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Abstract. A domain G in a Banach space is said to be δ -hyperbolic if it is a Gromov
δ -hyperbolic space in the quasihyperbolic metric. Then G has the Gromov boundary ∂∗G and
the norm boundary ∂G . We show that the following properties are quantitatively equivalent: (1)
G is C -uniform. (2) G is δ -hyperbolic and there is a natural bijective map G ∪ ∂∗G → G ∪ ∂G ,
which is η -quasimöbius rel ∂∗G . (3) G is δ -hyperbolic and there is a natural η -quasimöbius
homeomorphism ∂∗G → ∂G . In a euclidean space, this improves a result of Bonk–Heinonen–
Koskela, whose estimates depend on dimension and on a base point.

1. Introduction

Let E be a real Banach space and let G  E be a domain (open connected
nonempty set). We say that G is δ -hyperbolic, δ ≥ 0, if G is a δ -hyperbolic
metric space in the sense of M. Gromov when equipped with the quasihyperbolic
metric kG , defined by the element of length |dx|/d(x, ∂G).

In a recent paper [BHK], M. Bonk, J. Heinonen and P. Koskela study, among
other things, relations between hyperbolic and uniform domains in R

n . They show
that the following properties are equivalent for a bounded domain G ⊂ R

n :
(1) G is C -uniform,
(2) G is δ -hyperbolic and there is a natural η -quasisymmetric homeomor-

phism between the Gromov boundary ∂∗G and the euclidean boundary ∂G of G ,
(3) G is δ -hyperbolic and c -linearly locally connected.
The terminology is recalled in Section 2. The metric dp,ε of ∂∗G in (2)

depends on a base point p ∈ G and on a real parameter ε , 0 < ε ≤ 1 ∧ (1/5δ).
The purpose of this paper is to study whether this result can be extended

from R
n to arbitrary Banach spaces. We show that in this general case, (1) and

(2) are still equivalent and that (1) implies (3). By an example we show that (3)
does not imply (1).

We also improve the result of [BHK] in two other directions:
(a) Instead of bounded domains we consider arbitrary domains. ([BHK] con-

siders arbitrary domains in the spherical metric.) The quasisymmetry must then
be replaced by quasimöbius. This has the further advantage that the result is
independent of the base point.
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(b) In (2), we get a natural bijective map between the Gromov closure G∗ =
G ∪ ∂G and the norm closure G, and this map is η -quasimöbius rel ∂∗G .

The main results are given in 2.12, 2.29 and 3.27. A summary with a precise
formulation of the quantitativeness of the results is given in 3.1. In particular, we
obtain a dimension-free version of the result (1) ⇔ (2) of [BHK].

The proof for (1) ⇒ (2) is a variation of the proof of the corresponding result
in [BHK]. On the other hand, the proof for (2) ⇒ (1) is entirely different. In
fact, the proof for this in [BHK] is definitely n -dimensional, as it makes use of the
modulus of a path family.

The metric space (G, kG) need not be geodesic, and it is not locally compact
if dimE = ∞ . Therefore we cannot directly make use of the theory of Gromov
hyperbolic spaces given in standard textbooks like [GdH] and [BH]. An exposition
of the basic theory of hyperbolic spaces in the more general setting is given in the
author’s article [Vä8].

It turns out that the lack of geodesics and local compactness is somewhat
inconvenient but not a real difficulty. The hard problem in general Banach spaces
compared with the euclidean space is the lack of Lebesgue measure and integration.
Balls have no volumes. If the proof of an n -dimensional result makes use of
volume or space integration, the proof of its Banach version (if true) requires a
new method.

On the other hand, line integrals are available, and the quasihyperbolic metric
of a domain can be defined as in R

n .
We prove that (1) ⇒ (2) in Section 2 and the converse in Section 3. In

Section 4 we give a counterexample proving that (3) 6⇒ (1). In Section 5 we give
a lower bound for the hyperbolicity constant of a domain.

2. Uniform domains are hyperbolic with a boundary condition

In this section we show that if G is a uniform domain, then G is hyperbolic
and there is a natural bijection G∗ → G, which is quasimöbius rel ∂∗G . The
result is given in 2.12 and 2.29.

2.1. Notation and terminology. Throughout the paper we assume that E is
a real Banach space with dimE ≥ 2. The norm of a point x ∈ E is written as |x| .

The basic notation is fairly standard and the same as in [Vä8]. We let R,Z,N
denote the sets of real numbers, integers and positive integers, respectively. Balls
and spheres in a metric space X are written as

B(a, r) = {x : |x− a| < r}, B(a, r) = {x : |x− a| ≤ r},
S(a, r) = {x : |x− a| = r}.

In a vector space, we may drop the center a if a = 0. More generally, if ∅ 6= A ⊂
X , we set

B(A, r) = {x ∈ X : d(x,A) ≤ r}.
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The distance between nonempty sets A , B is d(A,B), and the diameter of a set
A is d(A). If there is a symbol denoting the metric, say k , we use the notation
k(A,B) and k(A) for the distance and the diameter, and we may use the notation
Bk(a, r) etc. for balls and r -neighborhoods. In a vector space, [a, b] is the closed
line segment between points a and b , and [a, b) = [a, b] \ {b} .

We write α: x y y if α is an arc joining x and y . If needed, this notation
also gives an orientation for α from x to y . For an arc α , we let α[u, v] denote
the closed subarc of α between points u, v ∈ α , and for half open subarcs we write
α[u, v). Occasionally, we consider a singleton {x} as an arc α: x y x . For real
numbers s , t we set s ∧ t = min{s, t} , s ∨ t = max{s, t} . By an expression like
ab/cde we mean (ab)/(cde). To simplify expressions we often omit parentheses
writing fx = f(x) etc.

In hyperbolic spaces we use the terminology and notation given in [Vä8]. How-
ever, the general distance |x− y| will usually be replaced by the quasihyperbolic
distance k(x, y); see 2.7.

2.2. Quasihyperbolic metric. Let G ⊂ E be a domain. Without further
notice, we always assume that G 6= E . For x ∈ G we write d(x) = d(x, ∂G). The
quasihyperbolic length of a rectifiable arc α ⊂ G is defined by

lk(α) =

∫

α

|dx|
d(x)

,

and the quasihyperbolic distance between points x, y ∈ G is the number

(2.3) k(x, y) = kG(x, y) = inf{lk(α) | α: xy y, α ⊂ G}.

Then lk(α) is the length of α in the metric k ; see [BHK, A.7]. Hence the space
(G, k) is intrinsic, but it need not be geodesic; see [Vä6, 3.5]. We shall also
consider the norm distance |x− y| and the distance

j(x, y) = jG(x, y) = log

(

1 +
|x− y|

d(x) ∧ d(y)

)

.

We recall that always

log
d(x)

d(y)
≤ j(x, y) ≤ k(x, y);

see [Vä6, 3.7(1)]. These inequalities will be frequently used without special refer-
ence.
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2.6. Uniform domains. We recall two approaches to uniform domains: through
quasihyperbolic metric and through uniform arcs.

Let C ≥ 1. A domain G is quasihyperbolically C -uniform or briefly QH
C -uniform if k(x, y) ≤ Cj(x, y) for all x, y ∈ G .

An arc α: xy y in G is C -uniform in G if
(1) l(α[x, z]) ∧ l(α[z, y]) ≤ Cd(z) for all z ∈ α (cigar condition),
(2) l(α) ≤ C|x− y| (turning condition).

The domain G is C -uniform if each pair of points in G can be joined by a C -
uniform arc in G .

The properties C -uniform and QH C -uniform are quantitatively equivalent;
see [Vä6, 10.17].

2.5. Quasiconvexity and quasigeodesics. A metric space is c -quasiconvex if
each pair of points x, y can be joined by an arc with length at most c|x− y| . An
arc α in a domain G is a c -quasigeodesic in G if it is c -quasiconvex in the quasi-
hyperbolic metric, that is, lk(α[x, y]) ≤ ck(x, y) for all x, y ∈ α . Quasigeodesics
have been called neargeodesics in my earlier papers.

The following results are from [Vä6, 9.4 and 10.9].

2.6. Lemma. (1) Let c > 1 and let x, y be points in a domain G . Then

there is a c -quasigeodesic α: xy y .

(2) A c -quasigeodesic in a C -uniform domain is a C1 -uniform arc with C1 =
C1(C, c) .

2.7. Hyperbolic domains. Let δ ≥ 0. We say that a domain G ⊂ E is
δ -hyperbolic if (G, k) is a δ -hyperbolic metric space. This means that

(2.8) (x | z)p ≥ (x | y)p ∧ (y | z)p − δ

for all x, y, z, p ∈ G , where (x | y)p is the Gromov product, defined by

2(x | y)p = k(p, x) + k(p, y) − k(x, y).

The constant δ cannot be arbitrarily close to 0; see 5.3.
We shall apply the theory of hyperbolic spaces given in [Vä8] to the space

(G, k). In doing so, one must replace the distance |x − y| and the length l(α)
by k(x, y) and lk(α); in the present paper |x− y| and l(α) denote distance and
length in the norm metric. An arc α: xy y in G is h -short, h ≥ 0, if

lk(α) ≤ k(x, y) + h.

Every subarc of an h -short arc is also h -short.
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I recall the standard estimate [Vä8, 2.33] for an h -short arc α: x y y in a
δ -hyperbolic domain G :

(2.9) k(p, α) − 2δ − h ≤ (x | y)p ≤ k(p, α) + h/2

for all p ∈ G .
If an arc α ⊂ G is an h -short 2-quasigeodesic, we briefly say that α is an

h -arc.

2.10. Lemma. Let h > 0 and let x and y be distinct points in a domain G .

Then there is an h -arc α: xy y .

Proof. Choose a c -quasigeodesic α: xy y with c = 2∧
(

1+h/k(x, y)
)

. Then
lk(α) ≤ ck(x, y) ≤ k(x, y) + h .

2.11. Examples. We show in 2.12 that every uniform domain is hyperbolic.
Since hyperbolicity is preserved by quasi-isometries [Vä8, 3.18], it follows that
every quasiconformal image of a uniform domain G ⊂ R

n is hyperbolic. In partic-
ular, every simply connected proper subdomain of the plane is δ -hyperbolic with
a universal constant δ .

Some examples of nonhyperbolic domains are:
(1) G = R

2 \ {ne1 : n ∈ Z} .
(2) G = {x ∈ R

3 : 0 < x3 < 1} .
(3) More generally, G = E1 × B2 ⊂ E = E1 × E2 , where E1 is a Banach

space of dimension at least two and B2 is a ball in E2 .

The following result is a free version of the first part of Theorem 3.6 of [BHK].
The proof is essentially the same.

2.12. Theorem. A C -uniform domain G ⊂ E is δ -hyperbolic with δ =
δ(C) .

Proof. Let A be the family of all 2-quasigeodesics in G . By 2.10 this family
satisfies the conditions in [Vä8, 2.26].

Let h > 0. By [Vä8, 2.34] it suffices to show that (G, k) is (δ, h,A )-Rips
with δ = δ(C). Let ∆ be an h -short triangle in G with sides α, β, γ in A and
with opposite vertices a, b, c . Let x ∈ γ . It suffices to show that

(2.13) k(x, α ∪ β) ≤ δ(C).

Set s = l(γ[a, x]) . We may assume that s ≤ l(γ[x, b]) . By Lemma 2.6(2), the
arcs α , β , γ are C1(C)-uniform in G . Hence

(2.14) 2s ≤ l(γ) ≤ C1|a− b| ≤ C1(|a− c| + |c− b|) ≤ C1

(

l(β) + l(α)
)

.
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We next show that there is a point y ∈ α ∪ β such that

(2.15) |x− y| ≤ 3s, d(y) ≥ s/2C2
1 .

Case 1. l(β) ≤ s/C1 . Now l(α) ≥ s/C1 by (2.14). Hence there is y ∈ α with
l(α[c, y]) = s/2C1 ≤ l(α[y, b]) . Then

|x− y| ≤ s+ l(β) + l(α[c, y]) ≤ s+ s/C1 + s/2C1 ≤ 3s.

Since α is C1 -uniform, we have d(y) ≥ l(α[c, y])/C1 = s/2C2
1 .

Case 2. l(β) ≥ s/C1 . Now we can choose y ∈ β with l(β[a, y]) = s/2C1 ≤
l(β[y, c]) . Then

|x− y| ≤ s+ s/2C1 ≤ 2s.

The second inequality of (2.15) follows as in Case 1.
Since γ is C1 -uniform, we have d(x) ≥ s/C1 . As G is QH C2 -uniform with

C2 = C2(C), these estimates yield

k(x, y) ≤ C2 log

(

1 +
|x− y|

d(x) ∧ d(y)

)

≤ C2 log

(

1 +
3s

s/2C2
1

)

= C2 log(1 + 6C2
1),

which implies (2.13).

2.16. Remark. A modification of the proof above shows that, more gener-
ally, all inner uniform domains are hyperbolic. A domain G is inner C -uniform if
each pair x, y ∈ G can be joined by an arc α satisfying the cigar condition 2.4(1)
and the inner turning condition

(2i) l(α) ≤ Cl(x, y) = C inf{l(γ) | γ: xy y, γ ⊂ G} .

A domain G is a C -John domain if each pair x, y ∈ G can be joined by an
arc α satisfying the cigar condition 2.4(1). Obviously

C -uniform ⇒ inner C -uniform ⇒ C -John.
The planar domain R

2 \{(x, 0) : x ≥ 0} is inner uniform but not uniform, and
R

2 \ {(n, 0) : n ∈ N} is a John domain but not inner uniform and not hyperbolic.

In the rest of this section, we show that if G is a uniform domain, we can
extend the identity map of G to a bijection between the Gromov closure and the
norm closure of G and that this map is quasimöbius rel boundary.

2.17. The one-point extension. Let X be a metric space and let ∞ be an
element not in X . The one-point extension of X is the set

Ẋ = X ∪ {∞}.
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The topology of Ẋ consists of all open sets in X and of all sets U containing ∞
such that Ẋ \ U = X \ U is closed and bounded in X . Then Ẋ is a Hausdorff
space, and the subspace X ⊂ Ẋ has its original topology. In fact, Ẋ is metrizable
but we do not need this fact. The space Ẋ is compact if and only if X is proper.

The one-point extension of a metric space was already considered by F. Haus-
dorff [Ha, p. 285] in 1914, but it is fairly seldom mentioned in the literature, except
for the case where Ẋ is compact, in which case it agrees with the familiar one-point
compactification.

2.18. Terminology and notation. We recall some theory from [Vä8, Section 5].
Let G ⊂ E be a δ -hyperbolic domain. We fix a base point p ∈ G and write

(x | y) = (x | y)p

for x, y ∈ G . A sequence x̄ = (xi) in G is a Gromov sequence if (xi |xj) → ∞ as
i, j → ∞ . Two Gromov sequences x̄ and ȳ are equivalent, x̄ ∼ ȳ , if (xi | yi) → ∞ .
We let x̂ denote the equivalence class containing x̄ . The set of equivalence classes
is the Gromov boundary ∂∗G of G , and G∗ = G ∪ ∂∗G is the Gromov closure

of G . The product (x | y) is extended to G∗ as in [Vä8, (5.8)]. Then the basic
inequality (2.8) holds for all x, y, z ∈ G∗ and p ∈ G . Moreover, (x | y) = ∞ if and
only if x = y ∈ ∂G .

Let

(2.19) 0 < ε ≤ 1 ∧ (1/5δ)

and write %p,ε(x, y) = %ε(x, y) = e−ε(x | y) for x, y ∈ G∗ with the convention
e−∞ = 0. To the function %p,ε we associate a function dp,ε = dε with

(2.20) dε ≤ %ε ≤ 2dε

as in [Vä8, (5.15)]. The function dε is a metametric of G∗ , that is, it satisfies the
axioms of a metric except that dε(x, x) may be positive. In fact, dε(x, y) = 0 if
and only if x = y ∈ ∂∗G . Hence dε defines a metric in ∂∗G .

The metametric dε defines a topology T ∗ in G∗ ; see [Vä8, 4.2]. In this
topology, the points of G are isolated, and a sequence x̄ in G converges to a
point a ∈ ∂∗G if and only if x̄ is a Gromov sequence and x̄ ∈ a .

The norm boundary ∂G and the norm closure G = G ∪ ∂G of G are taken
in the extended space Ė . Thus ∞ ∈ ∂G if and only if G is unbounded. We say
that a sequence x̄ in E converges in norm to a point b ∈ Ė if it converges to b
in the topology of Ė , that is, |xi − b| → 0 if b 6= ∞ and |xi| → ∞ if b = ∞ .

2.21. Natural maps. Suppose that G ⊂ E is a hyperbolic domain. Since
T ∗ |G is discrete, the identity map id: G → G is continuous from the topology
T ∗ to the norm topology. If it has a continuous extension ϕ: G∗ → G, we say
that ϕ is a natural map.
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2.22. Lemma. The natural map ϕ: G∗ → G exists if and only if every

Gromov sequence x̄ in G has a limit b(x̄) in norm. Moreover, ϕ(a) = b(x̄) ∈ ∂G
for each a ∈ ∂∗G and x̄ ∈ a .

Proof. If x̄ is a Gromov sequence in G , then x̄ converges to the equivalence
class x̂ in the topology T ∗ by [Vä8, 5.21]. If ϕ exists, then xi = ϕ(xi) → ϕ(x̂)
in Ė .

Conversely, assume that each Gromov sequence x̄ has a limit b(x̄) in Ė .
Then k(xi, p) = (xi |xi) → ∞ , whence b(x̄) ∈ ∂G . If x̄ and ȳ are equivalent
Gromov sequences, then z̄ = (x1, y1, x2, y2, . . .) is a Gromov sequence, and thus
b(x̄) = b(z̄) = b(ȳ). Setting ϕ(x̂) = b(x̄) we therefore obtain a well-defined
continuous extension ϕ: G∗ → G of id.

2.23. Remark. If ϕ exists, it defines a continuous map ψ from the metric
space ∂∗G into the set ∂G ⊂ Ė . Also ψ is called a natural map.

2.24. Some constants. In the study of a C -uniform domain, we let C1, C2, . . .
denote constants Cj ≥ C depending only on C . By the results mentioned in 2.4
and 2.6, we can fix constants C1 and C2 such that if G is C -uniform, then

(1) every 2-quasigeodesic in G is a C1 -uniform arc,
(2) G is QH C2 -uniform, that is,

k(x, y) ≤ C2j(x, y) = C2 log

(

1 +
|x− y|

d(x) ∧ d(y)

)

for all x, y ∈ G .
One can choose C2 = 4C2 by [BHK, (2.16)].
Furthermore, we fix a constant δ1 = δ1(C) such that every C -uniform domain

is δ1 -hyperbolic; see 2.12.
The notation C1 , C2 , δ1 will be fixed for the rest of this section.

2.25. Lemma. Suppose that G is a C -uniform domain and that a ∈ ∂G .

Then (x | y) → ∞ as x, y → a in G in the topology of Ė .

Proof. Assume first that a 6= ∞ . Fix h = 1, let r > 0, and let x, y ∈
B(a, r)∩G . Choose an h -arc α: xy y and let z ∈ α . By (2.9) it suffices to find
an estimate k(p, z) ≥M(r) → ∞ as r → 0. We have

d(z) ≤ |z − a| ≤ |z − x| + |x− a| ≤ C1|x− y| + r ≤ (2C1 + 1)r,

which implies that

k(p, z) ≥ log
d(p)

d(z)
≥ log

d(p)

(2C1 + 1)r
= M(r).
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Next assume that a = ∞ . By translation we may assume that p = 0. Let
R > 0 and let x, y ∈ G \ B(R). Choose again an h -arc α: x y y and let z ∈ α .
Now we need an estimate k(p, z) ≥M(R) → ∞ as R → ∞ .

Fix a point b ∈ ∂G \ {∞} and let R > C1|b| . We have

R− |z| ≤ |z − x| ∧ |z − y| ≤ C1d(z) ≤ C1|z − b| ≤ C1|z| + C1|b|,
whence |z| ≥ (R − C1|b|)/(1 + C1). Since k(p, z) ≥ log

(

1 + |z|/d(p)
)

, this gives
the desired estimate.

2.26. Proposition. If G is a C -uniform domain, then the natural map

ϕ: G∗ → G exists and is bijective. Moreover, a sequence x̄ in G converges to

a ∈ ∂G in norm if and only if x̄ is a Gromov sequence with ϕ(x̂) = a .

Proof. By translation we may assume that p = 0. Let x̄ be a Gromov
sequence in G . We show that x̄ converges in norm. By 2.22, this will imply that
ϕ exists.

Case 1. x̄ is bounded. We show that x̄ is Cauchy in the norm metric. Assume
that rij = |xi − xj | > 0, let h > 0, and choose an h -arc α: xi y xj . Let z ∈ α
be the point with l(α[xi, z]) = rij/2. Then d(z) ≥ rij/2C1 . Choose M > 0 such
that |xi| ≤M for all i . Since |z − xi| ≤ rij/2 ≤M , we have

|z| ≤ |z − xi| + |xi| ≤ 2M.

By (2.9) we obtain

(xi |xj)−h/2 ≤ k(p, z) ≤ C2 log

(

1+
|z|

d(p) ∧ d(z)

)

≤ C2 log

(

1+
2M

d(p) ∧ (rij/2C1)

)

.

Since (xi |xj) → ∞ as i, j → ∞ , this implies that rij → 0, whence x̄ is Cauchy.

Case 2. x̄ is unbounded. We show that |xi| → ∞ . If this is not true, then
there is R > 0 such that |xi| ≤ R for infinitely many i . Let α: xi y xj be an
h -arc as in Case 1, where i < j , |xi| ≤ R and |xj| ≥ 3R . Pick a point z ∈ α with
|z| = 2R . Then d(z) ≥ R/C1 by uniformity, whence

k(p, α) ≤ k(p, z) ≤ C2 log

(

1 +
2R

d(p) ∧ (R/C1)

)

= K.

By (2.9) this yields (xi |xj) ≤ K + h/2. As x̄ is a Gromov sequence, this gives a
contradiction.

We have proved that the natural map ϕ: G∗ → G exists.
To show that ϕ is injective, let x̄ and ȳ be Gromov sequences with ϕ(x̂) =

ϕ(ŷ) = a . Then (xi | yi) → ∞ by 2.25, and hence x̂ = ŷ .
Finally, let a ∈ ∂G and choose a sequence x̄ in G converging to a in norm.

By 2.25 we have (xi |xj) → ∞ as i, j → ∞ . Thus x̄ is a Gromov sequence and
ϕ(x̂) = a , whence ϕ is surjective.

The last statement of the lemma follows from the proof.
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2.27. Notation. In view of 2.26, we simplify the notation by writing ϕx = x
for x ∈ ∂∗G if G is a uniform domain.

2.28. Quasimöbius maps in the extended space. Let X be a metric space
and let Q = (x, y, z, w) be a quadruple in Ẋ = X ∪ {∞} with x 6= z , y 6= w . For
finite points, the cross ratio of Q is defined by

crQ =
|x− y| |z − w|
|x− z| |y − w|

as in [Vä8, 4.5]. If one of the points is ∞ , the cross ratio crQ is defined by
deleting the distances containing ∞ . For example, cr(x, y, z,∞) = |x−y|/|x− z| .

The definition of quasimöbius maps and its relative version (see [Vä8, 4.8])
can now be extended in an obvious manner to the case where the spaces may
contain the point ∞ . One could consider extended metametric spaces but they
are not needed, because the metametric space (G∗, dp,ε) is bounded.

We are ready to formulate the second main result of this section; cf. [BHK,
3.6].

2.29. Theorem. Suppose that G is a C -uniform domain. Then the natural

bijective map ϕ: G∗ → G, which exists by 2.26, is η -quasimöbius rel ∂∗G with

respect to the metametric dp,ε of G∗ and the norm metric of G where 0 < ε ≤
ε0(C) . The function η depends only on C and ε but not on p .

We first give a version of [BHK, 3.14].

2.30. Lemma. Suppose that G is a C -uniform domain. Let a, b, z ∈ G
with |a− b| = s > 0 and |z − a| ≥ 2s . Let h > 0 and let α: z y a and β: ay b
be h -arcs. Define a point y ∈ α by l(α[y, a]) = s . Then

(a) k(y, β) ≤ C3 ,

(b) k(z, β) − C3 ≤ k(z, y) ≤ k(z, β) + C4 + h .

The constants C3 and C4 depend only on C .

Proof. The first inequality of (b) follows from (a). It remains to prove (a)
and the second inequality of (b).

Let x ∈ β be the point bisecting the length of β . Recall the constants C1 ,
C2 from 2.24. Since α and β are C1 -uniform, we have d(x)∧d(y) ≥ s/2C1 . Since
|x− y| ≤ |x− a| + |a− y| ≤ C1s+ s , we get

k(x, y) ≤ C2 log
(

1 + 2C1(C1 + 1)
)

= C3,

which proves (a).
To prove (b) assume that u ∈ β . We must find an estimate

(2.31) k(z, y) ≤ k(z, u) + C4 + h.

Case 1. l(β[a, u]) ∧ l(β[u, b]) ≥ s/2. Now d(u) ≥ s/2C1 , |u − y| ≤ C1s + s ,
and we obtain an estimate k(u, y) ≤ C3 as above. This implies (2.31).
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Case 2. l(β[a, u]) ∧ l(β[u, b]) ≤ s/2. Choose an h -arc γ: z y u . Then

l(γ) ≥ |u− z| ≥ |a− z| − s− |b− u| ∧ |a− u| ≥ 2s− s− s/2 = s/2.

Choose a point u′ ∈ γ with l(γ[u, u′]) = s/4. Then d(u′) ≥ s/4C1 . Since

|u′ − y| ≤ |u′ − u| + |u− a| + |a− y| ≤ s/4 + C1s+ s ≤ 3C1s,

we get
k(u′, y) ≤ C2 log(1 + 12C2

1 ) = C4.

As γ is h -short, this implies that

k(z, u) ≥ k(z, u′) − h ≥ k(z, y) − k(u′, y) − h ≥ k(z, y) − C4 − h,

which is (2.31).

2.32. Definition. A homeomorphism f : G → G′ between domains G and
G′ is M -quasihyperbolic if f is M -bilipschitz in the quasihyperbolic metrics of G
and G′ .

2.33. Inversion. For a Banach space E , the inversion of E (in the unit
sphere) is the map u: Ė → Ė , defined by u(x) = x/|x|2 for 0 6= x 6= ∞ , u(0) = ∞ ,
u(∞) = 0. Then u is a homeomorphism with u−1 = u . We recall the following
properties of u :

(1) u is η -quasimöbius with η(t) = 81t , [Vä6, 6.22].
(2) For each domain G ⊂ E \ {0} , the map u1: G → uG defined by u is

M -quasihyperbolic with a universal constant M . This was proved with M = 36
in [Vä6, 5.14] and with M = 12 in [Vä4, 2.9].

(3) u maps each C -uniform domain G ⊂ E \ {0} onto a C ′ -uniform domain
with C ′ = C ′(C) ≥ C . This follows from (1) and from [Vä6, 10.22].

It follows from (3) and 2.12 that u maps each C -uniform domain G ⊂ E \{0}
onto a δ2 -hyperbolic domain, δ2 = δ2(C) = δ1(C

′) ≥ δ1(C). By (2) and by [Vä8,
5.38], u extends to a homeomorphism ū1: G

∗ → (uG)∗ , which is θ -quasimöbius in
the metametrics dε with arbitrary base points for all ε ≤ 1∧(1/5δ2) with θ = θC .

2.34. Proof of Theorem 2.29. Recall from 2.26 that the natural map ϕ: G∗ →
G is bijective and that ϕ∂∗G = ∂G . It suffices to show that the map ϕ−1: G→ G∗

is θ -quasimöbius rel ∂G with θ = θC,ε . As before, we write ϕx = x for x ∈ G∗ ,
and then G∗ = G as a set. Let Q = (a, b, c, w) be a quadruple of distinct points
in G with a, w ∈ ∂G . We want to find an estimate

(2.35) cr(Q, dp,ε) ≤ θ
(

cr(Q, norm)
)

,
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where θ(s) → 0 as s→ 0.
By 2.33 we may use translations and the inversion to normalize the situation

so that G is unbounded and w = ∞ . From 2.33(3) it follows that we can replace
C by a larger constant, still denoted by C , so that G is C -uniform after the
normalization. The domain G is δ1 -hyperbolic and we set ε0(C) = 1 ∧ (1/5δ1).
We show that (2.35) holds for 0 < ε ≤ ε0 .

Choose sequences (ai), (bi), (ci), (wi) in G converging in norm to a, b, c, w ,
respectively. If b ∈ G [or c ∈ G ], we choose bi = b [or ci = c ] for all i . By
2.26, these sequences converge also in the metametric dp,ε (to the same limits).
We may assume that for each i , the points ai, bi, ci, wi are distinct and that
|ai − bi| ∨ |ai − ci| ≤ |wi − ai|/2.

Writing
Qi = (ai, bi, ci, wi), di = dwi,ε, %i = %wi,ε

we have di(wi, x) = 1 for all x ∈ G, and cr(Qi, dp,ε) → cr(Q, dp,ε). Since
cr(Qi, dp,ε) ≤ 16 cr(Qi, di) by [Vä8, 5.28], we get by (2.20)

(2.36) cr(Qi, dp,ε) ≤ 16
di(ai, bi)

di(ai, ci)
≤ 32

%i(ai, bi)

%i(ai, ci)
= 32e−εµi ≤ 32e|µi|,

where µi = (ai | bi)wi
− (ai | ci)wi

. Setting ti = |ai− bi|/|ai− ci| , t = |a− b|/|a− c|
we have t = cr(Q, norm), and ti → t as i → ∞ . We want to get a lower bound
for µi .

Fix h = 1 and choose h -arcs αi: wi y ai , βi: ai y bi , γi: ai y ci . Let
y(bi) ∈ αi be the point chosen as in 2.30 where now a = ai , b = bi , z = wi ,
α = αi , β = βi , and let y(ci) ∈ αi be the corresponding point for ci . Since αi is
C1 -uniform, we have

(2.37) d
(

y(bi)
)

≥ |ai − bi|/C1, d
(

y(ci)
)

≥ |ai − ci|/C1.

We consider two cases.

Case 1. t ≥ 1. We may assume that ti ≥ 1/2 for all i . By (2.37) we have

d
(

y(bi)
)

∧ d
(

y(ci)
)

≥ |ai − ci|/2C1

for all i . Since

|y(bi) − y(ci)| ≤ |y(bi) − ai| + |ai − y(ci)| ≤ |ai − bi| + |ai − ci| ≤ 3|ai − bi|,

we get
k
(

y(bi), y(ci)
)

≤ C2 log(1 + 6C1ti).

By (2.9) and 2.30 we have

|µi| ≤ |k(wi, βi) − k(wi, γi)| + 2δ1 + 2h

≤
∣

∣k
(

wi, y(bi)
)

− k
(

wi, y(ci)
)
∣

∣ + C3 + C4 + 2δ1 + 3h.
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Since αi is h -short and since h = 1, it follows that

|µi| ≤ k
(

y(bi), y(ci)
)

+ C5 ≤ C2 log(1 + 6C1ti) + C5.

As i→ ∞ , this and (2.36) give (2.35) with θ(t) = 32 exp[C2 log(1 + 6C1t) + C5] .

Case 2. t < 1. We may assume that ti < 1 for all i . Applying (2.9) and 2.30
as in Case 1 we get

µi ≥ k
(

wi, y(bi)
)

− k
(

wi, y(ci)
)

− C3 − C4 − 2δ1 − 3h.

Since ti < 1, we have l
(

αi[y(bi), ai]
)

< l
(

αi[y(ci), ai]
)

by the definition of y
in 2.30. Hence the point y(ci) lies between wi and y(bi) on αi . As αi is 1-short,
it follows that µi ≥ k

(

y(bi), y(ci)
)

− C6 . Writing ri = |ai − a| we have

d
(

y(bi)
)

≤ |y(bi) − a| ≤ |y(bi) − ai| + ri ≤ |ai − bi| + ri.

As in Case 1 we have d
(

y(ci)
)

≥ |ai − ci|/C1 . Hence

k
(

y(ci), y(bi)
)

≥ log
d
(

y(ci)
)

d
(

y(bi)
) ≥ − log(C1ti + C1ri/|ai − ci|).

Here ri/|ai − ci| → 0 as i→ ∞ . Combining the estimates with (2.36) and letting
i→ ∞ yields (2.35) with θ(t) = 32eC6(C1t)

ε → 0 as t→ 0.

2.38. Bounded domains. A θ -quasimöbius map between bounded spaces
is η -quasisymmetric, and a relative version of this is also true; see [Vä6, 6.29].
However, we cannot choose η depending only on θ . In order to get a quantitative
result we must normalize the map in a suitable way; see [Vä6, 6.29 and 6.31].
These ideas and 2.29 give Theorem 2.39 below. An alternative proof is obtained
by modifying the proof of 2.29 as in [BHK, 3.6]. I omit the details.

2.39. Theorem. Suppose that G is a bounded C -uniform domain with a

base point p such that d(x) ≤ cd(p) for all x ∈ G . Then the natural bijective

map ϕ: G∗ → G, which exists by 2.26, is η -quasisymmetric rel ∂∗G with respect

to the metametric dp,ε of G∗ and the norm metric of G, where 0 < ε ≤ ε0(C) .
The function η depends only on (C, c, ε) .

2.40. An application to the free quasiworld. In the free quasiworld (see
[Vä6]) we study (with different terminology) domains G ⊂ E and G′ ⊂ E′ in
Banach spaces and homeomorphisms f : G → G′ that are (λ, µ)-quasi-isometries
in the quasihyperbolic metric, as well as some subclasses of these maps. If G and
G′ are C -uniform, then f extends to a homeomorphism f̄ : G → G′ , and f̄ is
η -quasimöbius rel ∂G with η depending only on (C, λ, µ); see [Vä6, 11.8].
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We remark that a new proof for this result is obtained by combining Theo-
rems [Vä8, 5.38] and 2.29. In fact, the extension f̄ is obtained, somewhat more
generally, for maps f that need not be homeomorphisms, only weakly surjective
in the sense of [Vä8, 5.32]. The induced map ∂G → ∂G′ will nevertheless be a
quasimöbius homeomorphism.

In [Vä5, Section 5] we considered domains of the type G = E1 × B2 in a
product space E1 × E2 , where B2 ⊂ E2 is a ball. If dimE1 ≥ 2, these domains
are not hyperbolic, but each homeomorphic (λ, µ)-quasi-isometry between such
domains still extends to a homeomorphism f̄ between the closures, and f̄ is η -
quasisymmetric rel ∂G with η depending on (λ, µ). I do not know whether this
result can be obtained with the aid of Gromov hyperbolicity.

Furthermore, since hyperbolicity is preserved by quasi-isometries [Vä8, 3.18],
it follows from 2.12 that there is no quasihyperbolic quasi-isometry from a uni-
form domain onto a nonhyperbolic domain, for example, from a ball onto a domain
between two parallel hyperplanes in a space of dimension at least three. In par-
ticular, these domains are not (freely) quasiconformally equivalent. Again, [Vä5,
Section 5] contains further results on domains G = E1 × B2 that do not directly
follow from the results of this paper.

3. Hyperbolic domains with a boundary condition are uniform

3.1. Introduction to Section 3. We proved in Section 2 that a C -uniform
domain G ⊂ E has the following properties:

(a) G is δ -hyperbolic.

(b) The natural map ϕ: G∗ → G exists and ϕ is bijective and η -quasimöbius
rel ∂∗G from the metametric dp,ε into the norm metric.

In this section we show that also the converse is true in the stronger form
where (b) is replaced by

(b ′ ) The natural map ϕ: G∗ → G exists and its restriction ψ: ∂∗G → ∂G is
bijective and η -quasimöbius.

These results are quantitative in the following sense:

If G is C -uniform, then (a) holds with δ = δ(C) and (b) holds for all p ∈ G ,
for all 0 < ε ≤ ε0(C) and for η depending only on C and ε .

If (b ′ ) holds, then G is C -uniform with C = C(δ, η, ε).

Observe that the result is independent of the base point p .
The case where E = R

n and G is bounded (or more generally, G is a domain
in Sn ) was proved in [BHK, 1.11 and 7.11] with C depending on δ, η, ε, n . How-
ever, in [BHK] the quasimöbius condition was replaced by quasisymmetry, and the
base point p had to be chosen so that d(p) is maximal. The proof in [BHK] made
use of the modulus of a path family, and it cannot be extended to general Banach
spaces. Our proof makes use of h -short arcs and (µ, h)-biroads in G as well as of
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the rough starlikeness of G . Several times we shall make use of the idea of [BHK]
to divide the points of a domain into annulus points and arc points.

As mentioned before, we assume throughout the paper that dimE ≥ 2. The
case dimE = 1 is trivial: A domain is an open interval (bounded or unbounded),
and each domain G 6= E is 1-uniform and 0-hyperbolic.

The main result is given in 3.27. We start with various auxiliary results.

3.2. Lemma. If α: x y y is a rectifiable arc in a domain G , then l(α) ≤
(elk(α) − 1)d(x) .

Proof. Set L = lk(α) and let ϕ: [0, L] → α be the parametrization of α by
quasihyperbolic length with ϕ(0) = x . Then d

(

ϕ(t)
)

≤ etd(x), whence

l(α) =

∫ L

0

d
(

ϕ(t)
)

dt ≤ (eL − 1)d(x).

We recall that a length map between arcs is a map preserving the length of
each subarc. For arcs in the space (G, k), such a map is called a quasihyperbolic

length map.
We next give an estimate for the change of ordinary length in a quasihyper-

bolic length map.

3.3. Lemma. Let α and β be arcs in a domain G with lk(α) ≤ lk(β) , and

let f : α→ β be a quasihyperbolic length map. If k(fx, x) ≤ c for all x ∈ α , then

e−cl(α) ≤ l(fα) ≤ ecl(α) .

Proof. We may assume that fα = β . By symmetry, it suffices to prove the
second inequality. Since

log
d(fx)

d(x)
≤ k(fx, x) ≤ c,

we have d(fx) ≤ ecd(x) for all x ∈ α . Set L = lk(α) = lk(β), and let ϕ: [0, L] → α
be the parametrization of α by quasihyperbolic length. Then

l(β) =

∫ L

0

d
(

fϕ(t)
)

dt ≤ ec

∫ L

0

d
(

ϕ(t)
)

dt = ecl(α).

The following basic result on the geometry of normed spaces is from [Sc,
Theorem 4J, p. 18]:

3.4. Theorem. Let E be a normed space with dimE ≥ 2 . Then every

sphere in E is 2 -quasiconvex.

We next study the behavior of an h -short arc in a domain containing a large
ring.
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3.5. Lemma. Suppose that α: x1 y x2 is an h -short arc with h ≤ 1/10 in

a domain G and that a ∈ ∂G .

(1) If B(a, 16t)\B(a, t/16) ⊂ G and if |xi−a| ≥ 8t , i = 1, 2 , then |z−a| > t
for all z ∈ α .

(2) If B(a, 7s) \B(a, s) ⊂ G and if |xi − a| ≤ 4s, i = 1, 2 , then |z− a| < 64s
for all z ∈ α .

Proof. (1) Assume that there is a point z ∈ α with |z−a| ≤ t . Choose points
u1, u2 ∈ α∩S(a, 8t) such that z ∈ α[u1, u2] . By 3.4, there is an arc β: u1 y u2 in
S(a, 8t) with l(β) ≤ 32t . For all x ∈ S(a, 8t) we have d(x) ≥ (8 − 1/16)t . Hence

k(u1, u2) ≤ lk(β) ≤ 32/(8 − 1/16) = 4.031 . . . .

On the other hand, |ui−z| ≥ 7t , d(z) ≤ |z−a| ≤ t , and we obtain the contradiction

k(u1, u2) ≥ k(u1, z) + k(z, u2) − h ≥ 2 log(1 + 7) − 1/10 = 4.058 . . . .

(2) Assume that z ∈ α and that |z − a| ≥ 64s . Choose u1, u2 ∈ S(a, 4s)
with z ∈ α[u1, u2] . Now 3.4 gives k(u1, u2) ≤ 16/3. Since |ui − z| ≥ 60s and
d(ui) ≤ |ui − a| = 4s , we get the contradiction k(u1, u2) ≥ 2 log(1 + 15)− 1/10 =
5.44 . . . .

3.6. Endcuts and crosscuts. Let G ⊂ E be a domain. An arc γ: ay b in G
is an endcut of G if γ∩∂G = {b} , and γ is a crosscut of G if γ∩∂G = {a, b} . Such
arcs are called c -quasigeodesics if lk(γ[u, v]) ≤ ck(u, v) for all u, v ∈ γ ∩ G . The
definition of a C -uniform arc (see 2.4) makes also sense for endcuts and crosscuts
with finite endpoints.

If dimE < ∞ , then each point x0 ∈ G can be joined to a nearest point
b ∈ ∂G by the segmental geodesic endcut [x0, b] . In the general case, a nearest
boundary point need not exist. However, there always exists a quasigeodesic end-
cut consisting of a sequence of line segments. This was proved in [Vä3, 3.10]. I
give a more precise formulation of this result in 3.9. In the proof, it is possible to
make use of the following result of [BHK]:

3.7. Lemma. Suppose that G is a domain and that α: ay b is a rectifiable

arc in G such that

(1) α \ {a, b} ⊂ G ,

(2) l(α[a, x])∧ l(α[x, b]) ≤ Cd(x) for all x ∈ α \ {a, b} ,

(3) α is c -quasiconvex in norm.

Then α is a c1 -quasigeodesic with c1 = 4cC .
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Proof. Let u, v ∈ α ∩ G and set α1 = α[u, v] . Then also α1 satisfies the
conditions of the lemma. By [BHK, (2.15) and (2.12)] we get

lk(α1) ≤ 4C log

(

1 +
l(γ)

d(u) ∧ d(v)

)

≤ 4C log

(

1 + c
|u− v|

d(u) ∧ d(v)

)

≤ 4Cck(u, v).

3.8. Remark. If the cigar condition (2) is replaced by the carrot condition

(2 ′ ) l(α[x, b]) ≤ Cd(x),
the proof of [BHK, (2.15)] shows that 3.7 holds with c1 = 2cC .

3.9. Proposition. Suppose that x0 is a point of a domain G , that 0 < s ≤
1/4 , and that a ∈ ∂G with |a−x0| < (1+ s/2)d(x0) . Let x1 be the unique point

in [x0, a] ∩ S
(

x0, d(x0)
)

. Then there is an endcut γ: x0 y b ∈ ∂G such that:

(1) l(γ) < (1 + s)d(x0) .
(2) γ ⊂ B

(

x0, (1 + s)d(x0)
)

.

(3) |a− b| < 31
30
sd(x0) < 2sd(x0) .

(4) [x0, x1] ⊂ γ and γ \ [x0, x1] ⊂ B
(

x1, sd(x0)
)

.

(5) l(γ[x, b]) ≤ C0d(x) for all x ∈ γ \ {b} with a universal C0 ≤ 47/15 < 4 .

(6) γ is c0 -quasiconvex in norm with a universal c0 ≤ 4 .

(7) γ is a λ0 -quasigeodesic with a universal λ0 ≤ 26 .

Proof. I recall the construction of γ in [Vä3, 3.10]. This arc is the union of
a finite or infinite sequence of line segments γi = [xi−1, xi) and b . The points
x1, x2, . . . are found inductively as follows. Set si = 2−is , y1 = a . Assume that
the points x0, . . . , xi have been chosen. If xi ∈ ∂G , the process stops. If xi ∈ G ,
we choose a point yi+1 ∈ ∂G with |yi+1 − xi| < (1 + si+1)d(xi) and let xi+1 be
the unique point in [xi, yi+1] ∩ S

(

xi, d(xi)
)

.
Setting di = d(xi) we have

(3.10) l(γi+1) = |xi − xi+1| = di ≤ |xi − yi| < sidi−1

for i ≥ 1. Hence

di+k ≤ si+1si+2 · · ·si+kdi ≤ sk
i+1di

for i ≥ 0, k ≥ 1. From (3.10) it also follows that the sequence (xi) converges to
a point b ∈ ∂G .

We proved in [Vä3, 3.10] that γ is an arc, but the conditions (1)–(7) make
sense if we interpret γ as a path in an obvious way, and then (6) implies that γ
is an arc. Writing ri = l(γ[xi, b]) we get

(3.11) ri =
∑

j≥i

dj ≤ di/(1 − si+1)
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for i ≥ 0. In particular, l(γ) = r0 ≤ d0/(1 − s1) < (1 + s)d0 , which implies (1)
and (2). Furthermore,

r1 ≤ d1/(1 − s2) ≤ s1d0/(1 − 1/16) = 8sd0/15 < sd0,

|a− b| ≤ |a− x1| + r1 < s1d0 + 8sd0/15 = 31sd0/30,

and we obtain (4) and (3).

(5): Assume that x ∈ γi . Then d(x) ≥ |x− xi| and

l(γ[x, b]) = |x− xi| + ri ≤ |x− xi| + di/(1 − si+1) ≤ |x− xi| + 16di/15,

because si+1 ≤ s2 ≤ 1/16. If |x− xi| ≥ di/2, then the right-hand side is at most
(1 + 32/15)d(x), and (5) follows. If |x − xi| ≤ di/2, then d(x) ≥ di/2, and we
again obtain (5).

(6): Assume that x ∈ γi , y ∈ γj with i < j , and set % = l(γ[x, y])/|x− y| .
We must show that % ≤ 4. If j = i + 1, we make use of some results in the
appendix. Applying Lemma A.3(3) with (x, y, z) 7→ (xi−1, xi, yi+1) we see that
the deviation (see A.2) between the rays from xi through xi−1 and xi+1 is at
least 1, and hence % ≤ 3 by A.4.

If j ≥ i+ 2, then

l(γ[x, y]) ≤ l(γ[x, b]) = |x− xi| + di + ri+1.

By (3.10) we have di+1 ≤ si+1di ≤ di/16. As si+2 ≤ s3 ≤ 1/32, (3.11) implies
that

ri+1 ≤ di+1/(1 − si+2) ≤ 2di/31 < di/15.

Since |y − xi+1| ≤ ri+1 and since γi ∪ γi+1 is 3-quasiconvex, we obtain

|x− y| ≥ |x− xi+1| − ri+1 ≥ (|x− xi| + di)/3 − di/15.

Consequently,

% ≤ 3
|x− xi| + 16di/15

|x− xi| + 4di/5
.

This expression is maximal for x = xi , whence % ≤ 4.

(7): This follows from (5), (6) and 3.8 with λ0 = 2c0C0 < 26. In fact, (7)
holds with λ0 = 17; see [Vä3, 3.10].

We prove in 3.13 that quasigeodesic endcuts produce Gromov sequences. The
proof makes use of the following corollary of the stability theorem [Vä8, 3.11]:
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3.12. Stability lemma. Let G be a δ -hyperbolic domain and let γ and

γ′ be arcs in G with common endpoints. If γ is a c -quasigeodesic and if γ ′ is

h -short, then the quasihyperbolic Hausdorff distance kH(γ, γ′) is bounded by a

constant M(δ, c, h) .

3.13. Lemma. Suppose that γ: x0 y b ∈ ∂G is a quasigeodesic endcut of a

hyperbolic domain G and that x̄ is a sequence on γ ∩G converging to b in norm.

Then x̄ is a Gromov sequence. If ȳ is another such sequence, then x̄ ∼ ȳ .

Proof. Assume that G is δ -hyperbolic and that γ is c -quasigeodesic. It
suffices to show that (xi | yj) → ∞ as i, j → ∞ . Fix h > 0 and choose h -short
arcs αij : xi y yj . Then kH(αij , γ[xi, yj]) ≤ M(δ, c, h) by 3.12. By (2.9) we
obtain

(xi | yj) ≥ k(p, αij) − 2δ − h ≥ k(p, γ[xi, yj]) −M − 2δ − h.

Since γ is an endcut, this implies that (xi | yj) → ∞ as i, j → ∞ .

3.14. Remarks. 1. Lemma 3.13 is, in fact, a special case of [Vä8, 6.31].
2. It follows from 3.13 that a quasigeodesic endcut γ: x0 y b determines an

element of ∂∗G , which will also be written as b .
3. Similarly, a quasigeodesic crosscut γ: a y b determines two elements of

∂∗G , which will be written as a and b .

3.15. Lemma. Suppose that x̄ is a sequence in a domain G and that x̄
converges in norm to an isolated point b0 ∈ ∂G . Then x̄ is a Gromov sequence in

the quasihyperbolic metric.

Proof. We prove the case b0 = ∞ . The case of a finite b0 is rather similar,
and it is not needed in this paper. Choose a number R > 0 such that ∂G\{∞} ⊂
B(R). Let a, b ∈ G with 2R ≤ |a| ≤ |b| and set z = |b|a/|a| . By 3.4 there is an
arc β: z y b in S(|b|) with l(β) ≤ 4|b| . Then α = [a, z] ∪ β is an arc joining a
and b . Since

∣

∣d(x) − |x|
∣

∣ ≤ R for x ∈ α , we obtain

k(a, b) ≤ lk(α) ≤ log
|b| − R

|a| − R
+

4|b|
|b| − R

≤ log
|b|

|a|/2 + 8 ≤ log
|b|
|a| + 9,

k(a, b) ≥ log
d(b)

d(a)
≥ log

|b|/2
2|a| ≥ log

|b|
|a| − 2.

Choose the base point p with |p| = 2R . By the definition of the Gromov product
we have

2(a | b) ≥ log
|a|
2R

+ log
|b|
2R

− log
|b|
|a| − 13 = 2 log

|a|
2R

− 13,

and the lemma follows.
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3.16. Lemma. Let G be a hyperbolic domain and let U be an open set in

Ė meeting ∂G . Then there is a Gromov sequence x̄ in G such that x̄ converges

in norm to a point b ∈ U ∩ ∂G .

Proof. If U ∩ ∂G = {∞} , the lemma follows from 3.15. If U ∩ ∂G 6= {∞} ,
there is a quasigeodesic endcut γ: x0 y b ∈ U ∩∂G by 3.9, and the lemma follows
from 3.13.

3.17. Annulus and arc points, anchors. We adopt the terminology of [BHK,
p. 65] with a slight change, because a nearest boundary point need not exist.

Let 0 < λ ≤ 1/2. A point x in a domain G is said to be a λ-annulus

point of G if there is a point a ∈ ∂G such that for t = |x − a| , the annulus
B(a, t/λ) \B(a, λt) is contained in G . Observe that (1 − λ)t ≤ d(x) ≤ t .

If x is not a λ -annulus point of G , it is a λ -arc point of G .
Let x0 ∈ G and let c ≥ 1. A crosscut τ : ay b of G is a c -anchor of x0 in

G if x0 ∈ τ and if

(1) τ is a c -quasigeodesic,
(2) τ is c -quasiconvex in norm,
(3) l(τ [a, x]) ≤ cd(x) for all x ∈ τ [x0, a) and l(τ [b, x]) ≤ cd(x) for all x ∈

τ [x0, b).

Observe that these conditions imply that a 6= ∞ 6= b . Moreover, a c -anchor
τ : ay b has the following properties:

(4) τ is c -uniform in G ,
(5) l(τ) ≤ 2cd(x0),
(6) d(x0) ≤ l(τ)/2 ≤ c|a− b|/2.

By an important result of [BHK, 7.2], every λ -arc point of a domain G ⊂ R
n

has a c -anchor in G with c = c(λ). We next extend this result to all Banach
spaces, and it will be used in several proofs of this article.

3.18. Anchor lemma. If x0 is a λ -arc point of a domain G , then x0 has

a c -anchor in G with c = c(λ) .

Proof. I follow the idea of [BHK, 7.2], but the proof is more complicated,
because segmental endcuts are replaced by arcs given by 3.9 and, moreover, the
geometry of normed spaces is not so simple as the euclidean geometry.

We choose a small positive number s . To be safe, we take s = λ/100 ≤ 1/200.
Set d = d(x0) and choose a point a ∈ ∂G with

|a− x0| = t < (1 + s/2)d.

We may assume that a = 0. Let γ: x0 y b be an endcut of G given by 3.9
for these a and s . Since x0 is a λ -arc point, there is a point y ∈ ∂G with
λt < |y| < t/λ . Let L be the ray from 0 through y , and let z be the unique point
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in L ∩ S(t). Let T be a 2-dimensional plane containing 0, x0, z (unique unless
z = ±x0 ), and let α be the shorter arc between x0 and z in S(t)∩ T . If z = x0 ,
the arc α degenerates to {x0} .

Let β: x0 y y be the arc β = α ∪ [z, y] and set r = λt/3 ≤ t/6. Since
y ∈ ∂G and since r < d , there is a first point x′ of β , x′ 6= x0 , such that
d(x′) = r . Choose a point a′ ∈ ∂G with |a′ − x′| < (1 + s/2)r and then a point
x′0 ∈ β[x0, x

′] such that |a′ − x′0| = d(a′, β[x0, x
′]) . Setting d′ = d(x′0) we have

r ≤ d′ ≤ |a′ − x′0| ≤ |a′ − x′| < (1 + s/2)r < (1 + s/2)2d/6 < d.

Let γ′: x′0 y b′ be an endcut of G given by 3.9 with the substitution (x0, a, s) 7→
(x′0, a

′, s). Setting β0 = β[x0, x
′
0] we show that

τ = γ ∪ β0 ∪ γ′: by b′

is the desired anchor. It is not yet quite clear that τ is an arc, but the conditions
(1)–(3) of 3.17 make sense in an obvious way. For example, for points u ∈ β0 and
v ∈ γ′ , condition (2) means that l(β0[u, x

′
0]) + l(γ′[x′0, v]) ≤ c|u − v| . We show

that τ has properties (1)–(3), and then (2) implies that τ is an arc.

We first verify (3). The case x ∈ γ ∪ γ ′ follows from 3.9(5). If x ∈ β0 , then
d(x) ≥ r ≥ λd/3. Furthermore, |z − y| ≤ t/λ − t and l(α) ≤ 4t by 3.4. Thus
l(β0) ≤ 3t+t/λ . Since l(γ′) ≤ (1+s)d′ ≤ (1+s)d by 3.9(1) and since t < (1+s)d ,
we have l(β0 ∪ γ′) ≤ (1 + s)(4 + 1/λ)d , and (3) follows.

Property (2) will be proved in A.6 in the appendix, and (1) follows from (2)
and (3) by 3.7.

3.19. Roads and biroads. Recall from [Vä8, Section 6] that for µ ≥ 0,
h ≥ 0, a (µ, h)-road in a δ -hyperbolic domain G is a sequence ᾱ of h -short arcs
αi: yi y ui such that lk(αi) ↗ ∞ and such that for i ≤ j , the quasihyperbolic
length map gij : αi → αj with gijyi = yj satisfies k(gijx, x) ≤ µ for all x ∈ αi .
The sequence (ui) is then a Gromov sequence defining an element û ∈ ∂∗G , and
we write ᾱ: ȳ y û . Each pair y ∈ G , b ∈ ∂∗G can be joined by a (µ, h)-road
with µ = 4δ + 2h .

Furthermore, each pair a, b ∈ ∂∗G can be joined by a (µ, h)-biroad ᾱ: ay b
for each h > 0 and µ = 12δ + 10h . This means that ᾱ is a sequence of arcs
αi: ui y vi in G and that for i ≤ j there are quasihyperbolic length maps
gij : αi → αj with the following properties:

(1) Each αi is h -short.

(2) ui → a , vi → b .

(3) gii = id, gik = gij ◦ gjk for i ≤ j ≤ k .

(4) k(gijx, x) ≤ µ for all i ≤ j and x ∈ αi .
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The locus |ᾱ| of a road or a biroad ᾱ is the union of all arcs αi .
We recall the extended standard estimate [Vä8, 6.20] for a (µ, h)-biroad ᾱ: ay

b in a δ -hyperbolic domain:

(3.20) k(p, |ᾱ|) − 4δ − h ≤ (a | b)p ≤ k(p, |ᾱ|) + µ+ h/2.

We next show that hyperbolic domains are roughly starlike. The proof is a
variation of [BHK, 7.8]. Recall from [Vä8, 6.33] that a hyperbolic domain G is
said to be (K,µ)-roughly starlike with respect to a point y ∈ G if for each x ∈ G
and for each h > 0 there is a (µ, h)-road ᾱ: y y b ∈ ∂∗G with k(x, |ᾱ|) ≤ K .

Furthermore, G is (K,µ)-roughly starlike with respect to a boundary point

a ∈ ∂∗G if for each x ∈ G and for each h > 0 there is a (µ, h)-biroad ᾱ: ay b ∈
∂∗G with k(x, |ᾱ|) ≤ K .

3.12. Lemma. Let 0 < r < s , let G be a hyperbolic domain containing the

annulus B(s) \ B̄(r) , and let x̄ and ȳ be equivalent Gromov sequences in G . If

|xi| ≤ r for all i , then |yi| < s for large i . If |yi| ≥ s for all i , then |xi| > r for

large i .

Proof. Assume that |xi| ≤ r , |yi| ≥ s . Let h = 1 and choose h -short arcs
γi: xi y yi . Let p be a base point of G with |p| = t = (r + s)/2. Since γi meets
S(t) and since k

(

S(t)
)

≤ 4t/(r − s) by 3.4, the standard estimate 2.9 gives

(xi | yi) ≤ k(p, γi) + h/2 ≤ 4t/(r − s) + 1/2.

As x̄ ∼ ȳ , we have (xi | yi) → ∞ , and the lemma follows.

3.22. Theorem. A δ -hyperbolic domain G is (K,µ1) -roughly starlike with

respect to each point of G and (K,µ2) -roughly starlike with respect to each point

of ∂∗G , where K = K(δ) , µ1 = 4δ + 1 , µ2 = 12δ + 1 .

Proof. We prove the second part, which is needed later. The proof for the
first part is rather similar.

Let a ∈ ∂∗G , x0 ∈ G , 0 < h ≤ 1/10. It suffices to find a (µ2, h)-biroad σ̄
from a with k(x0, |σ̄|) ≤ K(δ).

Case 1. x0 is a 1
3
-arc point. Let τ : by c be a c -anchor of x0 given by 3.18;

now c = c(1/3) is a universal constant. By Remark 3.14.3, the points b and c
can be considered as elements of the Gromov boundary ∂∗G . Let ᾱ: b y c be a
(µ2, h)-biroad given by [Vä8, 6.13]. By the extended stability theorem [Vä8, 6.32]
there is a point x1 ∈ |ᾱ| with k(x0, x1) ≤ K1(δ). If a ∈ {b, c} , we may put σ̄ = ᾱ .
If a /∈ {b, c} , we choose (µ2, h)-biroads β̄: ay c and γ̄: ay b . By the extended
Rips condition [Vä8, 6.24] there is x2 ∈ |β̄| ∪ |γ̄| with k(x1, x2) ≤ K2(δ). Then
k(x0, x2) ≤ K1 +K2 , whence either β̄ or γ̄ is the desired biroad.
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Case 2. x0 is a 1
3 -annulus point. There is a point b ∈ ∂G such that B(b, 3t)\

B(b, t/3) ⊂ G for t = |x0−b| . Choose a Gromov sequence ū ∈ a . Since k(x0, ui) →
∞ , we may assume that either |ui − b| < t/2 for all i or |ui − b| > 2t for all i .
Assume that |ui − b| < t/2 for all i . By 3.16 we find a Gromov sequence v̄ such
that |vi − b| > 2t for all i . Choose a (µ2, h)-biroad σ̄: a y v̂ . From 3.21 it
follows that σi meets S(b, t) for large i . Since k

(

S(b, t)
)

≤ 8 by 3.4, we have
k(x0, |σ̄|) ≤ 8.

The case |ui − b| > 2t is treated similarly, choosing a Gromov sequence v̄
with |vi − b| < t/2 for all i .

In the next three lemmas we estimate the Gromov product (a | b) = (a | b)p

for an anchor τ : a y b of a point in a hyperbolic domain with a base point p .
Since τ is a quasigeodesic, the points a, b can be considered as elements of ∂∗G ;
see Remark 3.14.3. Then (a | b) is defined.

3.23. Lemma. Suppose that τ : a y b is a c -anchor of a point x0 in a

δ -hyperbolic domain G . Let α: p y u be an h -short arc containing a point y0

with k(x0, y0) ≤ µ . Then (a | b) ≤ (a |u) +K(δ, c, µ, h) .

Proof. Choose sequences (xi) on τ [x0, a) and (yi) on τ [x0, b) such that
xi → a , yi → b . Fix i and set t = (xi | y0). As t ≤ k(p, y0), we can choose a point
z ∈ α[p, y0] with k(p, z) = t . By [Vä8, 2.8(6)] we have (z | y0) ∧ (z |u) ≥ t− h/2.
Hence

(3.24) (xi |u) ≥ (xi | y0) ∧ (y0 | z) ∧ (z |u) − 2δ ≥ t− h/2 − 2δ.

Choose h -short arcs β: xi y y0 and γ: xi y yi . By [Vä8, (2.23) and 2.24] we
find a point z1 ∈ β with k(z1, z) ≤ 4δ+4h . Since τ is a c -quasigeodesic, it follows
from the stability lemma 3.12 that k(x0, γ) ≤M(δ, c, h), whence k(y0, γ) ≤M+µ .
By the second ribbon lemma [Vä8, 2.18] this yields k(z1, γ) ≤ K1(δ, c, µ, h), and
we obtain k(z, γ) ≤ 4δ + 4h+K1 . Since

(xi | yi) ≤ k(p, γ) + h/2 ≤ t+ k(z, γ) + h/2

by 2.9, this and (3.24) imply that (xi | yi) ≤ (xi |u) +K1 + 6δ + 5h . As i → ∞ ,
this gives the lemma.

3.25. Lemma. Let τ : ay b be a c -anchor of a point x0 of a δ -hyperbolic

domain G . Then (a | b) ≤ k(p, x0) +K(δ, c) .

Proof. Choose sequences (xi) and (yi) on τ as in the proof of 3.23. Set h = 1
and let γi: xi y yi be an h -short arc. It follows from (2.9) and stability 3.12 that

(xi | yi) ≤ k(p, γi) + h/2 ≤ k(p, x0) +K1(δ, c).

As i→ ∞ , this implies the lemma.
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In the next lemma we show that under certain additional conditions, the
inequality of 3.25 can be reversed.

3.26. Lemma. Suppose that τ : a y b is a c -anchor of a point x0 in a

δ -hyperbolic domain G . Let α: p y y0 be an h -short arc with k(x0, y0) ≤ µ
such that d(y0) ≤ c1d(x) for all x ∈ α . Then (a | b) ≥ k(p, x0) −K(δ, c, c1, µ, h) .

Proof. Let K0, K1, . . . denote positive constants depending on (δ, c, c1, µ, h).
Let (xi) be a sequence on τ [x0, a) converging to a . Fix i ∈ N and choose h -
short arcs β: xi y y0 and γ: xi y x0 . As in the proof of 3.23, we choose
a point z ∈ α with k(p, z) = (y0 |xi), and then k(z, β) ≤ 4δ + 4h . By the
second ribbon lemma [Vä8, 2.18] we have kH(β, γ) ≤ 8δ + 5µ + 5h . From these
estimates and from stability 3.12 it follows that there is a point z′ ∈ τ [x0, xi] with
k(z, z′) ≤ K1(δ, c, µ, h). We have

log
d(y0)

d(z′)
≤ log

c1d(z)

d(z′)
≤ k(z, z′) + log c1 ≤ K1 + log c1,

whence d(x0) ≤ eµd(y0) ≤ K2d(z
′). For each x ∈ σ = τ [z′, x0] , this and 3.17(3)

yield
d(x0)/K2 ≤ d(z′) ≤ |z′ − a| ≤ l(τ [x, a]) ≤ cd(x).

Moreover, we have l(σ) ≤ cd(x0) by 3.17(3). Integration along σ gives k(z′, x0) ≤
c2K2 , and we obtain

k(p, x0) ≤ k(p, z) + k(z, z′) + k(z′, x0) ≤ (xi | y0) +K1 + c2K2 ≤ (xi |x0) +K3.

As i → ∞ , this gives k(p, x0) ≤ (a |x0) +K4 . Similarly k(p, x0) ≤ (b |x0) +K4 .
Hence (a | b) ≥ (a |x0) ∧ (b |x0) − δ ≥ k(p, x0) −K4 − δ ; see [Vä8, 5.12].

We next state the main result of this section. Recall from 2.21–2.23 that for
a δ -hyperbolic domain G , the natural map ϕ: G∗ → G exists if and only if each
Gromov sequence x̄ in G converges in norm to a limit b(x̄); then ϕx̂ = b(x̄).
The map ϕ is continuous in the metametric dp,ε of G∗ and the norm metric of
G, where p ∈ G and 0 < ε ≤ 1 ∧ (1/5δ). Moreover ϕ defines a continuous map
ψ: ∂∗G→ ∂G between metric spaces.

3.27. Theorem. Suppose that G ⊂ E is a δ -hyperbolic domain such that

the natural map ϕ: G∗ → G exists in the sense of 2.12 and defines an η -quasi-

möbius bijection ψ: ∂∗G → ∂G in the metric dp,ε and the norm metric for some

p ∈ G and for some ε ≤ 1 ∧ (1/5δ) . Then G is C -uniform with C = C(δ, η, ε) .

3.28. Notation. Let δ > 0, 0 < ε ≤ 1 ∧ (1/5δ) and let η: [0,∞) → [0,∞)
be a homeomorphism. We let Q(δ, η, ε) denote the set of all domains G in some
Banach space such that
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(1) G is unbounded,
(2) G is δ -hyperbolic,
(3) the natural map ϕ: G∗ → G exists and defines an η -quasimöbius ho-

meomorphism ψ: ∂∗G → ∂G in the metric dp,ε and in the norm metric for all
p ∈ G .

For G ∈ Q(δ, η, ε), we simplify the notation by identifying ∂∗G and ∂G by
the natural bijection ψ: ∂∗G→ ∂G writing ψx = x for x ∈ ∂∗G .

We shall reduce Theorem 3.27 to the following result:

3.29. Proposition. If G ∈ Q(δ, η, ε) , then G is C -uniform with C =
C(δ, η, ε) .

3.30. Lemma. Proposition 3.29 implies Theorem 3.27.

Proof. Suppose that G ⊂ E is a domain satisfying the conditions of 3.27 with
some δ, η, ε, p . We may assume (by a translation) that 0 ∈ ∂G . Let u be the
inversion of E ; see 2.33. We show that the domain G′ = uG lies in Q(υ′) with
some υ′ = (δ′, η′, ε′) depending only on υ = (δ, η, ε). By Proposition 3.29, this
will imply that G′ is C ′(υ′)-uniform, whence G is C(υ)-uniform by 2.33(3).

Since 0 ∈ ∂G , the domain G′ is unbounded. The inversion u defines homeo-
morphisms u1: G → G′ and v1 = u−1

1 : G′ → G , and these maps are 12-quasi-
hyperbolic by 2.33(2). From [Vä8, 3.18] it follows that G′ is δ′ -hyperbolic with
some δ′(δ) ≥ δ .

It remains to show that G satisfies condition 3.28(3). Set ε′ = ε ∧ (1/5δ′).
Then ε′ ≤ ε ≤ cε′ with c = c(δ) = δ′/δ . Let p′ ∈ G′ be an arbitrary base
point. As v1 is 12-quasihyperbolic, it follows from [Vä8, 5.38] that v1 induces a
homeomorphism ψ1 = ∂v1: ∂

∗G′ → ∂∗G . Moreover, ψ1 is η1 -quasimöbius in the
metrics dp′,ε′ and dp,ε′ with η1 depending only on δ . Consequently, the natural
map ψ′: ∂∗G′ → ∂G′ exists and ψ′a = uψψ1a for a ∈ ∂∗G′ . By [Vä8, 5.28], the
identity map (∂∗G, dp,ε′) → (∂∗G, dp,ε) is θ -quasimöbius with θ(t) = 4c+1(t∨ tc).
By 2.33(1), these facts imply that ψ′ is η′ -quasimöbius with η′(t) = 81ηθη1(t).
Hence G′ ∈ Q(δ′, η′, ε′).

3.31. Outline of the proof of Proposition 3.29. Suppose that G ∈ Q(δ, η, ε)
and let x1, x2 ∈ G . If |x1−x2| ≤ d(x1)∨d(x2), then the line segment [x1, x2] is a
1-uniform arc. Hence we may assume that |x1−x2| ≥ d(x1)∨d(x2). We shall show
that any h -short arc γ: x1 y x2 with h = 1/10 is C -uniform, C = C(δ, η, ε). For
this we approximate γ by a (µ, h)-biroad ᾱ: a1 y a2 such that k(xi, |ᾱ|) ≤ C1 .
In 3.54 we show that the members of ᾱ satisfy conditions close to uniformity. As
a crucial step we prove the case a2 = ∞ in the length carrot lemma 3.40, which
is preceded by a related result 3.36 on distance carrots.

The proof makes substantial use of the division of a domain into annulus
points and arc points and of the anchor lemma 3.18. It will be completed in 3.37.
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The following basic estimates follow almost immediately from (2.20):

3.32. Lemma. Suppose that G is a δ -hyperbolic domain and that x, y, a, b ∈
G∗ , ε ≤ 1 ∧ (1/5δ) .

(1) If dε(x, y) ≤ cdε(a, b) , then (a | b) ≤ (x | y) + K with K = K(c, ε) =
ε−1 log(2c) .

(2) If (a | b) ≤ (x | y) +K , then dε(x, y) ≤ cdε(a, b) with c = c(K) = 2eK .

3.33. Lemma. Let G be a δ -hyperbolic domain, let h ≤ 1/10 , and let ᾱ
be a (µ, h) -road, αi: zi y ui , such that ui → b ∈ ∂G in norm. Let i ∈ N and

let x ∈ αi be a λ -annulus point of G with λ−1 ≥ 16eµ and let d(zi) ≥ 9e2µd(x) .
Then for r = d(x) we have

(1) B
(

b, (λ−1 − 1)r
)

\B(b, 3λr) ⊂ G ,

(2) αi[x, ui] ⊂ B(b, 9r) ,
(3) r ≤ |x− b| ≤ (1 + 4λ)r .

Proof. There is a point a ∈ ∂G such that G contains the annulus B(a, t/λ) \
B(a, λt) for t = |x− a| . Then

(3.34) (1 − λ)t ≤ r ≤ t.

Let j ≥ i . There is a point xj ∈ αj with k(xj , x) ≤ µ . We have |xj − x| ≤
(eµ − 1)r ≤ (eµ − 1)t , whence |xj − a| ≤ eµt . Furthermore, k(zi, zj) ≤ µ implies
that d(zj) ≥ e−µd(zi) ≥ 9eµr , whence

|zj − a| ≥ d(zj) ≥ 9eµr ≥ 8eµt

by (3.34).
If |y − a| ≥ 8eµt for some y ∈ αj [xj , uj] , then we may apply Lemma 3.5(1)

to the arc αj[zj , y] with the substitution t 7→ eµt to conclude that |xj − a| > eµt ,
a contradiction. Hence αj [xj , uj] ⊂ B(a, 8eµt) for all j ≥ i . For j = i , we choose
xi = x and get the better estimate

(3.35) αi[x, ui] ⊂ B(a, 8t).

Since uj → b , we obtain |b − a| ≤ 8eµt < t/λ . As b ∈ ∂G , this implies that
|b− a| ≤ λt . The lemma follows by easy estimates from this, (3.34) and (3.35).

3.36. Distance carrot lemma. Let G ∈ Q(δ, η, ε) , let h = 1/10 , let

ᾱ: b0 y∞ , αi: ui y vi be a (µ, h) -biroad and let x ∈ |ᾱ| . Then

|x− b0| ≤ C(δ, η, µ)d(x).

Proof. Choose i with x ∈ αi and set λ−1 = 16eµ .
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Case 1. x is a λ -annulus point. There is a point a ∈ ∂G such that G contains
the annulus B(a, t/λ) \ B(a, λt) where t = |x − a| . Since vi → ∞ , there is an
integer j0 ≥ i such that |vj − a| ≥ 8eµt for j ≥ j0 . Let j ≥ j0 and set xj = gijx ;
then k(xj , x) ≤ µ .

If |uj −a| ≥ 8eµt , we may apply Lemma 3.5(1) with the substitution t 7→ eµt
and get |xj − a| > eµt . On the other hand,

|xj − x| ≤ (ek(xj ,x) − 1)d(x) ≤ (eµ − 1)t,

which yields |xj − a| ≤ eµt , a contradiction. Hence |uj − a| ≤ 8eµt for all j ≥ j0 ,
whence |b0 − a| ≤ 8eµt , which implies that |b0 − a| ≤ λt . Since d(x) ≥ (1 − λ)t ,
we obtain

|x− b0| ≤ |x− a| + |a− b0| ≤ (1 + λ)d(x)/(1 − λ) < 2d(x).

Case 2. x is a λ -arc point. By 3.18 there is a c(µ)-anchor τ : ay b of x . Set
µ0 = 12δ+1 and choose a (µ0, h)-biroad β̄: ay b . By (3.20) and by the extended
version [Vä8, 6.32(2)] of the stability lemma we get (a | b)x ≤ k(x, |β̄|)+µ+h/2 ≤
M(δ, µ). As ε ≤ 1, this yields dx,ε(a, b) ≥ e−M/2.

Furthermore, for j ≥ i we have (uj | vj)x ≤ k(x, αj) + h/2 ≤ µ + 1, which
yields dx,ε(uj , vj) ≥ e−µ−1/2 and so dx,ε(b0,∞) ≥ e−µ−1/2. Set Q = (a, b0, b,∞).
As dx,ε is bounded by 1, these estimates give

cr(Q, dx,ε) ≤ 4eM+µ+1 = K(δ, µ).

Since the map id: (∂G, dx,ε) → (∂G, norm) is η -quasimöbius, we obtain

|a− b0|/|a− b| = cr(Q, norm) ≤ η(K).

By 3.17(3) we have |x− a| ≤ cd(x) and |a− b| ≤ 2cd(x), and we get the desired
estimate

|x− b0| ≤ |x− a| + |a− b0| ≤
(

1 + 2η(K)
)

cd(x).

3.37. Lemma. Let 1 < c1 ≤ c2 < c3 with c1 − 1 ≤ c3 − c2 . Suppose that G
is a domain containing an annulus B(b, c3r) \B(b, r) and that x and y are points

with c1r ≤ |x− b| ≤ |y − b| ≤ c2r . Then k(x, y) ≤ 5c2/(c1 − 1) .

Proof. We may assume that b = 0. Set z = |y|x/|x| . By 3.4 there is an arc
α: z y y in S(|y|) with l(α) ≤ 2|z−y| ≤ 4c2r . The arc β = [x, z]∪α joins x and
y with l(β) ≤ 5c2r . For every u ∈ β we have d(u) ≥ (|u|−r)∧(c3r−|u|) ≥ c1r−r .
Hence k(x, y) ≤ lk(β) ≤ 5c2/(c1 − 1).
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3.38. Strings. Let ᾱ: ay b , αi: ui y vi , be a (µ, h)-biroad in a hyperbolic
domain G . We recall from [Vä8, 6.21] that the string str ᾱ of ᾱ is obtained by
identifying the elements (x, i) and (gijx, j) in the disjoint union of all αi . There
are natural injective maps

(3.39) πi: αi → str ᾱ,

defined by (x, i) ∈ πix , and a metric lk in str ᾱ , defined by lk(ξ, ζ) = lk(αi[x, z])
where πix = ξ , πiz = ζ . Furthermore, there is a bijective isometry ω: str ᾱ→ R ,
unique up to an additive constant, and ω defines a linear order in str ᾱ . The locus

|ξ| of an element ξ ∈ str ᾱ is the set of all x ∈ G such that (x, i) ∈ ξ for some i .
Then k(|ξ|) ≤ µ and |ᾱ| =

⋃{|ξ| : ξ ∈ str ᾱ} .

3.40. Length carrot lemma. Let G ∈ Q(δ, η, ε) and let ᾱ: b0 y ∞ ,

αi: ui y vi be a (µ, h) -biroad in G with h = 1/10 . Then

l(αi[ui, x]) ≤ C(δ, η, ε, µ)d(x)

for all i and for all x ∈ αi .

Proof. Let K1, K2, . . . denote positive constants depending only on (δ, η, ε, µ).
In particular, let K1 be the constant C(δ, η, µ) of 3.36. Set

d∗(ξ) = d(|ξ|, ∂G)

for ξ ∈ str ᾱ . Since k(|ξ|) ≤ µ , we have d(x) ≤ eµd(y) for all x, y ∈ |ξ| , whence

(3.41) d∗(ξ) ≤ d(x) ≤ eµd∗(ξ)

for all x ∈ |ξ| . Hence d∗(ξ) > 0 for all ξ ∈ str ᾱ .
We say that an element ξ ∈ str ᾱ tends to −∞ or to ∞ if the number

ω(ξ) ∈ R tends to −∞ or to ∞ , respectively. Moreover, we use obvious notation
like [ξ1, ξ2] and (−∞, ξ0] for intervals in str ᾱ . For a set A ⊂ str ᾱ we write

|A| =
⋃{|ξ| : ξ ∈ A}.

Fact 1. d∗(ξ) → 0 as ξ → −∞ and d∗(ξ) → ∞ as ξ → ∞ .
Choose an arbitrary base point p ∈ G and let r0 > 0. As the natural map

ϕ: G∗ → G is continuous at b0 by Definition 2.21, there is M0 > 0 such that
|x − b0| < r0 for all x ∈ G with (x | b0) > M0 . From [Vä8, 6.8] it follows that
there is ξ0 ∈ str ᾱ such that (x | b0) > M0 whenever x ∈ |ξ| for some ξ ≤ ξ0 .
Hence d(|ξ|, b0) → 0 as ξ → −∞ , and the first part of Fact 1 follows.

A similar argument shows that d(|ξ|, b0) → ∞ as ξ → ∞ . Since d∗(ξ) ≥
d(|ξ|, b0)/K1 by 3.36, we obtain the second part of Fact 1.
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Fact 2. For each ξ0 ∈ str ᾱ , the set |(−∞, ξ0]| is bounded.
By 3.36 and (3.41), it suffices to show that d∗(ξ) is bounded over ξ ∈

(−∞, ξ0] . By Fact 1 there is ξ1 ≤ ξ0 such that d∗(ξ) ≤ 1 for ξ ≤ ξ1 . Choose i ∈ N

such that the natural image πiαi of αi covers [ξ1, ξ0] . Since d(x) is bounded over
x ∈ αi by compactness, Fact 2 follows.

From Fact 1 it follows that for each t > 0, the set {ξ ∈ str ᾱ : d∗(ξ) ≤ t} is
nonempty and bounded from above. Hence it has a supremum in str ᾱ . We set

ζn = sup{ξ ∈ str ᾱ : d∗(ξ) ≤ 2n}

for n ∈ Z . Then (ζn) is an increasing sequence and str ᾱ is the union of the
intervals [ζn−1, ζn] , n ∈ Z .

We next show that

(3.42) e−µ2n ≤ d∗(ζn) ≤ 2n

for all n ∈ Z . Assume that d∗(ζn) < e−µ2n . Then there is (z, i) ∈ ζn with
d(z) < e−µ2n . Choose an integer j ≥ i such that gijz 6= vj . Since k(gijz, z) ≤ µ ,
we have d(gijz) ≤ eµd(z) < 2n . Choose a point x ∈ αj(gijz, vj ] with d(x) < 2n .
Then πjx > ζn and therefore d∗(πjx) > 2n , which is impossible because x ∈ |πjx| .
Hence the first inequality of (3.42) is true.

Assume that d∗(ζn) > 2n and let t > 0. Since πivi → ∞ , there is ξ0 < ζn
such that for no i ∈ N we have ξ0 < πivi < ζn . Choose an element ξ ∈ str ᾱ
with ξ0 < ξ < ζn such that d∗(ξ) ≤ 2n and such that lk(ξ, ζn) < t . If αi meets
|ξ| , then αi also meets |ζn| . Consequently, for each x ∈ |ξ| we have k(x, |ζn|) ≤
lk(ξ, ζn) < t . Since k(x, |ζn|) ≥ log

(

d∗(ζn)/d(x)
)

, we obtain d∗(ζn) ≤ etd(x) for
all x ∈ |ξ| , whence d∗(ζn) ≤ etd∗(ξ) ≤ et2n . As t → 0, this implies the second
inequality of (3.42).

By (3.41) and (3.42) we have

(3.43) e−µ2n ≤ d(x) ≤ eµ2n

for all n ∈ Z and x ∈ |ζn| .
We prove in Fact 5 below that lk(ζn−1, ζn) ≤ K2 for all n ∈ Z . We show

now how this implies the lemma. Let i ∈ N and let x ∈ αi . Choose integers s
and n with s ≤ n such that πiui ∈ (ζs−1, ζs] and πix ∈ (ζn−1, ζn] . Next choose
m ≥ i such that [ζs−1, ζn] ⊂ πmαm . Writing g = gim we have l(αi[ui, x]) ≤
eµl(αm[gui, gx]) by 3.3. For each j = s − 1, . . . , n there is a point zj ∈ π−1

m ζj ,
and we obtain

l(αm[gui, gx]) ≤ l(αm[zs−1, zn]) ≤
n

∑

j=s

l(αm[zj−1, zj ]).
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Since lk(αm[zj−1, zj ]) = lk(ζj−1, ζj) ≤ K2 and since d(zj−1) ≤ eµ2j−1 by (3.43),
this and Lemma 3.2 yield

l(αm[gui, gx]) ≤ eK2+µ

n
∑

j=s

2j−1 ≤ 2neK2+µ.

As πix > ζn−1 , we have d(x) ≥ d∗(πix) > 2n−1 . Hence the lemma holds with
C = 2eK2+2µ .

Set λ = (20e2µ)−1 and λ1 = e−µλ = (20e3µ)−1 . We say that an element
ξ ∈ str ᾱ is a λ -annulus element if |ξ| contains a λ -annulus point of G . All other
elements of str ᾱ are called λ -arc elements. Each point in the locus of a λ -arc
element is a λ -arc point.

Fact 3. If ξ ∈ str ᾱ is a λ1 -annulus element, then all points of |ξ| are λ -
annulus points of G .

There are a λ1 -annulus point x1 ∈ |ξ| and a point a ∈ ∂G such that G
contains the annulus B(a, t1/λ1) \B(a, λ1t1) where t1 = |x1−a| . Let x ∈ |ξ| and
set t = |x− a| . As k(|ξ|) ≤ µ , we have

|x− x1| ≤ (eµ − 1)
(

d(x) ∧ d(x1)
)

≤ (eµ − 1)(t ∧ t1),

which implies that e−µt1 ≤ t ≤ eµt1 . Hence B(a, t/λ) \B(a, λt) ⊂ G , and Fact 3
is proved.

Fact 4. Let ξ1 < ξ2 be λ1 -arc elements of str ᾱ such that d∗(ξ2) ≤ 2eµd∗(ξ1)
≤ c1d

∗(ξ) for all ξ ∈ str ᾱ with ξ ≥ ξ1 . Then

lk(ξ1, ξ2) ≤ c2(δ, η, ε, µ, c1).

Fix a member αm of ᾱ such that [ξ1, ξ2] ⊂ πmαm . Let xi ∈ αm be the
point with πmxi = ξi , i = 1, 2. As these points are λ1 -arc points, we can
choose c -anchors τi: ai y bi of xi , i = 1, 2, c = c(µ). We may assume that
|bi − b0| ≤ |ai − b0| . Then 0 < |ai − bi| ≤ 2|ai − b0| . Hence cr(Q, norm) ≤ 2
for the quadruple Q = (a2, b2, b0,∞). Since the map ψ−1: ∂G → ∂∗G is η′ -
quasimöbius with η′(t) = η−1(t−1)−1 , this yields cr(Q, dp,ε) ≤ η′(2) for each
p ∈ G . If p ∈ |ᾱ| , then (3.20) gives (b0 |∞) ≤ k(p, |ᾱ|) + µ + h/2 ≤ µ + 1,
which implies that dp,ε(b0,∞) ≥ e−µ−1/2 by (2.20). Since dp,ε ≤ 1, we obtain
dp,ε(a2, b2) ≤ 2eµ+1η′(2)dp,ε(a2, b0), which gives

(3.44) (a2 | b0) ≤ (a2 | b2) +K3

by 3.32 for each base point p ∈ |ᾱ| .



Hyperbolic and uniform domains in Banach spaces 291

We have |a2 − x2| ≤ cd(x2) by 3.17(3) and |x2 − b0| ≤ K1d(x2) by 3.36.
By 3.17(6) we get d∗(ξ1) ≤ d(x1) ≤ c|a1 − b1|/2 ≤ c|a1 − b0| , whence d(x2) ≤
eµd∗(ξ2) ≤ 2e2µd∗(ξ1) ≤ 2e2µc|a1 − b0| . Consequently,

|a2 − b0| ≤ |a2 − x2| + |x2 − b0| ≤ K4|a1 − b0|.

Setting Q′ = (b0, a2, a1,∞) we thus have cr(Q′, norm) ≤ K4 , whence

(3.45) cr(Q′, dp,ε) ≤ η′(K4).

To estimate this cross ratio we need a lower bound for dp,ε(a1,∞). We may
assume that µ ≥ 12δ + 1, and hence we can choose a (µ, h)-biroad ᾱ1: a1 y∞ ;
see 3.19. By the closeness lemma [Vä8, 6.9], there is an element κ ∈ str ᾱ such
that κ > ξ2 and k(|κ|, |ᾱ1|) ≤ 7δ + µ+ 1/2. We fix a base point p ∈ |κ| . Then
(3.20) gives

(a1 |∞) ≤ k(p, |ᾱ1|) + µ+ h/2 ≤ 7δ + 2µ+ 1 = K5.

Hence dp,ε(a1,∞) ≥ e−K5/2 and cr(Q′, dp,ε) ≥ e−K5dp,ε(b0, a2)/2dp,ε(b0, a1). By
(3.45) and 3.32 we get

(3.46) (a1 | b0) ≤ (a2 | b0) +K6.

There is n0 ∈ N such that [ξ1,κ] ⊂ πnαn for n ≥ n0 . Let n ≥ n0

and let x′1, x
′
2, p

′ ∈ αn be the points with πnx
′
i = ξi , πnp

′ = κ . Applying
Lemma 3.23 with the substitution (τ, x0, y0, p, α) 7→ (τ1, x1, x

′
1, p

′, αn[un, p
′]) we

obtain (a1 | b1)p′ ≤ (a1 |un)p′ + K7 . Since k(p, p′) ≤ µ , this gives (a1 | b1) ≤
(a1 | b0) +K8 as n→ ∞ . By (3.44) and (3.46) it follows that

(3.47) (a1 | b1) ≤ (a2 | b2) +K9.

We have (a2 | b2)p′ ≤ k(p′, x′2) +K10 by 3.25. If x ∈ αn[x′1, p
′] , and ξ = πnx ,

then

d(x′1) ≤ eµd∗(ξ1) ≤ eµc1d
∗(ξ) ≤ eµc1d(x).

Hence we may apply Lemma 3.26 with (τ, x0, y0, p, α, c1) 7→ (τ1, x1, x
′
1, p

′, αn[x′1, p
′],

eµc1) and obtain the estimate k(p′, x1) ≤ (a1 | b1)p′ + C(δ, η, ε, µ, c1). Since
k(p, p′) ≤ µ and since

lk(ξ1, ξ2) = lk(αn[x′1, x
′
2]) ≤ k(x′1, p

′) − k(x′2, p
′) + h,

these estimates and (3.47) imply Fact 4.
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Fact 5. lk(ζn−1, ζn) ≤ K2 for all n ∈ Z .
We consider two cases.

Case 1. ζn−1 and ζn are λ1 -arc elements. Since d∗(ζn) ≤ 2n ≤ 2eµd∗(ζn−1)
by (3.42) and since d∗(ξ) ≥ d∗(ζn−1) for all ξ > ζn−1 by the choice of ζn−1 , the
desired estimate follows from Fact 4.

Case 2. ζn−1 or ζn is a λ1 -annulus element. By Fact 2 there is M1 such
that d(x) ≤M1 whenever x ∈ |ξ| for some ξ ≤ ζn . Pick m ∈ N such that πmαm

covers [ζn−1, ζn] and such that d(vm) ≥ 9e2µM1 . Choose points xj ∈ π−1
m ζj ,

j = n− 1, n and set rj = d(xj). By (3.43) we have

(3.48) e−µ2j ≤ rj ≤ eµ2j , e−2µ/2 ≤ rn−1/rn ≤ e2µ/2.

If ζj is a λ1 -annulus element, then xj is a λ -annulus point by Fact 3. Since
d(gmivm) ≥ e−µd(vm) ≥ 9eµd(xj), we may apply Lemma 3.33 to the (µ, h)-road
(αi[ui, gmivm])i≥m with i = m , x = xj and obtain

(1) B
(

b0, (λ
−1 − 1)rj

)

\B(b0, 3λrj) ⊂ G ,
(2) αm[um, xj] ⊂ B(b0, 9rj),
(3) rj ≤ |xj − b0| ≤ (1 + 4λ)rj < 2rj .

Subcase 2a. ζn is a λ1 -annulus element. By (2) we have |xn−1 − b0| ≤ 9rn .
Since λ−1 − 1 ≥ 19e2µ and 3λ ≤ e−2µ/6, it follows that d(xn−1) ≥ |xn−1 − b0| −
rn/6. By (3.48) this yields |xn−1−b0| ≤ e2µrn . In the other direction (3.48) gives
|xn−1 − b0| ≥ rn−1 ≥ e−2µrn/2. In view of (3) it follows that the points xn−1 and
xn lie in the closed annulus B(b0, 2e

2µrn) \B(b0, e
−2µrn/2). By 3.37 we see that

k(xn−1, xn) ≤ 30e4µ . Hence lk(ζn−1, ζn) ≤ k(xn−1, xn) + h ≤ 30e4µ + 1.

Subcase 2b. ζn−1 is a λ1 -annulus element and ζn is a λ1 -arc element. Choose
a point a1 ∈ ∂G with |a1 − xn| ≤ 2rn . If |a1 − b0| ≤ rn−1/6, then (3.48) gives

|xn − b0| ≤ |xn − a1| + |a1 − b0| ≤ 2rn + rn−1/6 ≤ 5e2µrn−1

and |xn − b0| ≥ rn ≥ 2e−2µrn−1 . Applying again Lemma 3.37 we get an upper
bound lk(ζn−1, ζn) ≤ K11 .

If |a1 − b0| > rn−1/6, then (1) yields |a1 − b0| ≥ (λ−1 − 1)rn−1 ≥ 19e2µrn−1 .
By connectedness we find points x′, z′ ∈ αm[xn−1, xn] in the order xn−1, x

′, z′, xn

such that

(i) z′ is a λ1 -arc point,
(ii) all points of αm[xn−1, x

′] are λ -annulus points,
(iii) lk(αm[x′, z′]) ≤ 1.

Set ξ′ = πmx
′ , ζ ′ = πmz

′ , r′ = d(x′). Applying Lemma 3.33 to the points of
αm[xn−1, x

′] we see that G contains the annulus B(b0, 19e2µr′)\B(b0, e
−2µrn−1/6),

whence |a1 − b0| ≥ 19e2µr′ . By 3.36 and (3.48) we obtain

(3.49) 19e2µr′ ≤ |a1 − xn| + |xn − b0| ≤ 2rn +K1rn ≤ 2e2µ(2 +K1)rn−1.
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Moreover, (3) gives rn−1 ≤ |xn−1 − b0| ≤ 2rn−1 and similarly r′ ≤ |x′− b0| ≤
2r′ . Assuming ξ′ 6= ζn−1 we have r′ ≥ d∗(ξ′) > 2n−1 ≥ e−µrn−1 . By Lemma 3.37
these estimates yield lk(ζn−1, ξ

′) ≤ k(xn−1, x
′) + h ≤ K12 .

For each ξ ≥ ζ ′ we have d∗(ξ) ≥ 2n−1 . In particular, d∗(ζn) ≤ 2n ≤ 2d∗(ζ ′).
Moreover, by (iii), (3.48) and (3.49) we have

d∗(ζ ′) ≤ d(z′) ≤ er′ ≤ (2 +K1)e
µ2n−1.

Since d∗(ξ) ≥ 2n−1 for all ξ ≥ ζ ′ , we may apply Fact 4 with ξ1 7→ ζ ′ , ξ2 7→ ζn ,
c1 7→ 2e2µ(2 +K1) and obtain lk(ζ ′, ζn) ≤ K13 . Hence lk(ζn−1, ζn) ≤ K12 + 1 +
K13 . Fact 5 and the lemma are proved.

We next show that a biroad with finite endpoints cannot go too far from the
boundary.

3.50. Lemma. Let G ∈ Q(δ, η, ε) and let ᾱ: a1 y a2 be a (µ, h) -biroad in

G with µ = 12δ+ 1 , h = 1/10 , a1 6= ∞ 6= a2 . Then d(z) ≤ K(δ, η, ε)|a1− a2| for

all z ∈ |ᾱ| .
Proof. We let K1, K2, . . . denote positive constants depending only on (δ, η, ε).

Set λ−1 = 1 + 64eµ .

Case 1. z is a λ -annulus point. There is a point a ∈ ∂G such that G contains
the annulus A = B(a, t/λ)\B(a, λt) where t = |z−a| . If a1 and a2 lie in different
components of E \A , then d(z) ≤ |z− a| = t , |a1 − a2| ≥ (λ−1 −λ)t > t , and the
lemma holds with K = 1.

Suppose that a1 and a2 lie in a component of E \A . We show that this leads
to a contradiction.

If |a1 − a| ∨ |a2 − a| ≤ λt , we choose a member αm: um y vm of ᾱ such that
|um − a| ∨ |vm − a| ≤ 4λt and such that αm contains a point y with k(y, z) ≤ µ .
By Lemma 3.5(2) we have d(y) ≤ |y − a| < 64λt . Since d(z) ≥ (1 − λ)t , we get
the contradiction

µ ≥ k(y, z) ≥ log
d(z)

d(y)
> log

λ−1 − 1

64
= µ.

If |a1 − a| ∧ |a2 − a| ≥ t/λ , we choose αn and a point y ∈ αn such that
|un − a| ∧ |vn − a| ≥ t/2λ and k(y, z) ≤ µ . Now Lemma 3.5(1) with t 7→ t/16λ
gives |y − a| > t/16λ . Since |y − z| ≤ (eµ − 1)d(z) ≤ (eµ − 1)t , we get t/16λ <
|y − z| + |z − a| ≤ eµt , which contradicts the definition of λ .

Case 2. z is a λ -arc point. By the anchor lemma 3.18 there is an c -anchor
τ : b1 y b2 of z ; now c = c(δ). By [Vä8, 6.13] we can choose (µ, h)-biroads
ᾱi: ai y ∞ and β̄i: bi y ∞ , i = 1, 2. By the extended Rips condition [Vä8,
6.24] we may assume that k(z, |ᾱ1|) ≤ K1(δ) = 46δ + 11µ + 3. Hence there is
an element ξ1 ∈ str ᾱ1 with d(z, |ξ1|) ≤ K1 + µ . By the closeness lemma [Vä8,



294 Jussi Väisälä

6.9] we can find an element ζ1 > ξ1 in str ᾱ1 with k(|ζ1|, |β̄i|) ≤ 7δ + µ + 1/2,
i = 1, 2. Pick a member α1m of ᾱ1 whose natural image π1mα1m covers [ξ1, ζ1] ,
and choose points x1, p ∈ α1m with π1mx1 = ξ1 , π1mp = ζ1 . We consider p as
the base point of G .

By the extended standard estimate (3.20) we have

(bi |∞) ≤ k(p, |β̄i|) + µ+ h/2 ≤ K2(δ) = 7δ + 2µ+ 1.

As ε ≤ 1, this yields

(3.51) dp,ε(bi,∞) ≥ e−K2/2, i = 1, 2.

Furthermore,

(3.52) d(z) ≤ |bi − z| ≤ l(τ) ≤ c|b1 − b2|, i = 1, 2.

Since |x1 − a1| ≤ K3d(x1) by 3.36 and since k(x1, z) ≤ K1 + 2µ , we obtain

|bi − a1| ≤ |bi − z| + |z − x1| + |x1 − a1|
≤ c|b1 − b2| + eK1+2µd(z) +K3e

K1+2µd(z) ≤ K4|b1 − b2|.

Let Qi be the quadruple (bi, a1, b3−i,∞) in ∂G , i = 1, 2. Then cr(Qi, norm)
= |bi − a1|/|b1 − b2| ≤ K4 , whence cr(Qi, dp,ε) ≤ η′(K4). As dp,ε ≤ 1, this and
(3.51) yield dp,ε(bi, a1) ≤ 2eK2η′(K4)dp,ε(b1, b2), which gives

(3.53) (b1 | b2) ≤ (bi | a1) +K5

by 3.32.
Choose an h -short arc σ: z y p and let x ∈ σ . Since k(z, x1) ≤ K1 + 2µ ,

we may apply the second ribbon lemma [Vä8, 2.18] to find a point x′ ∈ α1m[x1, p]
with k(x, x′) ≤ K6(δ) = 8δ+5(K1 +2µ)+1. If |x1 −x′| ≤ d(x1)/2, then d(x′) ≥
d(x1)/2. If |x1 − x′| ≥ d(x1)/2, it follows from the length carrot lemma 3.40
that d(x1) ≤ 2|x1 − x′| ≤ 2K7d(x

′). In both cases these estimates imply that
d(z) ≤ K8d(x) for all x ∈ σ with K8 = 2K7e

K1+2µ+K6 . By 3.26 and (3.53) this
yields k(p, z) ≤ (bi | a1) +K9 , i = 1, 2. By (3.20) we get

(a1 | a2) ≤ k(p, |ᾱ|) + µ+ h/2 ≤ (bi | a1) +K10,

whence dp,ε(bi, a1) ≤ K11dp,ε(a1, a2). Setting Q′
i = (a1, bi, a2,∞) we obtain by

(3.51) cr(Q′
i, dp,ε) ≤ 2K11e

K2 = K12 , whence

|a1 − bi|/|a1 − a2| = cr(Q′
i, norm) ≤ η(K12), i = 1, 2.

By (3.52) this gives the desired estimate d(z) ≤ 2cη(K12)|a1 − a2| .



Hyperbolic and uniform domains in Banach spaces 295

The next lemma shows that a (µ, h)-biroad in a domain G ∈ Q(δ, η, ε) has
properties close to uniformity.

3.54. Lemma. Let G ∈ Q(δ, η, ε) and let ᾱ: a1 y a2 be a (µ, h) -biroad

with a1 6= ∞ 6= a2 , µ = 12δ + 1 , h = 1/10 . Then:

(1) There is an element ξα ∈ str ᾱ such that if x1, x2 ∈ αm and if either

πmx1 ≤ πmx2 ≤ ξα or πmx1 ≥ πmx2 ≥ ξα , then l(αm[x1, x2]) ≤ C(δ, η, ε)d(x2) .
(2) If y1, y2 ∈ αm and if d(y1) ∨ d(y2) ≤ 2|y1 − y2| , then l(αm[y1, y2]) ≤

C ′(δ, η, ε)|y1 − y2| .
Proof. (1) We let C1, C2, . . . denote positive constants depending only on

(δ, η, ε). Choose (µ, h)-biroads ᾱi: ai y ∞ , i = 1, 2. By the extended tripod
lemma [Vä8, 6.25] we can find elements ξα ∈ str ᾱ and ξi ∈ str ᾱi , i = 1, 2,
such that the bijective length maps f1: (−∞, ξα] → (−∞, ξ1] and f2: [ξα,∞) →
(−∞, ξ2] satisfy k(|fiξ|, |ξ|) ≤ C1(δ) for all possible ξ .

It suffices to consider the case πmx1 ≤ πmx2 ≤ ξα . Choose a member α1n

of α1 whose natural image π1nα1n covers the interval f1πmαm . The length
map π−1

1n is defined in f1πmαm and we obtain a quasihyperbolic length map
g = π−1

1n f1πm: αm → α1n satisfying k(gx, x) ≤ C1 + 2µ = C2(δ). Then d(gx2) ≤
eC2d(x2) and l(αm[x1, x2]) ≤ eC2 l(α1n[gx1, gx2]) by 3.3, and (1) follows from 3.40.

(2) We may assume that πmy1 ≤ πmy2 . If πmy2 ≤ ξα , then (1) gives
l(αm[y1, y2]) ≤ Cd(y2) ≤ 2C|y1 − y2| , and the case πmy1 ≥ ξα is treated sim-
ilarly. Assume that πmy1 < ξα < πmy2 .

Let z ∈ αm be the point in αm[y1, y2] with πmz = ξα . By (1) we have

(3.55) l(αm[y1, y2]) ≤ 2Cd(z).

Now the extended tripod lemma gives points zi ∈ |ᾱi| with k(yi, zi) ≤ C2 . Then
d(zi) ≤ eC2d(yi) and |yi − zi| ≤ eC2d(yi). By the distance carrot lemma 3.36 we
have |ai − zi| ≤ C3d(zi), whence

|ai − yi| ≤ |ai − zi| + |zi − yi| ≤ C4d(yi)

where C4 = eC2(C3 + 1). By Lemma 3.50 we have

(3.56) d(z) ≤ C5|a1 − a2|.

Consequently, if d(y1)∨ d(y2) ≤ d(z)/4C4C5 , then |ai − yi| ≤ |a1 − a2|/4, whence
|a1 − a2| ≤ 2|y1 − y2| , and (2) follows from (3.55) and (3.56). Finally, if d(y1) ∨
d(y2) ≥ d(z)/4C4C5 , then d(z) ≤ 8C4C5|y1 − y2| , and (2) follows from (3.55).

3.57. Proof of Theorem 3.27. Let G ∈ Q(δ, η, ε). By 3.30 it suffices to
show that G is C(δ, η, ε)-uniform. We let C1, C2, . . . denote positive constants
depending only on (δ, η, ε). Let x1, x2 ∈ G . If |x1 −x2| ≤ d(x1)∨ d(x2), then the
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line segment [x1, x2] is a 1-uniform arc. Assume that |x1−x2| ≥ d(x1)∨d(x2). Let
h = 1/10 and let γ: x1 y x2 be an h -short arc. We show that γ is C -uniform.

By 3.22 and by [Vä8, 6.35] there is a (µ, h)-biroad ᾱ: a1 y a2 with µ = 12δ+1
such that k(xi, ᾱ) ≤ C1(δ), i = 1, 2. By the ribbon lemma [Vä8, 2.17] we find
a member αm of ᾱ and a quasihyperbolic length map f : γ → αm such that
k(fx, x) ≤ C2(δ) for all x ∈ γ . We may assume that πmfx1 ≤ πmfx2 on str ᾱ .

We first verify the cigar condition. Let x ∈ γ . If a2 = ∞ , we have
l(αm[fx1, fx]) ≤ C3d(fx) by the length carrot lemma 3.40. By 3.3 this yields
l(γ[x1, x]) ≤ C3e

2C2d(x), which implies the cigar condition. The case a2 = ∞ is
similar.

Assume that a1 6= ∞ 6= a2 . Let ξα ∈ str ᾱ be the element given by 3.54(1)
and let z ∈ αm be the point with πmz = ξα . We have either πmfx1 ≤ πmfx ≤ ξα
or ξα ≤ πmfx ≤ πmfx2 . In the first case, Lemma 3.54(1) gives l(αm[fx1, fx]) ≤
C4d(fx), and in the second case, we similarly get l(αm[fx, fx2]) ≤ C4d(fx). As
above, these estimates yield

l(γ[x1, x]) ∧ l(γ[x, x2]) ≤ C4e
2C2d(x),

which is the cigar condition.

To prove the turning condition, we first assume that d(fx1)∨d(fx2) ≤ 2|fx1−
fx2| . If a1 6= ∞ 6= a2 , then 3.54(2) gives l(αm[fx1, fx2]) ≤ C5|fx1 − fx2| .
But this is also true if a1 = ∞ or a2 = ∞ , because then 3.40 implies that
l(αm[fx1, fx2]) ≤ C3

(

d(fx1) ∨ d(fx2)
)

≤ 2C3|fx1 − fx2| . Since |fxi − xi| ≤
eC2d(xi) ≤ eC2 |x1 − x2| , we obtain the turning condition

l(γ) ≤ eC2C5|fx1 − fx2| ≤ eC2C5(1 + 2eC2)|x1 − x2|.

Finally, assume that d(fx1) ∨ d(fx2) ≥ 2|fx1 − fx2| . Now k(fx1, fx2) ≤ 1,
whence k(x1, x2) ≤ 1 + 2C2 . As γ is h -short, this gives lk(γ) ≤ 2 + 2C2 = C6 .
By 3.2 we obtain l(γ) ≤ eC6d(x1) ≤ eC6 |x1 − x2| .

4. A counterexample

In [BHK, 7.12] it was proved that a domain in Sn is uniform if and only if
it is hyperbolic and linearly locally connected (LLC). Every C -uniform domain
G ⊂ E is δ(C)-hyperbolic by 2.12 and 3C -LLC by Theorem 4.2 below. However,
we give in 4.3 an example of a domain G ⊂ l2 that is hyperbolic and LLC but not
uniform.

4.1. Definition. Let c ≥ 1. We recall that a domain G is c -linearly locally

connected or briefly c -LLC if the following conditions hold for all x ∈ G and
r > 0:
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(LLC1 ) Each pair of points in G ∩ B(x, r) can be joined by an arc in G ∩
B(x, cr).

(LLC2 ) Each pair of points in G \ B(x, r) can be joined by an arc in G \
B(x, r/c).

It is well known that uniform domains are LLC; we recall the easy argument
in 4.2. The planar domain G = R

2 \ {(n, 0) : n ∈ Z} is 1-LLC but not uniform.

4.2. Theorem. Every C -John domain is c -LLC2 and every C -uniform

domain is c -LLC with c = 3C .

Proof. Let x ∈ G and let a, b ∈ G \ B(x, r). We may assume that x = 0.
Suppose that G is a C -John domain. Choose a number s with r < s < |a| ∧ |b| .
Let α: ay b be an arc satisfying the C -cigar condition 2.4(1). If α∩S(s/3C) = ∅ ,
there is nothing to prove. If there is a point z ∈ α ∩ S(s/3C), we have

d(z) ≥ (|z − a| ∧ |z − b|)/C > (s− s/3C)/C ≥ 2s/3C

by the cigar condition. Thus d(0) ≥ d(z)−|z| > s/3C , whence S(s/3C) ⊂ G . We
can therefore join a and b by an arc γ ⊂ G \B(s/3C) consisting of two subarcs
of α and an arc β ⊂ S(s/3C).

Suppose that G is C -uniform. Let x ∈ G and let a, b ∈ G∩B(x, r). Choose
a C -uniform arc α: ay b in G . For each y ∈ α we have

|y − x| ≤ |y − a| + |a− x| < l(α) + r < 3Cr

by the turning condition. Hence α ⊂ B(x, 3Cr).

4.3. Example. Let E be an infinite-dimensional separable Hilbert space.
Let W ⊂ E be a broken tube, considered first in [Vä2, 2.12]; a detailed treatment
is given in [Vä7]. We recall the construction.

Choose an orthonormal basis (ej)j∈
� of E , indexed by all integers, and set

uj =
√

2 ej . Let α be the line spanned by e0 , and set aj = 2je0 for j ∈ Z . Let
f : α → E be the map with faj = uj , j ∈ Z , such that f is affine on each line
segment αj = [aj−1, aj] . Then f |αj is an isometry onto βj = [uj−1, uj] . Let
U be the tubular neighborhood {x ∈ E : d(x, α) < 1/5} of α . In [Vä7] we give
a detailed construction of a locally bilipschitz extension F : U → W of f onto a
domain W satisfying the conditions

(1) W is hyperbolic,

(2) W is LLC,

(3) W is not a John domain and hence not uniform.
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5. A lower bound to the hyperbolicity constant

5.1. A lower bound for δ . There are 0-hyperbolic metric spaces (metric
trees). However, we show in 5.3 that the constant δ cannot be arbitrarily close to
0 for a δ -hyperbolic domain G ⊂ E . Remember that dimE ≥ 2.

5.2. Lemma. If E is a normed plane, then there are unit vectors x , y , z
such that

|x− y| = |y − z|, |x− z| ≥ |x− y| + 1/2.

Proof. Choose a unit vector x and then a unit vector y such that |x− y| =
|y + x| = s .

Case 1. s ≤ 3/2. Now x , y and z = −x are the desired points, because
|x− y| = |y − z| = s and |x− z| = 2 ≥ s+ 1/2.

Case 2. s ≥ 3/2. Choose unit vectors u and v such that the points x , u ,
y , v , −x are in this order in the unit circle and such that |x− u| = |u− y| = t1 ,
|y − v| = |v + x| = t2 . We may assume that t1 ≤ t2 . Since the length of a unit
semicircle is at most 4 by Theorem 3.4, we have 2t1 + 2t2 ≤ 4, whence t1 ≤ 1.
Since

|x− y| = s ≥ 3/2 ≥ t1 + 1/2,

the desired points are x, u, y .

5.3. Theorem. If G is a δ -hyperbolic domain, then δ ≥ 0.0027 .

Proof. Fix a point p ∈ G . We normalize the situation by d(p) = 1. Let
0 < t ≤ 1/2. By 5.2 there are points x, y, z ∈ S(p, t) such that

|x− y| = |y − z|, |x− z| ≥ |x− y| + t/2.

For all a, b ∈ B(p, t) we have

|a− b|
1 + 2t

≤ k(a, b) ≤ |a− b|
1 − t

by [Vä6, 3.7]. Hence

2(x | y)p = k(x, p) + k(y, p) − k(x, y) ≥ 2t

1 + 2t
− |x− y|

1 − t
,

and a similar lower bound holds for 2(y | z)p . Moreover,

2(x | z)p = k(x, p) + k(z, p) − k(x, z) ≤ 2t

1 − t
− |x− z|

1 + 2t
.

As |x− z| ≤ 2t , we obtain by combining the estimates that

δ ≥ (x | y)p ∧ (y | z)p − (x | z)p ≥ t(1 − 22t)

4(1 − t)(1 + 2t)
.

For t = 0.02 this gives δ ≥ 0.0027.
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5.4. Remark. For Hilbert spaces one can get the bound δ ≥ 0.005. These
bounds are presumably far from the best possible. In the other direction, we know
that the half plane is δ -hyperbolic with δ = log 3 = 1.098 . . . [CDP, p. 12]. I
conjecture that 5.3 holds with this δ .

Appendix. Quasiconvexity in normed spaces

In this appendix I give some results on quasiconvexity needed in Section 3.
The main goal is Lemma A.6, which gives a rigorous and detailed proof for the
quasiconvexity of the crosscut γ in Lemma 3.18. Moreover, Lemmas A.3 and A.4
were used in 3.9.

Throughout the appendix, we let E denote a normed space. We start with a
useful elementary inequality.

A.1. Lemma. Let x, y, z, u ∈ E with |x− y| ≤ |x− z| and u ∈ [x, y] . Then

|y − z| ≤ 2|u− z|.

Proof. If |u− y| ≤ |y − z|/2, then |u− z| ≥ |y − z| − |u− y| ≥ |y − z|/2. If
|u− y| ≥ |y − z|/2, then

|u− z| ≥ |x− z| − |x− u| ≥ |x− y| − |x− u| = |u− y| ≥ |y − z|/2.

A.2. Deviations. The deviation between nonzero vectors x, y ∈ E is defined
by

dev(x, y) =
∣

∣x/|x| − y/|y|
∣

∣ ∈ [0, 2].

If α and β are rays with common vertex v ∈ E , then dev(x − v, y − v) is
independent of the points x ∈ α and y ∈ β , and we set

dev(α, β) = dev(x− v, y − v).

In an inner product space we have dev(α, β) = 2 sin(ϕ/2), where ϕ is the
angle between the rays α and β .

A.3. Lemma. Let α and β be rays from the origin and let x ∈ α , y ∈ β .

(1) If |x| = |y| = r , then |x− y| = r dev(α, β) .
(2) |x− y| ≥ (|x| ∨ |y|) dev(α, β)/2 .

(3) Let x, y, z ∈ E with 0 < |y−z| ≤ |x−y| ≤ |x−z| . Then dev(x−y, z−y)
≥ 1 .

Proof. Part (1) is trivial, and (2) follows from (1) and A.1. To prove (3), set
r = |x− y| and let u be the point on the ray from y through z with |u− y| = r .
Then |u − x| ≥ r by the convexity of the norm. Hence dev(x − y, z − y) =
|u− x|/r ≥ 1.
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A.4. Lemma. Let α 6= β be rays with a common vertex. Then α ∪ β is

c -quasiconvex with c = 4/ dev(α, β) − 1 . The bound is sharp.

Proof. We may assume that the common vertex is the origin. Set r =
dev(α, β) and let x ∈ α , y ∈ β . It suffices to show that |x|+ |y| ≤ (4/r−1)|x−y| .

We may assume that 0 < |y| ≤ |x| = 1. Let b ∈ β be a unit vector and set
t = |y − b| = 1 − |y| . We must show that

2 − t

|x− y| ≤
4

r
− 1.

If t ≤ r/2, then |x− y| ≥ |x− b| − |y − b| = r − t , whence

2 − t

|x− y| ≤
2 − t

r − t
≤ 2 − r/2

r − r/2
=

4

r
− 1.

If t ≥ r/2, then |x− y| ≥ r/2 by A.3, and we obtain

2 − t

|x− y| ≤
2 − r/2

r/2
=

4

r
− 1.

To prove the sharpness, let E be the plane with the norm ‖x‖ = |x1| ∨
|x2| and let α and β be the rays from the origin through the points (1, 0) and
(1, 1), respectively. Now dev(α, β) = 1. For x = (2, 0) and y = (1, 1) we
have ‖x‖ + ‖y‖ = 3 = 3‖x − y‖ . Hence α ∪ β is not c -quasiconvex for any
c < 3 = 4/ dev(α, β) − 1.

A.5. Lemma. Suppose that α: xy y is a c -quasiconvex arc and that a ∈ E
with |a− y| = d(a, α) . Then β = α ∪ [y, a]: xy a is a (2c+ 1) -quasiconvex arc.

Proof. Let u ∈ α , v ∈ [y, a] . Then |v − y| = d(v, α) ≤ |u− v| , and we get

l(β[u, v]) = l(α[u, y]) + |y − v| ≤ c|u− y| + |y − v|
≤ c|u− v| + c|v − y| + |y − v| ≤ (2c+ 1)|u− v|.

A.6. Lemma. The arc τ : by b′ constructed in the proof of Lemma 3.18 is

c -quasiconvex in norm with c = c(λ) .

Proof. We recall from 3.18 the basic inequalities

(A.7) (1 − s/2)t ≤ d ≤ t ≤ (1 + s/2)d, r ≤ d′ ≤ (1 + s/2)r,

where d = d(x0), d
′ = d(x′0), t = |x0| , s = λ/100, r = λt/3, λ ≤ 1/2.

As in 3.9, we let x1 denote the unique point in [x0, 0]∩S(x0, d), and similarly
x′1 ∈ [x′0, a

′] ∩ S(x′0, d
′). Then [x0, x1] ⊂ γ and γ0 = γ \ [x0, x1] ⊂ B(x1, sd) ⊂

B(2sd) by 3.9(4). Similarly, [x′0, x
′
1] ⊂ γ′ and γ′0 = γ′ \ [x′0, x

′
1] ⊂ B(x′1, sd

′).



Hyperbolic and uniform domains in Banach spaces 301

Let u, v ∈ τ be points with u ∈ τ [b, v] . We must get an estimate

(A.8) l(τ [u, v]) ≤ c|u− v|

with c = c(λ). The arcs γ and γ ′ are 4-quasiconvex by 3.9(6), and α is 2-
quasiconvex by 3.4. Applying Lemma A.5 we see that the arcs [x1, x0]∪α and β0

are 5-quasiconvex and that β0∪ [x′0, x
′
1] is 11-quasiconvex. Consequently, if {u, v}

is contained in one of the arcs

γ, γ′, [x1, x0] ∪ α, β0 ∪ [x′0, x
′
1],

then (A.8) holds with c = 11.
There remain 4 cases and some subcases for u and v . We proved in 3.18 that

τ satisfies condition 3.17(3), whence l(τ) ≤ c1d ≤ c1t with c1 = c1(λ). Hence it
suffices to get a lower bound

(A.9) |u− v| ≥ qt

with q = q(λ) > 0.

Case 1. u ∈ γ0 , v /∈ γ . Now |u| ≤ 2sd ≤ 2st . Let w ∈ [x′0, x
′
1] . We show

that

(A.10) |w| ≥ λt.

We have |w| ≥ |x′0|−d′ , where d′ < (1+s/2)r < λt and d′ ≤ |x0−y′| . If x′0 ∈ α ,
then |w| ≥ t − λt ≥ λt . If x′0 ∈ [y, z] , then |w| ≥ |x′0| − |x′0 − y| = |y| ≥ λt ,
and (A.10) is proved. It follows that |v| ≥ λt− sd′ ≥ (λ− s)t , whence |u− v| ≥
(λ− 3s)t > λt/2, and (A.9) holds with q = λ/2.

Case 2. u ∈ [x1, x0] , v ∈ [z, x′0] . This case does not occur if x′0 ∈ α . We
consider two subcases.

If |y| ≥ t we apply A.3 and obtain |u − v| ≥ |v| dev(u, v)/2 ≥ |x0 − z|/2.
Since α is 2-quasiconvex, this implies that

l(τ [u, v]) ≤ |u− x0| + 2|x0 − z| + |z − v| = 2|x0 − z| + |v| − |u| ≤ 5|u− v|.

Next assume that |y| < t , and let y1 ∈ [0, x0] be the point with |y1| = |y| ≥
λt . Since |y − x0| ≥ d ≥ t(1 − s/2), we have

|y|+ t(1 − s/2) ≤ |y| + |y − x0| ≤ |y1| + |y − y1| + |y1 − x0| = t+ |y − y1|,

whence |y−y1| ≥ |y|−st/2. Consequently, dev(x0, z) = |y−y1|/|y| ≥ 1−st/2|y| .
Here st/2|y| ≤ s/2λ = 1/200. By A.3 we get

|u− v| ≥ |v| dev(u, v)/2 ≥ |v|/4 ≥ |y|/4 ≥ λt/4.
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Case 3. u ∈ [x1, x0] , v ∈ [x′0, x
′
1] . We again consider two subcases.

First assume that |x′0| ≥ t . By (A.7) we get

|x0 − x′0| ≥ d− d′ ≥ (1 − s/2)t− (1 + s/2)r.

By A.1 we have |u− x′0| ≥ |x0 − x′0|/2. Since |v− x′0| ≤ d′ ≤ (1 + s/2)r and since
r = λt/3 ≤ t/6, these estimates yield (A.9) with q = 1/4 − 3s/8 > 1/5.

Next assume that |x′0| < t . Now |y| < t and x′0 ∈ [y, z] . As in Case 2 we get
dev(x0, z) ≥ 1 − 1/200. Since

|x′0| ≥ |y| + r ≥ λt+ λt/3 = 4λt/3,

Lemma A.3 gives |x′0 − u| ≥ 2λt(1 − 1/200)/3. As |x′0 − v| ≤ d′ ≤ (1 + s/2)r ≤
(1 + 1/400)λt/3, this yields (A.9) with q = λ/4.

Case 4. u ∈ τ [x1, x
′
0] = [x1, x0] ∪ β0 , v ∈ γ′0 . If u ∈ [x1, x0] , then |u− x′1| ≥

λt/4 by Case 3. If u ∈ β0 , then |u− x′1| ≥ d(x′1, β0) = |x′1 − x′0| = d′ ≥ r = λt/3.
Since

|v − x′1| ≤ sd′ ≤ s(1 + s/2)t/6 < λt/500,

we obtain (A.9) with q = λt/5.
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