of Lemma 2.

Let us now consider the case that S/φ has odd genus. We may draw two
pairwise non-dividing disjoint simple loops L1, L2 ⊂ R , each one invariant under
δ , none of them containing branch values, both together dividing R into two
components, say R1 and R2 (which are permuted by δ ). On R1 we may draw a
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dividing simple closed loop L3 so that L3 divides R1 into two surfaces, say R1,1

and R1,2 , so that R1,1 contains no branch values, R1,2 contains all branched values
on R1 and R1,2 is homeomorphic to a three-holed sphere. The loop L3 lifts to a
loop on S since it is product of commutators. Just by a simple modification on the
loop L1 , we may assume that the branched values contained on R1,2 are: Q(x1),
Q(x3), Q(x5), . . . , Q(x2s−3), Q(x2s), Q(x2s+2), . . . , Q(x4s−4) and Q(x4s−3). We
may draw pairwise disjoint simple loops N1, . . . , Ns−1 , where

(i) Nj bounds a topological closed disc ∆j ⊂ R1,2 containing the points
Q(x2j−1) and Q(x2(r−j)), and

(ii) ∆j ∩ ∆k = ∅ , for j 6= k .

As we know that each loop Nj lifts to a loop on S , we only need to consider
the case that R has genus 1 and exactly two branched values which are permuted
by δ , that is, S has genus the prime value p . As the topological action of a cyclic
group of order a prime p , with exactly two fixed points, on a genus p Riemann
surface is rigid, a petal as needed is easy to obtain (see Figure 1 for p = 3).

In the case p = 2 we have that φ is a conformal involution, then it has an
even number of fixed points. Now we may use the same arguments as in the above
case.

6. Klein–Schottky pairings: A sufficient condition

Theorem 7. Let S be a closed Riemann surface and ψ: S → S an anti-

conformal automorphism of order 2p so that S/ψ has no boundary. If 〈ψ〉 has a

Klein–Schottky pairing, then ψ is of Schottky type.

The above together Proposition 1 gives us as a consequence part (ii) of The-
orem 6.

Corollary 4. Let S be a closed Riemann surface and ψ: S → S an anticon-

formal automorphism of order 2p with p a prime. If S/ψ has no boundary, then

ψ is of Schottky type.

Proof of Theorem 7. Let γ be the genus of R = S/φ and δ: R → R be the
imaginary reflection induced by ψ .

Let
{
{a1, b1}, . . . , {as, bs}, {c1, d1}, . . . , {c2t, d2t}

}
be a Klein–Schottky pair-

ing for φ , so that the pairs {aj, bj} are the non-oriented ones and the pairs {cj, dj}
are the oriented ones. In particular, γ = 2m + s − 1 for some non-negative inte-
ger m .

In the case that our Klein–Schottky pairing has no non-oriented pairs, the
arguments are the same as for the case when there is no branching values [HC]. This
is consequence of the fact that a simple loop N ⊂ R which bounds a topological
disc ∆N ⊂ R , containing in its interior the branch values Q(cj) and Q(dj) and
whose closure is disjoint from all other branch values, must lift a loop on S .

We assume from now on that s > 0. We may also assume (after reindex-
ing) that δ

(
Q(cj)

)
= Q(ct+j), δ

(
Q(dj)

)
= Q(dt+j), for j = 1, . . . , t . As {aj , bj}
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Figure 1. The topological action in case p = 3 and a petal L .

is non-oriented, we have δ
(
Q(aj)

)
= Q(bj), for j = 1, . . . , s . By the defini-

tion of Klein–Schottky pairings, we have the existence of a set of disjoint petals
Z1, . . . , Zs , so that Zj contains the points Q(aj) and Q(bj). We have a collec-
tion of pairwise disjoint cylinders C1, . . . , Cs , where the waist of Cj is Zj and its
boundary loops are Zj,1 and Zj,2 = δ(Zj,1). The cylinders Cj can be assumed
such that no other branch value than Q(aj) and Q(bj) are contained on it. Let
us denote by R1 and R2 = δ(R1) the two components of R− (C1 ∪ · · · ∪Cs). We
have that exactly 2t branch values must belong to R1 and the other 2t branch
values belong to R2 . We may draw a dividing simple loop L00 ⊂ R1 so that it
divides R1 into two components, say R1,1 and R1,2 , so that R1,1 is a surface of
genus m with exactly one border (the curve L00 ) and R1,2 is a genus zero surface
with 1 + s boundary loops (L00 , Z1,1 , Z2,1, . . . , Zs,1 ) containing all 2t branch
values on R1 . We may assume without problem that these branched values are
given by Q(c1), Q(d1), Q(c2), Q(d2), . . . , Q(ct), Q(dt). We may now construct:
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(i) a collection of (oriented) homologically independent pairwise disjoint simple
loops L1, . . . , Lm on R1,1 ; and

(ii) a collection of (oriented) pairwise disjoint simple loops M1, . . . ,Mt on R1,2 ,
so that Mj bound a disc containing exactly the two branch values of order p
given by Q(cj), Q(dj).

As consequence of Lemma 3 below we may assume that each loop L1, . . . , Lm

lifts to a loop on S . Let U be the bordered orbifold bounded by the loops Z1,1 ,
Z2,1, . . . , Zs,1 , L00 , M1, . . . ,Mt . We have that on U there are no branch values.
As Z1,1 , Z2,1, . . . , Zs,1 , L00 , M1, . . . ,Ms all lift to a loop, we have that the
connected components of Q−1(U) consist of exactly genus zero bordered surfaces
homeomorphic to U . The collection of loops on S , obtained as liftings by Q of
the following collection

{
L1, . . . , Lm, δ(L1), . . . , δ(Lm),M1, . . . ,Mt, δ(M1), . . . , δ(Mt),

Z1,1, Z2,1, . . . , Zs,1, Zs,2, L00

}

(a) is invariant under the action of ψ ; and

(b) divides the surface S into genus zero surfaces.

Now Theorem 1 asserts that ψ is of Schottky type.

Lemma 3. In the above proof, each of the loops M1, . . . ,Mt lifts to a loop

on S and the loops L1, . . . , Lm can be chosen so that each of them lifts to a loop

on S .

j

L L

N Nmj

j m

Nm

Dj,k

L

Figure 2.
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Proof. The idea is the following. We first construct a collection of (oriented)
loops satisfying (i) and (ii). Clearly, each loop Mj lifts to a loop since it goes
around exactly the two branch values Q(cj), Q(dj), which satisfies the rotation
number property of condition (A). As the loop L00 is free homotopic to commu-
tators and the covering is Abelian, it also lifts to a loop. Choose m homologically
independent (oriented) simple loops N1, . . . , Nm on R1,1 so that Nj intersects
only the loop Lj at one point. We have that at least one of the simple loops Lj

or Nj or L
kj

j ·Nj (kj ∈ {1, 2, 3, . . . , p− 1}) must lift to a loop. We replace Lj by
the correct one.

Remark 6. In the above construction of loops Lj and Nj , we may assume
that each of the loops L1, . . . , Lm , N1, . . . , Nm−1 lifts to a loop. In fact, by the
above lemma, we have that each of the loops L1, . . . , lm lifts to a loop. Assume
one of the loop Nj lifts to an arc. We may assume that the loop Nm lifts to an
arc. Let j ∈ {1, 2, . . . ,m − 1} be so that the loops Nj lifts to an arc. Choosing
orientations in a suitable manner, we have that, for each k = 0, 1, . . . , p , there is
a simple loop free homotopic to Dj,k = Nj · (N

−1
m · Lj) ·N

−1
m )k , which is disjoint

from all loops Ni and Li , for i ∈ {1, . . . ,m− 1} − {j} , and intersects exactly at
one point with Lj (see Figure 2). Since we are dealing with a cyclic covering, we
may choose a suitable value of k so that Dj,k lifts to a loop. We replace Nj with
Sj,k and also replace the loop Lm by a suitable one in order to have the new loops
L1, . . . , Lm , N1, . . . , Nm , with the starting intersection conditions. Applying this
argument for each j ∈ {1, 2, . . . ,m − 1} we end with a collection L1, . . . , Lm ,
N1, . . . , Nm so that at least each L1, . . . , Lm−1 , N1, . . . , Nm−1 lifts to a loop. If
we have that Lm also lifts to a loop, then we are done. In the other case, we can
replace the pair Lm and Lm respectively by Lk

m and L−1
m (see Figure 3), for a

suitable value of k , to get the desired collection of curves.

7. Klein–Schottky pairings: A necessary condition

Theorem 8. Let S be a closed Riemann surface and ψ: S → S an anti-

conformal automorphism of order 2p , so that S/ψ has no boundary. If ψ is of

Schottky type, then ψ has a Klein–Schottky pairing.

Proof. As consequence of Theorem 1 we have the existence of a Schottky
system of loops L1, . . . , Lk ⊂ S of H = 〈ψ〉 . We may assume that: (i) such a
system of loops is minimal in the sense that no strictly smaller subcollection is a
Schottky system of loops of H , and (ii) no fixed point of a non-trivial element of
H+ = 〈φ = ψ2〉 is contained in some of the above loops. Since we are assuming
that S/H has no border, we have as consequence of Lemma 1, that the odd powers
of ψ have no fixed points.

Let x ∈ S be a fixed point of φl , where the stabilizer of x in H+ is generated
by φl . Let X ⊂ S −

⋃k
j=1 Lj be the component containing x and let HX <

H be its stabilizer in H . Let us denote by HX
+ its subgroup of conformal



198 Rubén A. Hidalgo

m

L m

Nm

N’m

L’

Figure 3.

automorphisms. Clearly, φl ∈ HX
+ . As X has genus zero, φl may only have at

most two fixed points on X , one of them being x .

Claim. φl has exactly two fixed points on X and H+

X is generated by φl .

In fact, assume we have exactly one fixed point on X for φl . It follows
that there is a loop L ⊂ {L1, . . . , Lk} which belongs to the boundary of X and
which is invariant under φl . As each element h ∈ HX commutes with φl , we
have that h(x) = x . As no odd power of ψ has fixed points, this implies that
HX = 〈φl〉 = H+

X . In particular, we may delete L and its H -translates to obtain
a Schottky system of loops of H , a contradiction to the minimality of the Schottky
system of loops. It follows that on X we should have exactly two fixed points of
φl , one of them is x and that HX

+ is generated by φl . This ends the proof of
our fact.

The above claim asserts that we are able to obtain a collection of pairs {x, y} ,
where x, y run over all pairs of fixed points of a (conformal) generator φl of HX

+

for all possible components X of S −
⋃k

j=1 Lj for which we have HX
+ 6= {I} .

Such a collection is in fact a Schottky pairing for φ just by construction.
Let us consider a component X as above and the corresponding two fixed

points x, y ∈ X of the conformal automorphism φl generating HX
+ 6= {I} . We

may assume that the rotation number of φl at x has the form 2π/r (in particular,
the order of φl is r , a divisor of p).

Let us first assume that HX = HX
+ . As consequence of Riemann–Hurwitz’s
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formula, and the minimality of the Schottky system of loops, we have that X is a
sphere with r boundary loops, cyclically permuted by φl . The quotient X/HX is
a disc with two branched values; the projections of x and y . In this way, we see
that the pair {x, y} is an oriented pair.

Let us now assume that HX 6= HX
+ . As HX is cyclic, we have some odd

power of ψ , say ψ2t−1 that generates HX . We may assume that such odd power
is such that ψ2(2t−1) = φl . As ψ2t−1 has no fixed points, we should have that
it permutes x and y . By Riemann–Hurwitz’s formula and minimality of the
Schottky system of loops, we have that X/HX is a Möbius band with exactly two
branch values; the projections of x and y . In this way, we see that the pair {x, y}
is a no-oriented pair. Moreover, the above asserts that such a pair has a petal
(whose cylinder corresponds to X/H+

X ). This also asserts that such a number of
Möbius bands cannot be bigger that 1 + γ , where γ is the genus of S/H+ , in
particular, the collection of non-oriented pairs of the above Schottky pairing have
the required properties for a Klein–Schottky pairing.

8. Construction of Schottky type groups

In this section we provide, as consequence of Theorem 1, a method to construct
all those Kleinian groups containing a Schottky group as a normal subgroup of
finite order (called in the rest of this section a Schottky extension group), or
equivalently, how to construct groups of automorphisms of Schottky type. We
first start with a group K containing such a Schottky subgroup and find some
regions and subgroups of (extended) Möbius transformations.

8.1. Some admissible regions and some groups. Let us assume we have
a non-elementary Schottky extension group K . Let G be a Schottky group which
is a normal subgroup, then of finite index. Let Ω be the region of discontinuity of
K and set S = Ω/G , H = K/G . We have a Schottky uniformization (Ω, G, P :
Ω → S) of S for which the group H lifts to the group K and a surjective
homomorphism

Θ: K → H,

whose kernel is the Schottky group G , satisfying

Θ(k) ◦ P = P ◦ k, for all k ∈ K.

As a consequence of Theorem 1, we have the existence of a Schottky system
of loops for H , say

F = {L1, . . . , Lk},

where g ≤ k ≤ 3g − 3 (we may assume that L1, . . . , Lg are homologically inde-
pendent) corresponding to the above Schottky uniformization, that is, each loop

in F lifts to loops under P : Ω → S . Let us denote by F̂ the collection of loops
obtained by lifting all loops in F under P .
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If L ∈ F and L̂ ∈ F̂ are so that P (L̂) = L , and the respective stabilizers
are given by cyclic groups

{
K(L̂) = {k ∈ K : k(L̂) = L̂},
H(L) = {h ∈ H : h(L) = L},

then we have that



P : L̂→ L is a homeomorphism,
Θ

(
K(L̂)

)
= H(L);

Θ: K(L̂) → H(L) is an isomorphism.

Similarly, if R is a connected component of S − F and R̂ is a connected
component of Ω −F̂ so that P (R̂) = R , and the respective stabilizers are given
by finite order Möbius groups

{
K(R̂) = {k ∈ K : k(R̂) = R̂},
H(R) = {h ∈ H : h(R) = R},

then we have that



P : R̂→ R is a homeomorphism,
Θ

(
K(R̂)

)
= H(R);

Θ: K(R̂) → H(R) is an isomorphism.

Let us now consider a loop L̂ ∈ F̂ and denote by R̂1 and R̂2 the two con-
nected components of Ω − F̂ having L̂ as common border (as consequence of
Jordan’s theorem).

Remark 7. If we have that P (R̂1) = R = P (R̂2), then L = P (L̂) is a
non-dividing loop on S so that R is at both sides of L .

We have two possibilities:

(1) K(R̂1) ∩K(R̂2) = K(L̂), in which case we say that L̂ is extraible; or

(2) K(R̂1) ∩ K(R̂2) has index two in K(L̂), in which case we say that L̂ is
non-extraible.

Lemma 4. In case (2) we have that K(L̂) is a dihedral group generated by

the cyclic group K(R̂1) ∩ K(R̂2) and a conformal involution kL that permutes

R1 with R2 .

Proof. In case (2) we have the existence of some transformation kL ∈ K(L̂)−

K(R̂1) ∩K(R̂2) so that R̂2 = kL(R̂1) and k2
L ∈ K(R̂1) ∩K(R̂2). We have that

k2
L = I . In fact, we have that kL is a finite order elliptic transformation that

preserves a loop L and interchanges both topological discs bounded by it. It
follows that both fixed points of kL should be inside L and, in particular, it must
be of order 2. In this way we have that K(L̂) is the dihedral group generated by

the cyclic group K(R̂1) ∩K(R̂2 and the involution kL .
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Remark 8. (i) If the group H has odd order, then (as the Schottky group

G has no non-trivial finite order transformations) we have that all loops in F̂ are
extraible.

(ii) If L ⊂ ∂(R̂) is a border loop of some component R̂ of Ω−F̂ , then we have

that L is non-extraible if and only if h(L) is non-extraible for every h ∈ K(R̂).

We proceed to construct a special domain inside Ω as follows.

8.1.1. Construction of the first domain. Let us take a connected component
R̂1 of Ω −F̂ and choose a boundary loop of it, say L̂1 . If this loop is extraible,
then we add to the above domain both the loop L̂1 and the connected component
of Ω −F̂ at the other side of L̂1 and set R̂2 as the new domain. If L̂1 is non-
extraible, then set R̂2 = R̂1 . Let us observe that in any of the two situations
there are not two different connected components of Ω −F̂ inside R̂2 which are
equivalent under K (but it may happen that a connected component of Ω −F̂

inside R̂2 has a non-trivial stabilizer in K ).

8.1.2. Construction of the second domain. Let us consider a boundary loop
of R̂2 , say L̂2 (different from L̂1 in case that R̂2 = R̂1 ). If L̂2 is extraible and

the connected component of Ω −F̂ which is disjoint from R̂2 is non-equivalent
under K to a connected component of Ω−F̂ inside R̂2 , then we add to R̂2 both
such a connected component and the loop L̂2 and we set R̂3 the new domain.
In the complementary situation, we set R̂3 = R̂2 . We have again that there are
not two different connected components of Ω−F̂ inside R̂3 which are equivalent
under K .

8.1.3. The inductive process. We may proceed as in the previous situation to
construct a sequence of domains R̂j so that R̂j+1 contains R̂j and there are not

two different connected components of Ω −F̂ inside R̂j+1 which are equivalent

under K . As the number of non-equivalent components of Ω−F̂ under K is the
same number as for the non-equivalent components of S − F under H , we have
that such a sequence is finite. The maximal of them is a domain R̂S,H with the
following properties:

(1) R̂S,H is disjoint finite union of loop in F̂ and components of Ω −F̂ ;

(2) any two different components of Ω −F̂ inside R̂S,H are not equivalent
under K ;

(3) any component of Ω−F̂ has an equivalent component (under K ) inside

R̂S,H ;

(4) if L̂ ∈F̂ is a boundary component of R̂S,H , then either:

(4.1) there exists a conformal involution kL̂ ∈ K(L̂) so that kL̂(R̂S,H) ∩

R̂S,H = ∅ and K(L̂) is a dihedral group generated by the involution kL and a
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cyclic group, which coincides with the stabilizer of L̂ of the stabilizer in K of any
of the two components of Ω −F̂ containing L̂ in the border; or

(4.2) there is no a conformal involution in k ∈ K that preserves L̂ so that

k(R̂S,H) ∩ R̂S,H = L̂ . In this case, there exists another different boundary loop

L̂′ ∈F̂ of R̂S,H and a loxodromic transformation kL̂ ∈ K so that

{
kL̂(L̂) = L̂′;

kL̂(R̂S,H) ∩ R̂S,H = L̂′.

Let us consider two different boundary loops L̂1 and L̂2 of our region R̂S,H ,
both of them satisfying the property (4.1) above. Let us assume there is a trans-
formation k ∈ K satisfying k(L̂1) = L̂2 . As we are assuming the loops to be
different, we have that k 6= I . Let us denote by kLj

∈ K the conformal involution

preserving L̂j that permutes both topological discs bounded by L̂j , for j = 1, 2.

We have that either k or kL2
k sends the component of Ω −F̂ contained inside

R̂S,H having L̂1 as border loop to the component of Ω−F̂ contained inside R̂S,H

having L̂2 . As consequence of (2) above, we have that both components should

be the same, say R̂ , and that k must belong to either K(R̂) or kL2
K(R̂).

8.2. The construction method. Let us consider a finite collection R1 ,
. . ., Rm of admissible regions in the Riemann sphere so that R =

⋃m
j=1Rj is

connected. In this way, R is again an admissible region.

(1) Let us assume we have finite Möbius group H1, . . . , Hm so that:
(1.1) For every h ∈ Hj we have h(Rj) = Rj ;
(1.2) If Ri 6= Rj are border related, say with common border loop L , then Hi(L) =

Hj(L);
(1.3) Let Rj , Rk and Rt be three different regions so that Rk and Rt are each one

border related to Rj (in particular, Rk and Rt cannot be border related).
Then there is no h ∈ Hj so that h(Rj ∩ Rk) = Rj ∩Rt .
Under the above conditions we may apply the first Klein–Maskit combination

theorem [M4] to obtain that H = 〈H1, . . . , Hm〉 is a geometrically finite function
group which is a free amalgamated product of the finite order groups Hj (the
amalgamations are given over the cyclic groups stabilizers of the common boundary
loops of different border related regions). Moreover, if L is a boundary loop of R
and let Rj ∈ {R1, . . . , Rm} be the (unique) component that contains L , then we
have that Hj(L) = H(L).

(2) If L is a boundary loop of R , then we assume we have a Möbius trans-
formation hL , so that:

(2.1) hL(L) = L′ is a boundary loop of R ;
(2.2) hL(R) ∩ R = L′ ;
(2.3) hL′ = h−1

L ;
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(2.4) if L = L′ , then K(L) = 〈hL, H(L)〉 is either a dihedral group or Z2 ;
(2.5) if L 6= L′ and

(2.5.1) there is an element h ∈ H so that h(L) = L′ , then h−1hL has order 2,
permutes both topological discs bounded by L and the group K(L) =
〈h−1hL, H(L)〉 is either a dihedral group or Z2 which does not depend
on the choice of h ;

(2.5.2) if there is no element h ∈ H so that h(L) = L′ , then we set K(L) =
H(L); and

(2.6) hL conjugates H(L) onto H(L′).
(3) If we have two different boundary loops L1 and L2 of R and some h ∈ H

so that h(L1) = L2 , then h conjugates K(L1) onto K(L2).

If we have that L′ 6= L , then conditions (2.1) and (2.2) and the fact that the
boundary loops of R are pairwise disjoint assert that the transformation hL is a
loxodromic transformation.

If L′ = L , then we have from (2.2) and (2.3) that hL 6= I and h2
L = I ; this

makes clear why condition (2.4) makes sense.
With respect to conditions (2.5) and (3), let us observe that the geometrical

construction of H by use of the first Klein–Maskit combination theorem asserts
that if there are two boundary loops of R , say L1 and L2 and there is some
h ∈ H so that h(L1) = L2 , then either (i) L1 and L2 belong to the same domain
Rj and h ∈ Hj or (ii) there are two border related regions Rj and Ri so that
L1 is in the border of Rj , L2 is in the border of Ri and there exist hj ∈ Hj and
hi ∈ Hi so that h = hihj .

Condition (2.6) is necessary as consequence of the decomposition done in the
previous section in order to get a Schottky extension group.

Let us consider the group K generated by the function group H and the
transformations hL , where L runs over all boundary loops of R . We may now
apply the second Klein–Maskit combination theorem [M4] to obtain that K is
a geometrically finite Kleinian group. Moreover, its region of discontinuity will
be necessarily connected. As a consequence of Selberg’s lemma K contains a
finite index torsion free normal subgroup G . In particular, G will be purely
loxodromic finitely generated geometrically finite Kleinian group with connected
region of discontinuity. It follows that G is a Schottky group as a consequence of
the classification of function groups [M2], [M3]. In this way, the class of groups
constructed by the above procedure are Schottky extension groups. The reciprocal
is consequence of the decomposition done in the previous section.
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