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Abstract. In this paper we present an analogy to the Jackson–Zygmund theorem on uniform
approximability of Zygmund bounded continuous periodic functions by trigonometric polynomials.
In our analogy the role of trigonometric polynomials is played by finite infinitesimal earthquakes.

1. Introduction

In his 1945 paper [10] Zygmund gave three proofs that the class Λ∗ of real-
valued continuous periodic functions f with the property

(1)

∣∣∣∣f(x) −
f(x + t) + f(x − t)

2

∣∣∣∣ = O(t)

is invariant under the Hilbert transform. One of the proofs employed the Jackson–
Zygmund theorem which gives a criterion for a continuous periodic function to
belong to the class Λ∗ in terms of the rate of its uniform approximability by
trigonometric polynomials of a given degree. More precisely, assume f is contin-
uous on R and f(x + 2π) = f(x). Let

(2) εf (n) = inf
Tn

‖f − Tn‖∞,

where Tn is any trigonometric polynomial of degree less than or equal to n . That
is, the infimum of the maximum difference between f(x) and Tn(x) is taken over
all possible linear combinations Tn of the functions

1, cos x, sinx, cos 2x, sin 2x, . . . , cosnx, sin nx.

Jackson–Zygmund theorem [10]. A continuous periodic function f be-
longs to the class Λ∗ if and only if there is a constant C such that for all n ∈ N ,

(3) εf (n) ≤ C/n.
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The necessity of this condition was shown by Jackson in [7] in 1912; he showed
that the convolution of f with the Jackson kernel

Kn(x) =

(
sin(nx/2)

sin(x/2)

)4

is a trigonometric polynomial Tn of degree 2n + 1 with the property that

‖f − Tn‖∞ ≤ C/n.

Zygmund showed in [10] that condition (3) was also sufficient by using a scaling
argument and the inequality ‖P ′′

n (x)‖∞ ≤ n2‖Pn(x)‖∞ for any trigonometric
polynomial Pn(x) of degree n . One can also find expository proofs of the Jackson–
Zygmund theorem in [11] and [8, pp. 55–61].

In this paper we present an analogy to the Jackson–Zygmund theorem on
uniform approximations of continuous periodic functions f ∈ Λ∗ by trigonometric
polynomials. In our analogy the role of trigonometric polynomials is played by
finite infinitesimal earthquakes, which are finite linear combinations of parabolic
bump functions.

In order to state briefly our main result, we consider continuous periodic
functions as continuous vector fields defined on the unit circle S1 = {z : |z| = 1} .

Corresponding to such a real-valued, periodic function Ṽ with period 2π, the
associated vector field V on S1 is given by the formula

(4) V (eiθ) = Ṽ (θ)ieiθ.

V is said to be Zygmund bounded if

(5)

∣∣∣∣V (eiθ) −
V

(
ei(θ+t)

)
+ V

(
ei(θ−t)

)

2

∣∣∣∣ ≤ Mt

for a constant M > 0 and for all 0 ≤ θ < 2π and 0 < t < π . Note that inequality
(5) is equivalent to the existence of a constant M̃ such that

(6)

∣∣∣∣Ṽ (θ) −
Ṽ (θ + t) + Ṽ (θ − t)

2

∣∣∣∣ ≤ M̃t,

and this condition coincides with condition (1) which defines the Zygmund class Λ∗.
A vector field L(z) on S1 is said to be trivial if it is the initial tangent vector

of a curve hε of Möbius transformations that preserves S1 with h0 equal to the
identity map. Such a curve shares the same initial vector of a curve given by the
formula

(7) ε 7→

(
z 7→

(1 + εA)z + εB

εB z + (1 + εĀ)

)
,
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where A and B are arbitrary complex constants and z ∈ S1 . The tangent vector
at ε = 0 to the curve (7) is

L(z) =
(
−B z2 + (A − Ā)z + B

)
.

If we transform L to L̃ by formula (4), that is, by the change of coordinate z 7→ θ
where z = eiθ, after a simplification we obtain

L̃(θ) =
L(eiθ)

ieiθ
= a0 + a1 cos θ + b1 sin θ

for some real constants a0 , a1 and b1 .
Let Sn = {e2πik/2n

: k = 0, 1, 2, . . . , 2n − 1} , which is a set of 2n equally
spaced points on S1 . Consider the open unit disk D bounded by S1 as the
hyperbolic plane. Let Ln denote a collection of finitely many non-intersecting
geodesics in D connecting points in Sn to points in Sn and σn be a measure
supported on Ln and assigning nonnegative weights to the geodesics in Ln . For
such a measure σn and a point z in S1 = ∂D , we define

(8) V +

σn
(z) =

∫∫
Eab(z) dσn(a, b) and V −

σn
(z) = −

∫∫
Eab(z) dσn(a, b),

where

(9) Eab(z) =

{
(z − a)(z − b)

a − b
for z ∈ [a, b],

0 otherwise.

Here, for each geodesic line ab in D with endpoints a and b on S1 , we denote
by [a, b] the shorter arc on S1 with endpoints a and b . We label the endpoints
so that going from a to points in the interval [a, b] to b is the counterclockwise
direction. In the case that a and b are antipodal, we choose either of the two
possible ways to label its endpoints by a and b and again we make going from
a to points of [a, b] to b be the counterclockwise direction. Then V +

σn
and V −

σn

define Zygmund bounded vector fields on S1 . In fact, they are the initial tangent
vectors to right and left earthquake curves (see [2]).

Let V be a continuous vector field on S1 and Vn = V |Sn
be the restriction

of V on Sn . By the so-called finite infinitesimal earthquake theorem in [1], for
each n ∈ N , there exists a measure σ+

n supported on a finite lamination L +
n and

a trivial vector field L+
n such that

Vn = (V +

σ+
n

+ L+

n)|Sn

and another measure σ−

n supported on another finite lamination L −

n and a trivial
vector field L−

n such that
Vn = (V −

σ−

n

+ L−

n)|Sn
.

Define δV (n) by

(10) δV (n) = ‖(V +

σ+
n

+ L+

n) − (V −

σ−

n

+ L−

n)‖∞.

In Sections 2 and 3, we prove the following main theorem.
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Theorem 1. A continuous vector field V on S1 is Zygmund bounded if and
only if there exists a constant C > 0 such that for all n ∈ N ,

(11) δV (n) ≤ C/2n,

where the constant C depends on the constant M which characterizes the Zyg-
mund boundedness of V .

In the course of proving the necessity, we obtain

(12) ‖V − (V +

σ+
n

+ L+

n)‖∞ ≤ C/2n

and

(13) ‖V − (V −

σ−

n

+ L−

n)‖∞ ≤ C/2n.

Conversely, in Section 4 we give a counterexample to show that neither (12) nor
(13) is sufficient by itself to imply that V is Zygmund bounded.

The supporting geodesics of σ+
m (resp. σ−

m ) have no relation to the supporting
geodesics of any other σ+

n ’s (resp. σ−

n ’s). However, we show in Section 5 that it is
possible to approximate Zygmund bounded vector fields on S1 in the L∞ -norm
by finite sums of parabolic bump functions in such a way that the supports of the
measures σ+

n are increasing sequences of nested sets and such that inequality (12)
holds.

2. Proof of necessity

Let Sn = {e2πik/2n

: k = 0, 1, 2, . . . , 2n − 1} .

Lemma 1. If a Zygmund bounded vector field V on S1 vanishes on Sn for
some n ∈ N , then

‖V ‖∞ ≤ C/2n

for a constant C > 0 only depending on the Zygmund constant of V .

Proof. Denote by tn+k = 1/2n+k , k ∈ N .

Clearly, ‖V |Sn
‖∞ = 0. For any e2πix ∈ Sn+1 \ Sn , e2πi(x±tn+1) ∈ Sn and

then V
(
e2πi(x±tn+1)

)
= 0. Hence

|V (e2πix)| =

∣∣∣∣V (e2πix) −
V (e2πi(x+tn+1)) + V (e2πi(x−tn+1))

2

∣∣∣∣ ≤ Ctn+1.

Therefore ‖V |Sn+1
‖∞ ≤ Ctn+1 .
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Now for any e2πix ∈ Sn+2 \ Sn+1 , e2πi(x±tn+2) ∈ Sn+1 . Then

|V (e2πix)| ≤

∣∣∣∣V (e2πix) −
V (e2πi(x+tn+2)) + V (e2πi(x−tn+2))

2

∣∣∣∣

+

∣∣∣∣
V (e2πi(x+tn+2)) + V (e2πi(x−tn+2))

2

∣∣∣∣

≤ Ctn+2 + ‖V |Sn+1
‖∞ ≤ Ctn+2 + Ctn+1.

Hence
‖V |Sn+2

‖∞ ≤ C(tn+1 + tn+2).

Inductively, we obtain

‖V |Sn+k
‖∞ ≤ C

k∑

i=1

tn+i.

Let S =
⋃∞

n=1 Sn . Then

‖V |S‖∞ ≤ C
∞∑

i=1

tn+i =
C

2n
.

By the continuity of V and the density of S in S1 , we obtain

‖V ‖∞ ≤
C

2n
.

By a finite earthquake measure σ we mean a collection of nonnegative weights
assigned to finitely many nonintersecting geodesics in the hyperbolic plane D . Let
σ be such a measure and L denote the collection of the finitely many geodesics
which support σ . Let β be a closed hyperbolic geodesic segment in D with
hyperbolic length l(β) less than or equal to 1. We denote by σ(β) the sum of the
weights of the geodesics in L intersecting β . In [9], Thurston defines the norm

of σ to be

(14) ‖σ‖Th = sup
l(β)≤1

σ(β) = sup
l(β)=1

σ(β),

where β is a closed geodesic segment transversal to L and l(β) denotes the
hyperbolic length of β . As the same as defined in the introduction, we let

(15) V +

σ (x) =

∫∫
Eab(x) dσ(a, b) and V −

σ (x) = −

∫∫
Eab(x) dσ(a, b).

Let V be a Zygmund bounded vector field on S1 . One can introduce a
cross-ratio norm to measure the Zygmund bound of V . Given a quadruple Q =
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{a, b, c, d} consisting of four points a , b , c , d on the unit circle S1 arranged in
counterclockwise order, we denote by

(16) cr(Q) =
(b − a)(d − c)

(c − b)(d − a)

and

(17) V [Q] =
V (b) − V (a)

b − a
−

V (c) − V (b)

c − b
+

V (d) − V (c)

d − c
−

V (d) − V (a)

d − a
.

Then the cross-ratio norm ‖V ‖cr is defined to be

(18) ‖V ‖cr = sup
cr(Q)=1

|V [Q]|.

It is easy to see that ‖V +
σ ‖cr = ‖V −

σ ‖cr . Therefore, we simply use Vσ to denote
either V +

σ or V −

σ .
By Theorem 4.1 in [1] or Theorem 4 in Section 18.4 in [3], ‖Vσ‖cr ≤ C‖σ‖Th

for a constant C > 0. In [4] and [5], it is shown that the Thurston norm of σ is
equivalent to the cross-ratio norm of Vσ .

Norm-equivalence theorem. There exists a universal constant C > 0 such
that for any finite earthquake measure σ ,

1

C
‖σ‖Th ≤ ‖Vσ‖cr ≤ C‖σ‖Th.

Now we begin the proof of the necessity part of Theorem 1.
Proof. Let V be a Zygmund bounded vector field on S1 and Vn = V |Sn

.
Let σ+

n , σ−

n , L+
n and L−

n be the same as defined in the introduction. By the same
method in [5] used to show ‖σ‖Th ≤ C‖Vσ‖cr in the norm-equivalence theorem,
one can show that there exists a universal constant C > 0 such that for all n ,

‖σ+

n‖Th ≤ C‖V ‖cr and ‖σ−

n‖Th ≤ C‖V ‖cr.

Then the norm-equivalence theorem implies

‖V +

σ+
n

‖cr ≤ C‖σ+

n‖Th ≤ C ′‖V ‖cr.

Similarly, we have
‖V −

σ−

n

‖cr ≤ C ′′‖V ‖cr.

Therefore both V +

σ+
n

and V −

σ−

n

, and hence V +

σ+
n

+ L+
n and V −

σ−

n

+ L−

n , are Zygmund

bounded with their bounds only depending on the Zygmund constant of V . The
proof of necessity follows by applying Lemma 1 to the difference (V +

σ+
n

+ L+
n) −

(V −

σ−

n

+ L−

n).
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3. Proof of sufficiency

Again let Sn = {e2πik/2n

: k = 0, 1, 2, . . . , 2n − 1} .

Proposition 1. A continuous vector field V on S1 is Zygmund bounded if
and only if there exists a constant C > 0 such that for any n ∈ N and any triple
{x − t, x, x + t} of three consecutive points in Sn ,

∣∣∣∣V (x) −
V (x − t) + V (x + t)

2

∣∣∣∣ ≤ C|t|.

Proof. The necessity of the statement is obvious. To prove the sufficiency, we
must show that if there exists a constant C > 0 such that for any n ∈ N and any
triple {x − t, x, x + t} of three consecutive points in Sn ,

(19)

∣∣∣∣V (x) −
V (x − t) + V (x + t)

2

∣∣∣∣ ≤ C|t|,

then V is Zygmund bounded.
Let S =

⋃∞
n=1 Sn . Since S is a dense subset of S1 , by the continuity of V

it is sufficient to show for any symmetric triple {x− t, x, x + t} of three points in
S , inequality (19) holds.

Let f(x) = V (e2πix)/ie2πix . Then f is a periodic continuous function on R

with period 1. Let Bn = {k/2n : k = 0, 1, 2, . . . , 2n} and B =
⋃∞

n=1 Bn . It is
sufficient to show that for any symmetric triple {x − t, x, x + t} contained in B ,
f satisfies

(20)

∣∣∣∣
f(x + t) − f(x)

t
−

f(x) − f(x − t)

t

∣∣∣∣ < C1

for a constant C1 > 0.
Let n be the smallest integer such that the interval [x−t, x+t] contains three

consecutive points in Bn , and denote them by xn − tn , xn and xn + tn . Without
loss of generality, we may assume x − t < xn − tn < x < xn < xn + tn < x + t .
Then there exist integers n < n1 < n2 < · · · < nl , n < m1 < m2 < · · ·mj and
n ≤ k1 < k2 < · · · < ki such that

x + t = xn + tn +

l∑

s=1

1

2ns
, x = xn −

j∑

s=1

1

2ms
and x − t = xn − tn −

i∑

s=1

1

2ks
.

Let xn0
= xn + tn and

xns
= xn + tn +

1

2n1
+

1

2n2
+ · · ·+

1

2ns

for each 1 ≤ s ≤ l . Denote by

rR = rn0
=

f(xn + tn) − f(xn)

tn
and rns

=
f(xns

) − f(xns−1
)

xns
− xns+1

for each 1 ≤ s ≤ l .
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Sublemma. Let x = −1/2m , y = 0 and z = 1/2n with m < n . Then

∣∣∣∣
f(z) − f(y)

z − y
−

f(y)− f(x)

y − x

∣∣∣∣ ≤ (n − m + 2)C,

where C is the constant satisfying the inequality (19) .

Proof. Let zk = 2kz for each 1 ≤ k ≤ n−m . Since y , z and z1 satisfy (19),

|f(y) + f(z1) − 2f(z)| ≤ 2C(z − y).

Hence ∣∣∣∣
f(z1) − f(y)

2(z − y)
−

f(z) − f(y)

z − y

∣∣∣∣ ≤ C,

that is, ∣∣∣∣
f(z) − f(y)

z − y
−

f(z1) − f(y)

z1 − y

∣∣∣∣ ≤ C.

By the same reasoning, for each 1 ≤ k ≤ n − m − 1,

∣∣∣∣
f(zk) − f(y)

zk − y
−

f(zk+1) − f(y)

zk+1 − y

∣∣∣∣ ≤ C.

By the triangle inequality,

∣∣∣∣
f(z) − f(y)

z − y
−

f(zn−m) − f(y)

zn−m − y

∣∣∣∣ ≤ (n − m)C.

Clearly, ∣∣∣∣
f(zn−m) − f(y)

zn−m − y
−

f(y) − f(x)

y − x

∣∣∣∣ ≤ 2C.

The last two inequalities imply the sublemma.

Let C3 = 3C . By the previous sublemma, for each 1 ≤ s ≤ l ,

|rns
− rns−1

| ≤ (ns − ns−1 + 2)C ≤ 3(ns − ns−1)C = C3(ns − ns−1),

and hence

|rns
− rR| = |rns

− rn0
| ≤ C3(ns − n0) = C3(ns − n),

where n0 = n .
Similarly, let xm0

= xn and

xms
= xn −

(
1

2m1
+

1

2m2
+ · · · +

1

2ms

)
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for each 1 ≤ s ≤ j . Denote by

r′m0
= rR and r′ms

=
f(xms−1

) − f(xms
)

xms−1
− xms

for each 1 ≤ s ≤ j . By the same reasoning, we have for each 1 ≤ s ≤ j ,

|r′ms
− r′ms−1

| ≤ C3(ms − ms−1),

and hence

|r′ms
− rR| = |r′ms

− r′m0
| ≤ C3(ms − m0) = C3(ms − n),

where m0 = n .
Clearly, xmj

= x and xnl
= x + t . Then

f(x + t) − f(x) =

j∑

s=1

[f(xms−1
) − f(xms

)]

+ [f(xn + tn) − f(xn)] +

l∑

s=1

[f(xns
) − f(xns−1

)]

=

j∑

s=1

r′ms
(xms−1

− xms
) + rRtn +

l∑

s=1

rms
(xns

− xns+1
)

=

j∑

s=1

(r′ms
− rR)(xms−1

− xms
)

+

l∑

s=1

(rms
− rR)(xns

− xns+1
) + rRt,

where

t = tn +

j∑

s=1

(xms−1
− xms

) +
l∑

s=1

(xs − xs+1) =
1

2n
+

j∑

s=1

1

2ms
+

l∑

s=1

1

2ns
.

Therefore∣∣∣∣
f(x + t) − f(x)

t
− rR

∣∣∣∣

≤

∑j
s=1 |r

′
ms

− rR|(xms−1
− xms

) +
∑l

s=1 |rms
− rR|(xs − xs+1)

t

≤ C3

∑j
s=1

ms − n

2ms
+

∑l
s=1

ns − n

2ns

1

2n
+

∑j
s=1

1

2ms
+

∑l
s=1

1

2ns

= C3

∑j
s=1

ms − n

2ms−n
+

∑l
s=1

ns − n

2ns−n

1 +
∑j

s=1

1

2ms−n
+

∑l
s=1

1

2ns−n

.
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Since the series
∑∞

n=1 n/2n converges, the numerator of the above quotient is
bounded. Therefore there exists a constant C4 > 0 such that

∣∣∣∣
f(x + t) − f(x)

t
− rR

∣∣∣∣ ≤ C4.

Similarly, we can also show

∣∣∣∣
f(x) − f(x − t)

t
− rL

∣∣∣∣ ≤ C5

for a constant C5 > 0, where rL =
(
f(xn) − f(xn − tn)

)
/(tn). Since |rR − rL| ≤

C1 , we obtain

∣∣∣∣
f(x + t) − f(x)

t
−

f(x) − f(x − t)

t

∣∣∣∣ ≤ C4 + C5 + C1,

which completes the proof.

Now we briefly recall the procedure in [1] for constructing the infinitesimal
left earthquake Vσ associated to a vector field V defined on a finite subset A
of S1 . For convenience, we work with the real line R and the upper half plane
H instead of the circle S1 and the unit open disk D . Assume that A is a subset
of R and V takes values only at the points in A . This procedure yields a finite
lamination L consisting of non-intersecting hyperbolic geodesics l in the upper
half plane H together with nonnegative weights %l associated to each geodesic l
in L .

To describe this procedure we refer to the example illustrated in Figure 1,
which treats a case where A∪{∞} consists of 9 points. We will need the formulae
for the parabolic bump function Eab(x) given similarly in (9) as

(21) Eab(x) =

{
(x − a)(x − b)

a − b
for a ≤ x ≤ b,

0 otherwise

and the special cases

(22) Ea∞(x) =
{

x − a for a ≤ x ≤ ∞,
0 otherwise

and

(23) E−∞b(x) =
{
−(x − b) for −∞ ≤ x ≤ b,
0 otherwise.
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x
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x
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x
5

x
6

x
7 x
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l 1

l 2

l
3

R
x
1 Figure 1.

The procedure consists of the following three steps.
Step 1. Draw a line l1 which meets the graph of V over A at the point

furthest to the left, which meets the graph of V at at least one more point p and
which lies on or below the graph. In Figure 1, this is the line l1 and p = x4 .

Step 2. If p is the furthest right point on the graph of V on A , then stop.
Otherwise draw a line l2 which meets the graph of V at the point

(
p, V (p)

)
,

meets the graph of V at at least one more point q and which lies on or below the
graph of V . Replace p by q , continue this step inductively until p is the furthest
right point on the graph of V on A . Then we obtain a finite sequence of the line
segments l1, l2, . . . , lk . In Figure 1 there are three such line segments, l1 , l2 and
l3 .

Step 3. Let R(x) be the piecewise linear function whose graph consists of
these line segments. Over each linear piece of the graph of R(x) add a function
%abEab(x) where a and b are the left and right endpoints of the linear piece, and
%ab ≥ 0 and is as large as possible so that the graph of R(x) + %abEab(x) lies on
or below the graph of V .

Continue inductively to add parabolic bump functions %ajbj
Eajbj

(x) in the
above way until the graph of the resulting function passes through all points on
the graph of V . Now we obtain a function Ṽ (x) of the form

(24) Ṽ (x) =
∑

ajbj

%ajbj
Eajbj

(x) + B(x)

where (aj, bj)’s are pairs of points in A ∪ {∞} , the hyperbolic goedesics lj with
endpoints aj and bj do not intersect, and B(x) is affine. Moreover, it satisfies

(i) Ṽ (xj) = V (xj) for each xj in A and

(ii) the graph of each parabolic or linear segment of Ṽ , if extended, lies
entirely on or below the graph of V .

In the example depicted in Figure 1, the weight assigned to the line connecting
x4 to ∞ is equal to the slope of l2 minus the slope of l1 and the weight assigned



248 F. P. Gardiner and J. Hu

to the line connecting x7 to ∞ is equal to the slope of l3 minus the slope of l2 .
All weights are given by the numbers %ajbj

in the sum (24). For example, the
weight assigned to the geodesic connecting x4 to x7 is the coefficient of Ex4x7

in
the sum (24).

Figure 2 is the translation of Figure 1 from the upper half plane to the unit
disk.

x
4

x
5 x

6

x
7

x
8

x
1

x
2

x
3

l
1

l 2

l
3

Figure 2.

We obtain the following proposition.

Proposition 2. Assume that f is a function defined on a set A consisting
of finitely many points on the real line R . Suppose that E is the unique finite
infinitesimal left (resp. right) earthquake on H which coincides with f on A . For
any two adjacent points X and Y on the graph of f , let E ′ be the collection of
the summands of E which contribute values at X and/or Y , and Q be the sum
of the summands in E′ . Then the graph of Q passes through X and Y , and all
other points on the graph of f are not below (resp. above) the graph of Q .

In order to prove the sufficiency of the condition in Theorem 1, we also need
the following elementary lemmas and corollaries.

Lemma 2. Given t > 0 and h > 0 , let X = (−t, 0) , Y = (0, h) and
Z = (t, 0) . Suppose that f(x) = ax2 + bx + c is a quadratic polynomial function
with a < 0 such that X and Y are on the graph of f and Z is not below the
graph. Let L(x) be the piecewise linear function obtained by connecting X to Y
and Y to Z . Then

(f − L)
(
− 1

2 t
)
≥ 1

4h.

Proof. Clearly, L(x) = (h/t)x + h for x ≤ 0 and

f(x) = ax(x + t) +
h

t
x + h.
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Since f(t) = 2at2 + 2h ≤ 0, −at2 ≥ h . Then

(f − L)
(

1
2(−t)

)
= − 1

2at
(

1
2 (−t) + t

)
= − 1

4at2 ≥ 1
4h.

Corollary 1. Suppose that t > 0 and y − 1
2 (x + z) = h > 0 , and let

X = (−t, x) , Y = (0, y) and Z = (t, z) . Under the same notation and assumptions
as in the previous lemma 2 , we also have

(f − L)
(
− 1

2
t
)
≥ 1

4
h.

Similarly, we obtain

Lemma 3. Given t > 0 and h < 0 , let X = (−t, 0) , Y = (0, h) and
Z = (t, 0) . Suppose that f(x) = ax2 + bx + c is a quadratic polynomial function
with a > 0 such that X and Y are on the graph of f and Z is not above the
graph. Let L(x) be the piecewise linear function obtained by connecting X to Y
and Y to Z . Then

(L − f)
(
− 1

2
t
)
≥ − 1

4
h.

Corollary 2. Suppose that t > 0 and y − 1
2 (x + z) = h < 0 , and let

X = (−t, x) , Y = (0, y) and Z = (t, z) . Under the same notation and assumptions
in the previous lemma 3 , we also have

(L − f)
(
− 1

2 t
)
≥ − 1

4h.

To show the sufficiency of the condition in Theorem 1, we proceed by making
a contradiction.

Proof. Let V be a continuous vector field on S1 satisfying the condition (11)
in our Theorem 1. Suppose that V is not Zygmund bounded. By Proposition 1,
there exists an infinite sequence {Tn}

∞
n=1 of symmetric triples Tn−k = {xn −

tn, xn, xn + tn} in S such that tn → 0 and

∣∣∣∣
(

V (xn) −
V (xn − tn) + V (xn + tn)

2

) /
tn

∣∣∣∣ → +∞

as n → ∞ . Therefore, by passing to a subsequence if necessary, we may assume

Cn =

(
V (xn) −

V (xn − tn) + V (xn + tn)

2

) /
tn → +∞

as n → ∞ . We may also assume that Cn > 0 for all n .
For the convenience in estimates, we first convert the vector field V to the

vector fields Ṽ n on the real line R as follows.
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Let Bn(z) = xn(i − z)/(i + z). Then Bn is an orientation-preserving Möbius
transformation mapping H onto D , i to the center of D , the origin of H to xn

and |B′
n(0)| = 2. Denote by

(25) Ṽ n(x) =
V

(
Bn(x)

)

B′
n(x)

|B−1
n (Sn).

Now let σ̃+
n = (B−1

n )∗σ+
n (resp. σ̃−

n ) be the pushforward of σ+
n (resp. σ−

n ) by B−1
n .

Denote by

(26) V +

σ̃n
(x) =

∫∫
Eab(x) dσ̃+

n(a, b) and V −

σ̃n
(x) = −

∫∫
Eab(x) dσ̃−

n (a, b),

where Eab is defined by (21). It is proved in Lemma 1 in [5] that

(27) V +

σ̃n
(x) =

V +
σn

(
Bn(x)

)

B′
n(x)

.

Similarly,

(28) V −

σ̃n
(x) =

V −

σn

(
Bn(x)

)

B′
n(x)

.

Corresponding to a trivial vector field on S1 , a trivial vector field on R is just
an affine map. Then by the finite infinitesimal earthquake theorem in [1] (see the
introduction), there are affine maps L̃+

n and L̃−

n such that

Ṽ n = (V +

σ̃n
+ L̃+

n)|B−1
n (Sn) = (V −

σ̃n
+ L̃−

n)|B−1
n (Sn).

Clearly, B−1
n maps a symmetric triple Tn to a triple T̃n = {−t̃n, 0, t̃n} .

Since |(B−1
n )′(xn)| = 1/|B′

n(0)| = 1
2 , all (B−1

n )’s are almost linear maps in small
neighborhoods of xn with the same asymptotic rescaling. Therefore as n → +∞ ,

C̃n =

[
Ṽ n(0) −

Ṽ n(−t̃n) + Ṽ n(t̃n)

2

] /
t̃n → +∞.

Let Xn = (−t̃n, Ṽ n

(
−t̃n)

)
, Yn =

(
0, Ṽ n(0)

)
and Zn =

(
t̃n, Ṽ n(t̃n)

)
. Let En be

the collection of all quadratic polynomials comprising V +

σ̃n
and E′

n the collection
of the quadratic polynomials in En which contribute values at Xn and/or Yn .
Now let Q+

n be the sum of all polynomials in E ′
n , then by Proposition 2, Zn is

not below the graph of Q+
n . Assume that Ln is the linear approximation of V +

σ̃n

on T̃n . By Corollary 1,

(Q+

n − Ln)
(
− 1

2
t̃n

)
≥ 1

4
C̃n t̃n > 0.



An earthquake version of the Jackson–Zygmund theorem 251

On the interval [−t̃n, 0], Q+ = V +

σ̃n
and then

[
(V +

σ̃n
+ L̃+

n) − (Ln + L̃+

n)
](
− 1

2 t̃n
)

= (Q+

n − Ln)
(
− 1

2 t̃n
)
≥ 1

4 C̃n t̃n.

On the other hand, the graph of the right finite infinitesimal earthquake V −

σ̃n
+ L̃−

n

is not above the graph of Ln + L̃+
n on the interval [−t̃n, 0] since Ln + L̃+

n is equal

to the linear approximation of Ṽ n on this interval. Hence

[
(Ln + L̃+

n) − (V −

σ̃n
+ L̃−

n)
](
− 1

2
t̃n

)
≥ 0.

Therefore [
(V +

σ̃n
+ L̃+

n) − (V −

σ̃n
+ L̃−

n)
](
− 1

2 t̃n
)
≥ 1

4 C̃nt̃n.

Since all Bn ’s are almost linear maps in small neighborhoods of the origin with
the same asymptotic rescaling,

lim
n→∞

t̃n
tn

→ 2.

By (27) and (28),

[
(V +

σn
+L+

n)−V −

σn
+L−

n)
](

Bn

(
− 1

2 t̃n
))

= B′
n

(
− 1

2 t̃n
)[

(V +

σ̃n
+L̃+

n)−(V −

σ̃n
+L̃−

n)
](
− 1

2 t̃n
)
.

As n → ∞ , ∣∣B′
n

(
− 1

2
t̃n

)∣∣ → 2 and C̃n → +∞,

and therefore

‖(V +
σn

+ L+
n) − V −

σn
+ L−

n)‖∞

tn
≥

1

4

∣∣∣∣B
′
n

(
−

t̃n
2

)∣∣∣∣
t̃n
tn

C̃n → +∞,

which contradicts with the condition (11). This completes the proof of suffi-
ciency.

4. Counterexamples

In this section we first give an example of a Zygmund unbounded vector field
V on S1 which can be well approximated by its linear approximations on binary
points. Then we show that neither the condition (12) nor the condition (13) on the
approximations of V is sufficient by itself to imply that V is Zygmund bounded.
For simplicity, we will construct such examples of V on the real line.

Proposition 3. There exists a Zygmund unbounded continuous function on
R which can be approximated as well as in (12) by its piecewise linear approxi-
mations on binary points.
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Proof. For each n ∈ N , define

(29) fn(x) =

{
1

2n
−

∣∣∣∣x −
1

2n

∣∣∣∣ for

∣∣∣∣x −
1

2n

∣∣∣∣ ≤
1

2n
,

0 otherwise.

Let V =
∑∞

n=1 fn , Sn = {k/2n : k ∈ Z} and S =
⋃∞

n=0 Sn . Suppose that Vn is
the piecewise linear approximation of V on Sn . Then

‖V − Vn‖∞ ≤

∞∑

k=n+1

1

2k
=

1

2n
.

This means that V can be approximated by Vn ’s as well as in (12). On the other
hand, ∣∣V (0) − 1

2

(
V (−tn) + V (tn)

)∣∣
tn

=
V (tn)

tn
= n → ∞

as n → ∞ , where tn = 1/2n . Hence V is not Zygmund bounded.

Proposition 4. There is a Zygmund unbounded continuous function V on
R and an infinite sequence {(σn, Ln)}∞n=1 of earthquake measures σn supported
on the laminations Ln consisting of finitely many geodesics such that

(i) for each n and each geodesic ab ∈ Ln , |a − b| ≥ 1/2n ;
(ii) for each n , Ln ⊂ Ln+1 ; and
(iii) ‖V − Vσn

‖∞ ≤ C/2n for a constant C > 0 independent of n .

Proof. Let L be the lamination consisting of all geodesics ln connecting the
origin to 1/2n for all n ∈ {0} ∪N and assume the earthquake measure σ has the
weight 1 on each geodesic in L .

For each n ∈ N , let Ln be the lamination consisting of all geodesics ab ∈ L

with |a − b| ≥ 1/2n and σn be the restriction of σ on Ln .
Let V = V +

σ and Vn = V +
σn

. By the norm-equivalence theorem, Vn is a

Zygmund bounded vector field on R for each n ∈ N since ‖σn‖Th < n . It is easy
to see that V (x) is continuous at any x 6= 0; and the continuity of V (x) at x = 0
is implied by the following that

0 < V

(
1

2n

)
≤

n

2n
→ 0 as n → ∞ .

Now we estimate ‖V − Vn‖∞ . Clearly, for each k ∈ {0} ∪ N , ‖Vσ|lk
‖∞ =

1
4 (1/2k). Then

|V (x) − Vn(x)| =

∣∣∣∣
∞∑

k=n+1

Vσ|lk
(x)

∣∣∣∣ ≤
∞∑

k=n+1

‖Vσ|lk
‖∞ =

1

4

∞∑

k=n+1

1

2k
=

1

4

1

2n
.
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Hence

(30) ‖V − Vn‖∞ ≤
C

2n

for a constant C > 0 independent of n .
It remains to check that V is not Zygmund bounded. This is true because of

the norm-equivalence theorem for general earthquakes in the next section, or we
can prove it as follows.

By the norm-equivalence theorem for finite earthquakes, ‖Vn‖cr → ∞ since
‖σn‖Th = n → ∞ as n → ∞ . From (30), we can show ‖V ‖cr = ∞ .

The same example constructed in the proof of the previous proposition implies

Proposition 5. There exists a Zygmund unbounded continuous function V
on R and an infinite sequence {(σn, Ln)}∞n=1 of earthquake measures supported
on the laminations Ln consisting of finitely many geodesics such that

(1) for each n and each geodesic ab ∈ Ln , |a − b| ≥ 1/n ;
(2) for each n , Ln ⊂ Ln+1 ; and
(3) ‖V − Vσn

‖∞ ≤ C/n for a constant C > 0 independent of n .

Proof. We use the same notation in the proof of the previous proposition
except we let Ln be the lamination consisting of all geodesics ab ∈ L with
|a − b| ≥ 1/n and σn be the restriction of σ on Ln . We only need to check

‖V − Vn‖∞ ≤
C

n

for a constant C > 0 independent of n .
For each n ∈ N , there exists m ∈ N such that 2m−1 ≤ n < 2m . Then

|V (x) − Vn(x)| =

∣∣∣∣
∞∑

k=m

Vσ|lk
(x)

∣∣∣∣ ≤
∞∑

k=m

‖Vσ|lk
‖∞ =

1

4

∞∑

k=m

1

2k
=

1

2m+1
<

1

2

1

n
.

This implies the previous inequality.

5. Nested laminations

In our main theorem the supporting geodesics of σ+
m (resp. σ−

m ) have no
relation with the supporting geodesics of any other σ+

n (resp. σ−

n ). In this section
we introduce a method to approximate uniformly Zygmund bounded vector fields
on S1 by finite sums of parabolic bump functions in such a way that the supports
of the measures are increasing sequences of nested sets.

A geodesic lamination L in the hyperbolic plane D is a collection of geodesics
which foliate a closed subset L of D . Here L is called the locus of L , the geodesics
are called the leaves of L , the connected components of D\L are called the gaps,
and the gaps and the leaves of L are called the strata of L .
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Let S1 denote the boundary circle of D , and X the space S1 × S1 \ {the
diagonal} factorized by the equivalence relation (a, b) ∼ (b, a). A Borel measure
σ defined on X is called an earthquake measure if there is a lamination L such
that σ is supported on the pairs of the endpoints of the leaves in L .

The Thurston norm of an earthquake measure σ can be defined as the same
as the Thurston norm of finite earthquake measures in Section 2. More precisely,
for any closed hyperbolic geodesic segment β in D of hyperbolic length ≤ 1, let
l1 and l2 be the two geodesics which bound all geodesics in L intersecting β
and suppose the stripe S bounded by l1 and l2 in the unit disk is of the form
[a, b]× [c, d] , where a, d and b, c are the endpoints of l1 and l2 , respectively, and
a, b, c, d are arranged on S1 in the counterclockwise order. Denote by

σ(β) = σ([a, b]× [c, d]).

The Thurston norm of σ is defined to be

(31) ‖σ‖Th = sup
l(β)≤1

σ(β) = sup
l(β)=1

σ(β),

where β is a closed geodesic segment transversal to L and l(β) denotes the
hyperbolic length of β . Let M be the collection of all earthquake measures
defined on X . Any measure σ ∈ M is called Thurston bounded if it has finite
Thurston norm.

Given σ ∈ M , also denote by

(32) Vσ(x) = E(σ)(x) =

∫∫
Eab(x) dσ(a, b),

where Eab(x) =
(
(x − a)(x − b)

)
/(a − b) if x ∈ [a, b] , and otherwise Eab(x) = 0.

Then Vσ defines a tangent vector field on S1 . The following two theorems hold
in general.

Infinitesimal earthquake theorem ([1]). If σ is Thurston bounded then
Vσ is Zygmund bounded; conversely, for any Zygmund bounded tangent vector
field V on S1 , there exists a Thurston bounded earthquake measure σ such that

(33) V (x) = π

∫∫
Eab(x) dσ(a, b) modulo a quadratic polynomial;

and furthermore, if two V ’s differ by a quadratic polynomial then the correspond-
ing σ ’s are the same.

Norm-equivalence theorem ([4] or [5]). There exists a universal constant
C > 0 such that for any earthquake measure σ ,

1

C
‖σ‖Th ≤ ‖Vσ‖cr ≤ C‖σ‖Th.

Remark. There is an analogue of the norm-equivalence theorem for earth-
quake measures and the boundary homeomorphisms of the corresponding earth-
quake maps. This work was initiated in [2] and completed in [6].

In what follows, we show the following theorem.
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Theorem 2. Let σ be a Thurston bounded earthquake measure. Then there
exists an infinite sequence {(σn, Ln)}∞n=1 of earthquake measures satisfying :

(i) σn ’s are uniformly Thurston bounded;

(ii) for each n , Ln consists of finitely many geodesics in L and for each
geodesic ab in Ln , |a − b| ≥ 1/n , where a and b denote the endpoints of ab ;

(iii) L1 ⊂ L2 ⊂ L3 ⊂ · · · ⊂ Ln ⊂ · · · ⊂ L ; and

(iv) there exists a constant C > 0 such that for all n ,

‖Vσ − Vσn
‖∞ ≤

C

n
.

Remark. The subsequence {σ2k , L2k}∞k=1 of {σn, Ln}
∞
n=1 in the previous

theorem satisfies

‖Vσ − Vσ
2k
‖∞ ≤

C

2k

for any integer k ≥ 1.

We divide the proof into two steps. In the first step, let L ′ be the lamination
obtained from L by deleting the short geodesics (in the Euclidean metric) and
σ′ be the restriction of σ on L ′ , we show that Vσ differs from Vσ′ by an amount
commensurable to the maximal Euclidean length of the deleted geodesics. In the
second step, we show that σ′ can be approximated by measures σ′′ supported
on finitely many geodesics such that Vσ′ differs from Vσ′′ by an error as small as
required.

R
α (n)

 n

Figure 3. The lamination Rn .

For each n ∈ N , let Rn be the collection of the geodesics ab in L with
|a−b| < 1/n and Rn be the collection of the geodesics ab in L with |a−b| ≤ 1/n .

For each n , Rn can be written as a disjoint union of subcollections R
α(n)

n of Rn

satisfying that for each R
α(n)

n there exists a geodesic ab ∈ R
α(n)

n such that any

geodesic in Rn connecting a point in [a, b] to a point in [a, b] belongs to R
α(n)

n ,
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where [a, b] denote the shorter arc on S1 bounded by the endpoints of ab . Assume

R
α(n)
n =R

α(n)

n ∩ Rn . Clearly,

Rn =
⋃

α(n)

R
α(n)

n and Rn =
⋃

α(n)

R
α(n)
n .

Let σ̄α(n) be the restriction of σ on R
α(n)

n and σα(n) be the restriction of σ on

R
α(n)
n . Let Vσα(n) = E(σα(n)).

Lemma 4. There exists a constant C > 0 only depending on ‖σ‖Th such
that

‖Vσα(n)‖∞ ≤
C

n
.

Proof. Let Vα(n) = Vσ̄α(n) = E(σ̄α(n)) and ab be the unique geodesic in R
α(n)

n

such that any geodesic in R
α(n)

n connecting a point in [a, b] to a point in [a, b] .
Clearly,

‖Vσα(n)‖∞ ≤ ‖Vσ̄α(n)‖∞ = ‖Vα(n)‖∞.

Therefore we only need to show

‖Vα(n)‖∞ ≤
C

n

for a constant C > 0.
For any x /∈ (a, b), Vα(n)(x) = 0. For any x ∈ (a, b), let y be the point on S1

such that y, a, x, b are on S1 in the counter-clockwise order and cr({y, a, x, b}) = 1.
Let Q = {y, a, x, b} . Since Vα(n)(y) = Vα(n)(a) = Vα(n)(b) = 0,

Vα(n)[Q] = −
Vα(n)(x)

x − a
−

Vα(n)(x)

b − x
= −Vα(n)(x)

b − a

(x − a)(b − x)
.

Hence

|Vα(n)(x)| = |Vα(n)[Q]|
(x − a)(b − x)

b − a
≤ ‖Vα(n)‖cr

b − a

4
.

Since ‖σα(n)‖Th ≤ ‖σ‖Th , by the norm-equivalence theorem,

‖Vα(n)‖∞ ≤ ‖Vα(n)‖cr
b − a

4
≤ C‖σ‖Th

b − a

4
≤

C‖σ‖Th

4

1

n
.

It completes the proof.

Now let L̃ n = L \Rn , that is the collection of the geodesics l = ab in L with

|a − b| ≥ 1/n , and let σ̃n be the restriction of σ on L̃ n . Assume Vσ̃n
= E(σ̃n).
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Proposition 6. We obtain the inequality

‖Vσ − Vσ̃n
‖∞ ≤

C

n
.

Proof. For each point x ∈ S1 and each n ∈ N , there exists α(n) such that

Vσ(x) − Vσ̃n
(x) = Vσα(n)(x).

By the previous lemma,

|Vσα(n)(x)| ≤ ‖Vσα(n)‖∞ ≤
C

n
.

It implies the proposition.

Now we start to do the second step.
Given a lamination L , two geodesics l1 and l2 in L are said to be simply

parallel to each other with respect to L if any other geodesic l of L contained
in the stripe between l1 and l2 separates l1 and l2 . Simply parallel geodesics
have the reflexive, symmetric and transitive properties. Given each geodesic l in
L , there is a unique maximal collection Ll of the geodesics which are simply
parallel to l with respect to L . Since the locus of L is a closed subset in the
hyperbolic plane, the locus of Ll is also so. Maximal collections of simply parallel
geodesics with respect to a lamination are pairwise disjoint. Laminations without
short geodesics in Euclidean metric have the following property.

Figure 4. The lamination Ln .

Lemma 5. With respect to each lamination L̃ n , there are only finitely many
maximal collections of simply parallel geodesics.
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Proof. For each n , the lamination L̃ n has no geodesic ab with |a−b| < 1/n .

Arguing by contradiction, one can show that L̃ n has only finitely many maximal
collections of simply parallel geodesics.

One easily obtains the following two elementary lemmas.

Lemma 6. Let a < a′ < b′ < b be four points on the real line. Then

‖Eab − Ea′b′‖∞ → 0

as a → a′ and b′ → b .

Lemma 7. Let L be a collection of simply parallel geodesics in the upper
half plane and σ a measure supported on L . Suppose that a < a′ < b′ < b and
all geodesics of L are contained in the strip between the geodesics connecting a
to b and a′ to b′ respectively. Then for each x on R ,

σ(L )Ea′b′(x) ≤ Vσ(x) ≤ σ(L )Eab(x)

and then
‖Vσ − σ(L )Eab‖∞ ≤ σ(L )‖Eab − Ea′b′‖∞.

Lemmas 5, 6 and 7 imply

Proposition 7. For each n and any εn > 0 , there exists an earthquake
measure σn supported on a finite sublamination Ln of L̃ n such that ‖σn‖Th ≤
2‖σn‖Th and

‖Vσ̃n
− Vσn

‖∞ < εn.

Proof. For each n , let L̃
i

n , i = 1, 2, . . . , k(n), be the maximal collections of

simply parallel goedesics with respect to L̃ n . Let σ̃i
n be the restriction of σ̃n on

L̃
i

n for each 1 ≤ i ≤ k(n). Then

Vσ̃n
=

k(n)∑

i=1

Vσ̃i
n
.

For each i , we construct a finite earthquake measure (L i
n, σi

n) as follows.

Let la and lb be the two geodesics in L̃
i

n such that the strip between them

contains all geodesics in L̃
i

n . Without loss of generality, we may assume la 6= lb .
Let L i

n = {l1 = la, l2, l2, . . . , lm = lb} be a collection of finitely many geodesics

contained in L̃
i

n in order. We construct σi
n by defining σi

n(lk) to be σ̃i
n(lk) plus

the measure of the geodesics of L̃
i

n contained in the open strip between lk and

lk+1 for 1 ≤ k ≤ m− 1 and σi
n(lm) = σ̃i

n(lm). Since the total σ̃i
n -measure of L̃

i

n
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is finite, by Lemmas 6 and 7, for an arbitrary small ε(i) > 0, there exists a finite
earthquake measure (L i

n, σi
n) constructed as the same as the above such that

‖Vσ̃i
n
− Vσi

n
‖∞ < ε(i).

Let Ln =
⋃k(n)

i=1 L i
n and σn =

∑k(n)
i=1 σi

n . It is easy to see that ‖σn‖Th ≤ 2‖σ̃n‖Th .
Given any εn > 0, let ε(i) < εn/k(n). Then

‖Vσ̃n
− Vσn

‖∞ =

k(n)∑

i=1

‖Vσ̃i
n
− Vσi

n
‖∞ < εn.

Furthermore, we obtain

Proposition 8. There exists an infinite sequence {(σn, Ln)}∞n=1 of earth-
quake measures such that for each n ∈ N ,

(i) Ln is a finite subset of L̃ n and ‖σn‖Th ≤ 2‖σ̃n‖Th ,
(ii) Ln ⊂ Ln+1 , and
(iii) ‖Vσ̃n

− Vσn
‖∞ ≤ 1/n .

Proof. The condition (i) is obviously satisfied, and the previous proposition
implies the condition (iii) by letting εn = 1/n . It remains to show how one can
construct Ln+1 from Ln such that Ln ⊂ Ln+1 .

We divide the maximal collections L̃
j

n+1 of simply parallel geodesics with

respect to L̃ n+1 into two groups. The group I consists of the collections L̃
j(I)

n+1

which overlaps maximal collections L̃
i

n of simply parallel geodesics with respect to

L̃ n , and the group II consists of the collections L̃
j(II)

n+1 which do not overlap any

maximal collection L̃
i

n of simply parallel geodesics with respect to L̃ n . Clearly,

k(n)⋃
i=1

L̃
i

n ⊂
⋃

j(I)

L̃
j(I)

n+1.

Following the procedure in the construction of (Ln, σn) in the previous propo-
sition, for any small ε(I) > 0, we can have a finite earthquake measure σI

n+1

supported on a finite lamination L I
n+1 which is a refinement of Ln such that

(34) ‖Vσ̃I
n+1

− VσI
n+1

‖∞ < ε(I),

where σ̃I
n+1 is the measure σ̃n+1 restricted on

⋃
j(I) L̃

j(I)

n+1 .

Let σ̃II
n+1 be the restriction of σ̃n+1 on

⋃
j(ii) L̃

j(II)

n+1 . Repeating the same pro-

cedure in the construction of (Ln, σn) for
(⋃

j(II) L̃
j(II)

n+1 , σ̃II
n+1

)
, for any ε(II) >

0, we can obtain a finite earthquake measure (L II
n+1, σ

II
n+1) such that

(35) ‖Vσ̃II
n+1

− VσII
n+1

‖∞ < ε(II).
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Let Ln+1 = L I
n+1 ∪ L II

n+1 and σn+1 = σI
n+1 + σII

n+1 . Clearly, Ln+1 ⊃
Ln . With the same reason to see ‖σn‖Th ≤ 2‖σ̃n‖Th , we also have ‖σn+1‖Th ≤
2‖σ̃n+1‖Th . Given any εn+1 > 0, let ε(I) = ε(II) = 1

2εn+1 . By (34) and (35), we
obtain

‖Vσ̃n+1
− Vσn+1

‖∞ <
1

n
.

It completes the proof.

Let εn = 1/n . Then Propositions 6, 7 and 8 imply our Theorem 2.

References

[1] Gardiner, F.P.: Infinitesimal bending and twisting in one-dimensional dynamics. -
Trans. Amer. Math. Soc. 347(3), 1995, 915–937.

[2] Gardiner, F.P., J. Hu and N. Lakic: Earthquake curves. - Contemp. Math. 311, 2002,
141–196.

[3] Gardiner, F.P., and N. Lakic: Quasiconformal Teichmüller Theory. - Amer. Math.
Soc., Providence, RI, 2000.

[4] Hu, J.: On a norm of tangent vectors to earthquake curves. - Adv. Math. Sinica 33:4,
2004, 401–414.

[5] Hu, J.: Norms on earthquake measures and Zygmund functions. - Proc. Amer. Math. Soc.
133, 2005, 193–202.

[6] Hu, J.: Earthquake measure and cross-ratio distortion. - Contemp. Math. 355, 2004, 285–
308.

[7] Jackson, D.: On approximation by trigonometric sums and polynomials. - Trans. Amer.
Math. Soc. 13, 1912, 491–515.

[8] Lorentz, G.G.: Approximation of Functions. - Holt, Rinehart and Wilson, Inc., New
York, 1966.

[9] Thurston, W.P.: Earthquakes in two-dimensional hyperbolic geometry. - In: Low-di-
mensional Topology and Kleinian Groups 112, London Math. Soc., 1986, 91–112.

[10] Zygmund, A.: Smooth functions. - Duke Math. J. 12, 1945, 47–76.

[11] Zygmund, A.: Trigonometric Series. - Volumes 1 and 2, 2nd edition. Cambridge University
Press, Cambridge, 1959.

Received 27 April 2004


