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CHARACTERIZATIONS OF
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Abstract. A metric space (X, d) is said to be an Lp -metric space, p ∈ [1,∞) , if d(x, y)p ≤
d(x, z)p+d(z, y)p for all x, y, z ∈ X , and is said to be a snowflake if it is bi-Lipschitz equivalent with
an Lp -metric space for some p > 1 . Suppose that (X, d) is compact and doubling. Then (X, d) is
a snowflake if and only if X admits a bi-Lipschitz embedding in a uniformly convex Banach space
and no weak tangent to (X, d) contains a rectifiable curve. We give several equivalent conditions
for the snowflake property, and examples distinguishing these conditions under weaker hypotheses.
As a corollary we prove that the polygasket PG(N) ⊂ R2 is a snowflake for N = 5 or N ≥ 7 .

1. Introduction

Fix p > 1. A metric space (X, d) is called a p-snowflake if there is a metric
d′ , bi-Lipschitz equivalent with d , so that the Lp triangle inequality

(1.1) d′(x, y) ≤
{{

d′(x, z)p + d′(z, y)p
}1/p

, p < ∞,

max
{
d′(x, z), d′(z, y)

}
, p = ∞,

holds for all x, y, z ∈ X . Equivalently, there exists c > 0 so that

(1.2)
N∑

i=1

d(xi, xi−1)
p ≥ cd(x0, xN )p

whenever x0, x1, . . . , xN is a finite chain of points in X . (For the equivalence of
these definitions, see Section 2.) If (X, d) is a p -snowflake for some p > 1 we say
merely that (X, d) is a snowflake.

In this paper we give several geometric characterizations for snowflake spaces.
These include a quantitative gap condition for roughly collinear points in the
space, and a qualitative condition on the absence of rectifiable curves in all weak
tangents (in the sense of Gromov) of the space. We also prove that certain classical
self-similar planar sets are snowflakes.
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Figure 1. The von Koch snowflake curve.

Our terminology stems from the observation that the classical von Koch
snowflake curve C , endowed with the planar Euclidean metric, is a p -snowflake
with p = log 4/ log 3. Indeed, we may choose d′(x, y) = H p(Cxy)1/p , where H p

denotes the Hausdorff p -measure on C and Cxy denotes the minimal connected
subset of C containing x and y . See Figure 1.

A well-known theorem of Assouad [1] asserts that every doubling metric space
may be realized as a snowflake subspace of some finite-dimensional Euclidean
space. More precisely, for every doubling metric space (X, d) and every 0 < ε < 1,
the metric space (X, dε) admits a bi-Lipschitz embedding into some Euclidean
space RN . The image of X in RN is a p -snowflake with p = 1/ε .

A theorem of Semmes (Theorem 6.3 in [11]) asserts that each p -snowflake set
A ⊂ RN generates a strong A∞ weight

ω(x) = dist(x, A)N(p−1)

on RN , and the distance function Dω is bi-Lipschitz equivalent with the restric-
tion of dp

E to A . Here Dω is the associated distance function defined by

Dω(x, y) := inf

∫

γ

ω1/N ds,

the infimum being taken over all rectifiable curves γ in Rn joining x to y , and
dE denotes the Euclidean metric on RN . Combining this result of Semmes with
the theorem of Assouad shows that every doubling metric space may be realized
up to a bi-Lipschitz map within (RN , Dω) for some metric Dω associated with a
strong A∞ weight ω (Theorem 1.15 of [11]).

For the statement of our main result, we introduce the following separation-
type condition. Let (X, d) be a metric space. For x, y ∈ X and constants 0 <
λ < 1 and δ > 0, let

(1.3) L(x, y; λ, δ) := B
(
x, (λ + δ)d(x, y)

)
∩ B

(
y, (1− λ + δ)d(x, y)

)
.

Thus L(x, y; λ, δ) is a “lens-shaped” set consisting of the intersection of two over-
lapping balls centered at x and y . Here and throughout the paper we denote by
B(x, r) the closed ball in X with center x and radius r . In case the underlying
space X needs to be mentioned we write L(x, y; λ, δ) = LX(x, y; λ, δ).

Definition 1.4. We say that a metric space (X, d) is δ -uniformly non-convex

(UNC ), 0 < δ < 1
2 , if to each pair of points x, y ∈ X , there corresponds a value

λ = λxy ∈ (δ, 1− δ) so that L(x, y; λ, δ) is empty. We say that (X, d) is uniformly

non-convex if it is δ -uniformly non-convex for some δ > 0.
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Theorem 1.5. Let (X, d) be a compact, doubling metric space that admits a

bi-Lipschitz embedding into a uniformly convex Banach space. Then the following

are equivalent:

(1) (X, d) is a snowflake;
(2) (X, d) is uniformly non-convex;
(3) Each weak tangent of (X, d) contains no rectifiable curves.

A pointed metric space (Z∞, d∞, z∞) is called a weak tangent of (X, d) if
there exist points xm ∈ X and positive reals rm so that the pointed metric spaces
(X, r−1

m d, xm) converge in the topology of pointed Gromov–Hausdorff convergence
to (Z∞, d∞, z∞). We do not require that rm → 0; thus the original metric space
(X, d) with suitable basepoint is itself a weak tangent. See [5, Chapters 8 and 9]
or [4, Chapters 7 and 8] for further information on Gromov–Hausdorff convergence
and weak tangent spaces.

A reformulation of Assouad’s theorem states that every doubling snowflake
space admits a bi-Lipschitz embedding in some finite-dimensional Euclidean space.
It follows that if a compact, doubling metric space satisfies the hypotheses of
Theorem 1.5 as well as either condition (2) or condition (3), then it admits a
bi-Lipschitz embedding in a finite-dimensional Euclidean space. The question
of which metric spaces admit a bi-Lipschitz embedding into a finite-dimensional
Euclidean space is a well-known open problem in geometric analysis.

The implication (2) ⇒ (1) in Theorem 1.5 holds for all metric spaces, and the
implication (2) ⇒ (3) holds for all separable spaces. In the absence of compactness
and the doubling property, the implication (3) ⇒ (2) fails for a certain bounded
subset of l2 . These and other results of a similar nature appear in various sections
of this paper. We do not know in what generality the implication (1) ⇒ (2) holds.

As an application, we show that certain self-similar sets are snowflakes. We
consider the polygaskets PG(N), N ≥ 3. The set PG(N) is obtained as the
invariant set for a collection of contractive similarities of a regular N -gon. For the
precise definition, see Section 6. PG(3) is the standard Sierpinski gasket, while
PG(4) is a closed square. Figure 2 shows PG(N) for N = 3, 5, 6, 8, 9.

Theorem 1.6. PG(N) is a snowflake if and only if N = 5 or N ≥ 7 .

The cases N = 3, 4, 6 are ruled out since the corresponding sets contain
nontrivial line segments and hence violate condition (3) in Theorem 1.5.

To conclude, we mention a connection with conformal geometry. The confor-

mal dimension of a metric space (X, d) is defined as the infimum of the Hausdorff
dimensions of X with respect to all metrics quasisymmetrically (qs) equivalent
with d :

C dim X = inf
{
dim(X, d′) : d and d′ are qs equivalent

}
.

For the definition and basic properties of quasisymmetric maps, see [6]. Since
bi-Lipschitz equivalence implies quasisymmetric equivalence and the snowflaking
operation d 7→ d′ := dε , ε < 1, generates metrics quasisymmetrically equivalent
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with d , C dim X ≤ dim(X, d)/p if (X, d) is a p -snowflake, and we may record
the following.

Corollary 1.7. Let (X, d) be a compact and doubling metric space which

satisfies one of the equivalent conditions in Theorem 1.5. Then (X, d) is not

minimal for conformal dimension, i.e., dim(X, d) > C dim X .

Figure 2. Polygaskets PG(N) for N = 3, 5, 6, 8, 9 .

It follows from recent work of Keith and Laakso [7] that, under an additional
regularity assumption, the inequality dim(X, d) > C dim X holds if and only if, for
every α ≥ 1, the α -modulus of curve families in every weak tangent (Z∞, d∞, z∞)
to (X, d) is trivial. Now the nonexistence of rectifiable curves certainly implies
the triviality of the α -modulus, so Corollary 1.7 follows from [7]. On the other
hand, in the setting of Corollary 1.7 we have the strict inequalities

dim(X, d) > dim(X, dp) > C dimX

for some p > 1.
The result of Keith and Laakso implies that PG(N) is not minimal for con-

formal dimension when N ≥ 3, N 6= 4. Corollary 1.7 gives an alternate proof
for this fact, apart from the cases N = 3, 6. In [12] the authors proved that
inf dim f

(
PG(N)

)
= C dim PG(N) = 1 if N 6≡ 0 (mod 4), where the infimum is

taken over all quasiconformal maps f : R2 → R2 .

Organization of the paper. In Section 2 we prove that (1.2) is equivalent
with the snowflake property. In Section 3 we prove the implication (2) ⇒ (1)
from Theorem 1.5 for general metric spaces, and discuss some related geometric
conditions.

In Section 4 we specialize to uniformly convex Banach spaces and prove the
equivalence of conditions (1) and (2).

In Section 5 we discuss Gromov–Hausdorff convergence and weak tangents,
and complete the proof of Theorem 1.5.

In Section 6 we prove Theorem 1.6.
In an appendix we sketch the proof of a different geometric characterization

of snowflake spaces due to Tomi Laakso. We thank him for suggesting that we
include it here.
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Notation. We remind the reader that we use the notation B(x, r) = BX(x, r)
to denote the closed ball with center x and radius r in a metric space X = (X, d).
We write diamA for the diameter of a set A ⊂ X , and we write dist(A, B)
for the distance between two sets A, B ⊂ X . In the case when A = {x} is a
singleton, we write dist(x, B) = dist({x}, B). For ε > 0 and A ⊂ X , we write
Nε(A) = {x ∈ X : dist(x, A) < ε} for the ε -neighborhood of A .

We say that (X, d) is a proper metric space if each closed ball in X is compact,
and that (X, d) is a doubling space if there exists a constant M < ∞ so that every
ball of radius r in X may be covered by at most M balls of radius 1

2r . Every
complete doubling space is proper.

A map f : (X, d) → (X ′, d′) is said to be L-bi-Lipschitz, L ≥ 1, if the double
inequality

d(x, y)/L ≤ d′
(
f(x), f(y)

)
≤ Ld(x, y)

holds for all x, y ∈ X . If f is L -bi-Lipschitz for some L < ∞ we say that f is bi-

Lipschitz. Two metrics d and d′ on a given set X are called bi-Lipschitz equivalent

if the identity map from (X, d) to (X, d′) is bi-Lipschitz. 1-bi-Lipschitz maps are
also called isometries.

For the purposes of this paper, a curve is a nonconstant continuous map γ
from a compact interval I = [a, b] ⊂ R into X . We make the usual identification
of the map γ and the image set γ(I) ⊂ X . A curve γ is rectifiable if its length

length(γ) = sup

N∑

i=1

d
(
γ(ti, ti−1)

)

is finite, where the supremum is taken over all ordered chains of points a = t0 <
t1 < · · · < tN−1 < tN = b . For a subinterval I1 ⊂ I we write γ|I1 for the
restriction of γ to I1 . If γ is an isometric embedding of I in X , the curve is a
geodesic. If γ is an L -bi-Lipschitz embedding, the curve is an L-quasigeodesic.

For points v , w in a normed vector space (V, ‖ · ‖), we write

[v, w] = {tv + (1 − t)w : 0 ≤ t ≤ 1}

for the line segment joining v to w .
Finally, throughout this paper we denote by C, C1, c, c1, . . ., various positive

constants. The values of constants may change, even within a single line.

2. Lp -metrics and snowflake spaces

Let (X, d) be a metric space. We say that d is an Lp -metric if d satisfies
the appropriate inequality from (1.1) for all x, y, z ∈ X . Note that if d is an
Lp -metric, then d is an Lq -metric for all 1 ≤ q ≤ p ≤ ∞ .

Recall from the introduction that (X, d) is a p -snowflake if d is bi-Lipschitz
equivalent with an Lp -metric on X .
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L∞ -metrics are more commonly known as ultrametrics (also non-Archime-

dean or isosceles metrics). David and Semmes [5, Proposition 15.7] have char-
acterized those metrics on a space X which are bi-Lipschitz equivalent to an
ultrametric. A metric space (X, d) is said to be uniformly disconnected if there
exists c > 0 so that

(2.1) max
i=1,...,N

d(xi, xi−1) ≥ cd(x, y)

for all finite chains of points x = x0, x1, . . . , xN = y . Equivalently, there exists
c1 > 0 so that each ball B(x, r) in X contains a set A satisfying A ⊃ B(x, c1r)
and dist(A, X \ A) ≥ c1r . (See [6, Exercise 14.26].)

Proposition 2.2 (David–Semmes). Let (X, d) be a metric space. Then d is

bi-Lipschitz equivalent with an ultrametric on X if and only if (X, d) is uniformly

disconnected.

Condition (1.2) is the Lp analogue of (2.1). The corresponding Lp version of
Proposition 2.2 is the following.

Proposition 2.3. Let 1 ≤ p < ∞ . A metric space (X, d) is a p -snowflake if

and only if there exists c > 0 so that (1.2) holds for all finite chains x0, x1, . . . , xN

in X .

The proof of Proposition 2.3 is straightforward. Indeed, if d′ is an Lp metric
then

N∑

i=1

d′(xi, xi−1)
p ≥ d′(x, y)p

for all finite chains x = x0, x1, . . . , xN = y . If (X, d) is a p -snowflake, then d
is bi-Lipschitz equivalent with an Lp -metric and (1.2) follows. For the converse,
assume that (1.2) holds for all finite chains. Set

d′(x, y) := inf

{ N∑

i=1

d(xi, xi−1)
p

}1/p

,

the infimum being taken over all finite chains x = x0, x1, . . . , xN = y . Then d′ ≤ d
and it is immediate that d′ satisfies the triangle inequality. By (1.2) d′ ≥ c1/pd .
Thus d′ is an Lp -metric on X which is bi-Lipschitz equivalent with d .

3. Snowflake spaces and uniform non-convexity I

Theorem 3.1. Let (X, d) be a metric space. If (X, d) is δ -uniformly non-

convex for some δ > 0 , then (X, d) is a p -snowflake with

(3.2) p =
log 2

log 2 − log(1 + 4δ2)
> 1.

Observe that p = p(δ) in (3.2) tends to one as δ → 0, and tends to +∞ as
δ → 1

2 .
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Theorem 3.3. Let (X, d) be a metric space. If (X, d) is a snowflake, then

f(X) is uniformly linearly non-convex in V whenever f : X → V is a bi-Lipschitz

embedding of X into a normed vector space V .

Definition 3.4. We say that a set A in a normed vector space (V, ‖ · ‖) is
η -uniformly linearly non-convex (ULNC ) in V , η > 0, if to each pair of points
a, b ∈ A there corresponds c ∈ [a, b] so that BV (c, η‖a − b‖) is disjoint from A .
If A is η -uniformly linearly non-convex in V for some η > 0, we say that A is
uniformly linearly non-convex in V .

We record the following corollary to Theorems 3.1 and 3.3.

Corollary 3.5. Let (X, d) be a UNC space and f : X → V be a bi-Lipschitz

embedding into a normed vector space V . Then f(X) is ULNC in V .

The converses of Theorem 3.1 and Corollary 3.5 fail to hold in general. See
Example 4.6 for a compact and doubling snowflake subset of (R2, ‖ · ‖∞) which
is ULNC but not UNC. If X embeds bi-Lipschitzly in a uniformly convex Banach
space, then the converses of Theorem 3.1 and Corollary 3.5 hold.

Proof of Theorem 3.1. Let (X, d) be δ -UNC for some 0 < δ < 1
2 . We will

show that (1.2) holds with p as in (3.2) and

(3.6) c = a(δ)p, a(δ) := 4δ
(

1
2
− δ

)
.

We argue by induction on the length of the chain. If N = 1 then (1.2)
obviously holds for any p ≥ 1 and any c ≤ 1, in particular, for the values in (3.2)
and (3.6). Assume then that (1.2) holds for all chains of length at most N − 1
and let x0, x1, . . . , xN be a chain of length N . Choose λ = λx0xN

∈ (δ, 1 − δ) so
that L(x0, xN ; λ, δ) = ∅ . Since L(x0, xN ; λ, δ) is empty, one of the following two
alternatives must hold:

(i) For each k ∈ {0, . . . , N} , either

d(x0, xk) ≤ (λ − δ + 4δ2)d(x0, xN)

or
d(x0, xk) ≥ (λ + δ)d(x0, xN).

(ii) There exists an index k ∈ {1, . . . , N − 1} so that

(3.7) d(x0, xk) + d(xk, xN ) ≥ (1 + 4δ2)d(x0, xN);

In case (i), there must exist l ∈ {1, . . . , N} so that

d(x0, xl−1) ≤ (λ − δ + 4δ2)d(x0, xN )
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and
d(x0, xl) ≥ (λ + δ)d(x0, xN ).

Then
N∑

i=1

d(xi, xi−1)
p ≥ d(xl, xl−1)

p ≥ a(δ)pd(x0, xN )p.

Suppose then that case (ii) holds. By the induction hypothesis,

k∑

i=1

d(xi, xi−1)
p ≥ a(δ)pd(x0, xk)p

and
N∑

i=k+1

d(xi, xi−1)
p ≥ a(δ)pd(xk, xN )p

whence
N∑

i=1

d(xi, xi−1)
p ≥ a(δ)p

(
d(x0, xk)p + d(xk, xN)p

)
.

By Lemma 3.8 and (3.7), the expression in parentheses on the right-hand side
is at least d(x0, xN )p . Again, (1.2) is satisfied. This completes the proof of the
induction step and consequently the proof of Theorem 3.1.

Lemma 3.8. If δ1 > 0 and p = log 2/
(
log 2−log(1+δ1)

)
, then Ap ≤ Bp+Cp

whenever A, B, C ≥ 0 satisfy (1 + δ1)A ≤ B + C .

Proof. By homogeneity and a scaling argument it clearly suffices to consider
the case A = 1 and B + C = 1 + δ1 . The minimum of Fp(B) := Bp + (1 + δ1)

p

for B ∈ [0, 1 + δ1] occurs at the midpoint of this interval, where Fp

(
1
2
(1 + δ1)

)
=

2
(

1
2
(1 + δ1)

)p
= 1.

Proof of Theorem 3.3. Let (X, d) be a p -snowflake for some p > 1. By
Proposition 2.3, there exists c > 0 so that (1.2) holds for all finite chains of
points. For fixed L < ∞ , choose an integer N so that

N

(
2L2

N

)p

< c,

and set η = 1/(2N). Let f : X → V be an L -bi-Lipschitz embedding of X into
a normed vector space V ; we will show that f(X) is η -ULNC.

Let x, y ∈ X and choose a chain of equally spaced collinear points

f(x) = z0, z1, . . . , zN = f(y)
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in the ambient space V . For i = 0, . . . , N , set Bi := BV

(
zi, ‖f(x) − f(y)‖/2N

)
.

Suppose that each ball B1, . . . , BN−1 meets f(X), and choose f(xi) ∈ Bi∩f(X),
xi ∈ X , i = 0, . . . , N . Set x0 = x and xN = y . For each i we have

‖f(xi) − f(xi−1)‖ ≤ ‖f(xi) − zi‖ + ‖zi − zi−1‖ + ‖zi−1 − f(xi−1)‖

≤ 2

N
‖f(x0) − f(xN )‖

and so

‖xi − xi−1‖ ≤ 2L2

N
‖x0 − xN‖.

Thus
N∑

i=1

‖xi − xi−1‖p ≤ N

(
2L2

N

)p

‖x0 − xN‖p < c‖x0 − xN‖p

which contradicts (1.2). It follows that one of the balls B
(
zk, ‖f(x)−f(y)‖/(2N)

)

is disjoint from f(X), which demonstrates that f(X) is η -ULNC in V .

4. Snowflake spaces and uniform non-convexity II

Recall that a normed vector space (V, ‖ · ‖) is called uniformly convex if
to each 0 < ε ≤ 2 there corresponds δ(ε) > 0 so that ‖v − w‖ < ε whenever
‖v‖ = ‖w‖ = 1 and

∥∥ 1
2
(v +w)

∥∥ > 1−δ(ε). Laakso proved that uniform convexity
is equivalent with the so-called round ball condition [9].

Definition 4.1. A metric space (X, d) is called a strong round ball (SRB)
space if for every ε > 0 there exists δ1(ε) > 0 so that for all x, y ∈ X and all
0 < λ < 1,

(4.2) diam L
(
x, y; λ, δ1(ε)

)
≤ εd(x, y),

where L(x, y; λ, δ) is the lens set introduced in (1.3).

If (4.2) holds only for λ = 1
2 , we say that (X, d) is a round ball (RB) space.

This is the original notion due to Laakso, see Definition 1.0 of [9]. In the setting
of Banach spaces, SRB and RB are equivalent:

Proposition 4.3. For a Banach space (V, ‖ · ‖) , the following conditions are

equivalent:

(i) V is uniformly convex;
(ii) (V, ‖ · ‖) is an RB space;
(iii) (V, ‖ · ‖) is an SRB space;
(iv) to each ε > 0 there corresponds δ2(ε) > 0 so that ‖q−‖q‖ · p‖ < ε whenever

p, q ∈ V satisfy ‖p‖ = 1 and ‖q‖ + ‖p − q‖ < 1 + δ2(ε) .
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Before giving the proof of this proposition, we show its connection with the
characterization question for snowflake spaces.

Proposition 4.4. Let (V, ‖ · ‖) be a uniformly convex Banach space. Then

A is ULNC in V if and only if A is UNC.

Proof of Proposition 4.4. Let A ⊂ V be UNC. For any a, b ∈ A , there is
c = (1 − λ)a + λb , 0 < λ < 1, so that

BV (c, η‖a − b‖) ∩ A = ∅.

By Proposition 4.3 (V, ‖ · ‖) is an SRB space, whence

diam LV

(
a, b; λ, δ1(η)

)
≤ η‖a − b‖.

Thus

LV

(
a, b; λ, δ1(η)

)
⊂ BV (c, η‖a − b‖)

and so

LA

(
a, b; λ, δ1(η)

)
= LV

(
a, b; λ, δ1(η)

)
∩ A = ∅.

This proves that A is δ1(η)-ULNC in V . The converse assertion follows from
Corollary 3.5.

As a corollary, we obtain the equivalence of conditions (1) and (2) in Theo-
rem 1.5.

Corollary 4.5. Let (X, d) be a metric space which admits a bi-Lipschitz

embedding into a uniformly convex Banach space (V, ‖ · ‖) . Then X is a snowflake

space if and only if the image of X in V is ULNC.

Proof of Corollary 4.5. The “only if” statement is Theorem 3.3. For the
converse, suppose that the image of X in V is ULNC. By Proposition 4.4, f(X)
is a UNC metric space, with metric induced from V . Theorem 3.1 ensures that
f(X) is a snowflake. The conclusion follows since the snowflake condition is bi-
Lipschitz invariant.

Uniform non-convexity and uniform linear non-convexity are not bi-Lipschitz
invariant conditions. For subspaces of uniformly convex Banach spaces, uniform
non-convexity is equivalent with the snowflake condition. This raises the question:
can every snowflake space be isometrically embedded in some uniformly convex Ba-
nach space? Every ultrametric space may be isometrically embedded in a Hilbert
space; see Corollary 1.3 in [10] and compare with Problem 3 from [10].
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4.6. The von Koch snowflake is not a UNC subspace of (R2, | · |∞).
Let Λ be the standard von Koch snowflake curve in R2 (see Figure 1). We assume
that the endpoints of Λ are at the origin and e1 = (1, 0), and that Λ is contained
in the triangle T =

{
(x, y) : 0 ≤ y ≤ min{|x|, |1− x|}

}
.

Let d be the standard Euclidean metric on R2 , and let | · |∞ be the maximum
metric on R2 . As indicated in the introduction, (Λ, d) is a snowflake; since | · |∞
and d are bi-Lipschitz equivalent, (Λ, | · |∞) is also a snowflake, and hence is
ULNC in (R2, | · |∞).

We claim that (Λ, | · |∞) is not UNC. To see this, it suffices to note that the
lens sets L(0, e1, λ, δ) are nonempty for every 0 ≤ λ ≤ 1 and δ > 0. In fact, for
every such λ there exists z ∈ Λ with |z|∞ = λ and |z − e1|∞ = 1 − λ . Indeed,
since Λ is a closed curve joining the origin to e1 , there exists z = (x, y) ∈ Λ with
|z|∞ = λ . Since Λ ⊂ T , we must have x = λ , in which case |z − e1|∞ = 1 − x =
1 − λ .

Proof of Proposition 4.3. (i) ⇔ (ii): This is Lemma 5.2 from [9].
(iii) ⇒ (ii): This is trivial.
(i) ⇒ (iii): We will show that the SRB condition holds with

(4.7) δ1 = δ1(ε) :=
1

25
min{1, ε2, δ(ε)2},

where δ(ε) is the function in the definition of uniform convexity.
Let x, y ∈ V and 0 < λ < 1, and let a, b ∈ L := L(x, y; 1−λ, δ1). Our goal is

to show that ‖a−b‖ ≤ ε‖x−y‖ . Since the SRB condition is scale-invariant, we may
assume that x = 0 and ‖y‖ = 1. Moreover, we may assume that λ ≥

√
δ1 − δ1 ;

otherwise ‖a − b‖ ≤ 2(λ + δ1) ≤ 2
√

δ1 ≤ ε .
By the definition of L , we have ‖a‖, ‖b‖ ≤ 1− λ + δ1 and ‖a− y‖, ‖b− y‖ ≤

λ + δ1 . Since L is convex, 1
2 (a + b) ∈ L whence

(4.8)
∥∥ 1

2 (a + b)
∥∥ ≥ λ − δ1.

Suppose that ‖a − b‖ > ε . Then v = a/‖a‖ and w = b/‖b‖ are elements of the
unit sphere of V , and a calculation shows

‖v − w‖ ≥ ε

λ + δ1
− 2δ1

λ − δ1
≥ ε.

By the uniform convexity of V ,
∥∥ 1

2 (v + w)
∥∥ ≤ 1 − δ(ε). Writing

v + w =
1

‖a‖(a + b) +
‖a‖ − ‖b‖
‖a‖ ‖b‖ b

and using the definition of v and w together with the bound in (4.8), we derive
the inequality

λ − δ1

λ + δ1
≤ 1 − δ(ε) +

δ1

λ − δ1
,
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which can not be true due to the choice of δ1 in (4.7). This completes the proof
of the implication (iii) ⇒ (i).

(iii) ⇒ (iv): We will show that the condition in (iv) holds with

δ2(ε) := min
{
1, 1

2
ε, δ1

(
1
2
ε
)}

.

Suppose that p, q ∈ V with ‖p‖ = 1 and ‖q‖ + ‖p − q‖ < 1 + δ2 . Applying the
SRB condition with x = 0, y = p and λ = ‖q‖/(1 + δ2), we conclude that

diamL(0, p; λ, δ2) ≤ 1
2
ε.

Since λp and q belong to this lens set, we find that ‖q − λp‖ ≤ 1
2
ε , whence

‖q − ‖q‖ · p‖ ≤ ‖q − λp‖ +
∣∣λ − ‖q‖

∣∣ ≤ ε

2
+

δ2

1 + δ2
‖q‖ <

ε

2
+ δ2 ≤ ε

as desired.

(iv) ⇒ (iii): We will show that the strong round ball condition holds with

(4.9) δ1 = δ1(ε) := 1
4 min

{
1, ε, δ2

(
1
4ε

)}
,

where δ2(ε) is the function in condition (iv).
Let x, y ∈ V and 0 < λ < 1. As before, we may assume without loss of

generality that x = 0 and ‖y‖ = 1. Let p = y and let q ∈ L(0, p, λ, δ1). Then

‖q‖ + ‖p − q‖ < 1 + 2δ1 < 1 + δ2

(
1
4ε

)
.

By condition (iv),
∥∥q − ‖q‖p

∥∥ < 1
4
ε and so

diamL(0, p, λ, δ1) ≤ 2
(

1
4ε + δ1

)
≤ ε

as desired.

5. Snowflake spaces and weak tangents

Definition 5.1. Let (Xm, dm, pm) be a sequence of pointed metric spaces.
We say that (Xm, dm, pm) converges to a limit space (X, d, p) (in the sense of
pointed Gromov–Hausdorff convergence) if for each R > 0 and ε > 0 there exists
M = M(ε, R) and maps fm = fε

m: B(pm, R) → X , m ≥ M , satisfying the
following three conditions:

(i) fm(pm) = p ;
(ii)

∣∣d
(
fm(x), fm(x′)

)
− dm(x, x′)

∣∣ < ε for all x, x′ ∈ B(pm, R);

(iii) B(p, R − ε) ⊂ Nε

(
fm

(
B(pm, R)

))
.

We denote this form of convergence by (Xm, pm)
GH−→(X, p).
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This is a natural formulation of Gromov–Hausdorff convergence for (possibly)
unbounded spaces. See, for example, Chapter 8 of [4]. In case the spaces Xm ,
X have uniformly bounded diameters, it agrees with the usual definition [4, Exer-
cise 8.1.2]. If the metric spaces Xm are proper and the limit space X is complete,
then X is proper and uniquely determined (up to pointed isometry).

In the technical language which has become standard in this subject [2],
[3], condition (ii) states that fm is an ε -rough isometric embedding of B(pm, r)
into X .

Definition 5.2. We say that a pointed metric space (Z∞, d∞, z∞) is a weak

tangent of a metric space (X, d) if there exist sequences pm ∈ X and 0 < rm ≤
C < ∞ so that (X, r−1

m d, pm)
GH−→(Z∞, d∞, z∞).

See, for example, Chapter 9 of [5].
If the scaling ratios rm in Definition 5.2 are uniformly bounded away from

zero, then the limit space (Z∞, d∞) is isometric with (X, c−1d) for some suitable
c ∈ (0,∞). This is easy to prove.

Proposition 5.3. Let (X, d) be a metric space which admits an L -bi-

Lipschitz embedding in a Banach space (V, ‖ · ‖) . Then for each weak tangent

(Z∞, d∞, p∞) of (X, d) and each R > 0 , the ball B(z∞, R) in Z∞ admits an

L -bi-Lipschitz embedding in (V, ‖ · ‖) .

Proof. We may assume that (X, r−1
m d, pm)

GH−→(Z∞, d∞, z∞) for some pm ∈ X
and rm → 0. Fix an L -bi-Lipschitz map ϕ: X → V , and define a sequence of
L -bi-Lipschitz embeddings ϕm of X into V by

ϕm(x) = r−1
m

(
ϕ(x) − ϕ(pm)

)
.

Fix R > 0 and 0 < ε < R . By Definition 5.1, for sufficiently large m , there
exists f ε

m: B(pm, 2rmR) → Z∞ with fε
m(pm) = z∞ ,

(5.4)

∣∣∣∣d∞

(
fε

m(x), fε
m(x′)

)
− d(x, x′)

rm

∣∣∣∣ < ε,

and B(z∞, R) ⊂ Nε

(
fε

m

(
B(pm, 2rmR)

))
.

We now define a map hε from B(z∞, R) into V × R as follows. Fix a suffi-
ciently large integer m = m(ε) so that the map f ε

m exists. Given z ∈ B(z∞, R) ⊂
Z∞ , choose x ∈ B(pm, 2rmR) with d∞

(
z, fε

m(x)
)

< ε . Define hε(z) to be the
point ϕm(x) ∈ V . From (5.4) we deduce that hε is an (L, 3ε)-rough quasi-
isometric embedding of B(z∞, R) into V , i.e.,

1

L

(
d∞(z, w) − 3ε

)
≤ ‖hε(z) − hε(w)‖ ≤ L(d∞(z, w) + 3ε)

for all z, w ∈ B(z∞, R). Applying a standard Cantor diagonal argument and
passing to a subsequence if necessary, we construct an L -bi-Lipschitz embedding
h: B(z∞, R) → V .
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Remark 5.5. We do not know whether the full weak tangent Z∞ may be
embedded in V . Note that it is not guaranteed in the above proposition that the
various embeddings of the balls B(z∞, R) into V are coherent.

We now state the principal results of this section.

Theorem 5.6. If (X, d) is a snowflake, then every weak tangent of (X, d)
contains no rectifiable curves.

Theorem 5.7. Let (X, d) be a compact, doubling metric space that admits

an L -bi-Lipschitz embedding into a Banach space (V, ‖ · ‖) for some L ≥ 1 . If

no weak tangent of (X, d) contains an L -quasigeodesic, then the image of X is

ULNC in V .

Proposition 5.8. Let (X, d) be a complete doubling metric space which

admits an L -bi-Lipschitz embedding into a uniformly convex Banach space. If

some weak tangent of (X, d) contains a rectifiable curve, then some weak tangent

of (X, d) contains an L -quasigeodesic.

In Theorem 5.7 uniform convexity for V is not needed, while compactness and
the doubling condition are used to apply Gromov’s compactness theorem. Theo-
rem 5.7 does not hold in the absence of the doubling and compactness assumption.
See Example 5.13.

Theorems 5.6 and 5.7 complete the proof of Theorem 1.5. Indeed, the im-
plication (1) ⇒ (3) follows from Theorem 5.6, while the implication (3) ⇒ (2)
follows from Theorem 5.7.

In case (X, d) is a compact and doubling space, Proposition 5.8 is a simple
corollary of Theorem 5.7, Theorem 4.5 and Theorem 5.6.

Proof of Theorem 5.6. The proof is very similar to the proof of Theorem 3.3.
Assume that (X, d) is a p -snowflake for some p > 1, and suppose that some weak
tangent (Z∞, d∞, z∞) of (X, d) contains a rectifiable curve γ with endpoints a
and b . Let d = d∞(a, b), let l be the length of γ , and let c be the constant from
(1.2). Choose an integer N so that

2N

(
l

dN

)p

< c.

Let a = z0, z1, . . . , zN = b be an ordered sequence of points on γ satisfying

d∞(zi, zi−1) =
l

N

for all i = 1, . . . , N .

Choose pm ∈ X and rm > 0 so that (X, r−1
m d, pm)

GH−→(Z∞, d∞, z∞). Apply-
ing condition (ii) of Definition 5.1 and passing to a subsequence if necessary, we
find points

am := xm
0 , xm

1 , . . . , xm
N =: bm
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in X so that

(5.9) |r−1
m d(xm

i , xm
j ) − d∞(zi, zj)| <

1

m

for each 0 ≤ i < j ≤ N . Thus

d(xm
i , xm

j ) < rm

( |i − j|
N

l +
1

m

)

for each 0 ≤ i < j ≤ N and

cd(am, bm)p ≤
N∑

i=1

d(xm
i , xm

i−1)
p < Nrp

m

(
l

N
+

1

m

)p

by (1.2). From (5.9) we see that d(am, bm) > rm

(
d − (1/m)

)
whence

c

(
d − 1

m

)p

< N

(
l

N
+

1

m

)p

.

We obtain a contradiction upon passing to the limit as m → ∞ .

Proof of Theorem 5.7. Let ϕ be a bi-Lipschitz embedding of X in Y .
Since no weak tangent of (X, d) contains an L -quasigeodesic, no weak tangent
of (ϕ(X), ‖ · ‖) contains a geodesic. We use here the fact that L -bi-Lipschitz
maps pass to weak tangents with no increase in the bi-Lipschitz constant. It thus
suffices to prove the stated result under the assumptions that (X, d) is contained
in V and no weak tangent of (X, d) contains a geodesic.

Suppose that (X, d) fails to be η -ULNC in V for any η > 0. Then for each
m ∈ N there exist points xm, ym ∈ X so that the line segment [xm, ym] ⊂ V is
contained within a suitable neighborhood of X in V :

(5.10) [xm, ym] ⊂
{

v ∈ V : dist(v, X) <
1

m
d(xm, ym)

}
.

Passing to a subsequence if necessary, we may assume that the sequences (xm),
(ym) converge to points x, y ∈ X respectively. We distinguish two cases:

Case I (x 6= y ): The geodesic segments [xm, ym] converge to [x, y] in the
Hausdorff metric on V . Combining this observation with (5.10) and using the
fact that X is a closed subset of V , we conclude that [x, y] ⊂ X . Thus the
original metric space (X, d) (which occurs as a weak tangent of (X, d); see the
remark following Definition 5.2) contains a geodesic segment.
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Case II (x = y ): Set rm := d(xm, ym). By Gromov’s compactness theorem
[4, Theorem 8.1.10], the rescaled metric spaces (X, r−1

m d, xm) converge after pass-
ing to an appropriate subsequence to a weak tangent (Z∞, d∞, z∞). Applying
Definition 5.1 with R = 2 and again passing to a subsequence if necessary, we
deduce the existence of maps fm: B(xm, 2rm) → Z∞ satisfying fm(xm) = z∞
and ∣∣∣∣d∞

(
fm(x), fm(x′)

)
− d(x, x′)

rm

∣∣∣∣ <
1

m
.

Set wm = fm(ym). Observe that

(5.11) wm ∈ B(z∞, 1 + m−1) \ B(z∞, 1 − m−1).

For each λ ∈ [0, 1] consider the point vm,λ := λym+(1−λ)xm ∈ V . By (5.10)
there exists um,λ ∈ X with ‖um,λ − vm,λ‖ < rm/m . Then um,λ ∈ B(xm, 2rm)
and the quantity

fm(um,λ)

is well-defined as an element of Z∞ . Define a map from [0, 1] to Z∞ by

(5.12) λ 7→ fm(um,λ).

From the aforementioned properties of fm , we deduce that

∣∣d∞

(
fm(um,λ), fm(um,λ′)

)
− |λ − λ′|

∣∣ <
3

m
,

i.e., the map in (5.12) defines a (1, 3/m)-rough quasi-isometric embedding of [0, 1]
into Z∞ sending 0 to z∞ and 1 to wm . A Cantor diagonal argument as in
the proof of Proposition 5.3 yields an isometric embedding of a dense subset of
[0, 1] into Z∞ sending 0 to z∞ and 1 to a suitable cluster point w∞ of the
sequence (wm). This embedding may be extended to an isometric embedding of
[0, 1] into Z∞ . Thus Z∞ contains a geodesic segment.

Proof of Proposition 5.8. We assume that (X, d) is a complete and doubling
(hence proper) space which admits an L -bi-Lipschitz embedding into a uniformly
convex Banach space (V, ‖ · ‖), and that some weak tangent (Z∞, d∞, z∞) of
(X, d) contains a rectifiable curve γ . Since properness descends to weak tangents,
we may include γ within a compact ball B . By Proposition 5.3, B admits an L -
bi-Lipschitz embedding in V . Since B contains a rectifiable curve, Theorem 5.6
implies that (B, d∞) is not a snowflake. Recall that the space itself occurs as
a weak tangent. Since the doubling condition passes to weak tangents, we con-
clude from Theorem 5.7 that some weak tangent (W̃∞, δ̃∞, w̃∞) of (B, d∞) con-

tains an L -quasigeodesic γ̃ . Suppose that (W̃B , δ̃∞, w̃∞) of (B, d∞) arises as the
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Gromov–Hausdorff limit of a sequence (B, r−1
i d∞, zi), zi ∈ B . By Gromov’s com-

pactness theorem, a suitable subsequence of (Z∞, r−1
i d∞, zi) converges to a weak

tangent (W∞, δ∞, w∞) of (Z∞, d∞). Moreover, (W∞, δ∞) contains (W̃∞, δ̃∞),
and hence contains γ̃ . Since weak tangents of weak tangents are weak tangents,
(W∞, δ∞, w∞) is a weak tangent of the original space (X, d). This completes the
proof of Proposition 5.8.

5.13. A non-snowflake subspace of l2 having no rectifiable curves

in its weak tangents. For each n ∈ N , let 2−nZ denote the collection of real
numbers of the form j ·2−n , j ∈ Z . Denote by Qn the closed cube in Rn centered
at (2, 0, . . . , 0) of side length 2n−1/2 with edges parallel to the coordinate axes,
and let

Xn = Qn ∩ (2−nZ)n ⊂ Rn.

Denote by in the embedding of Rn into l2 given by

(x1, . . . , xn) 7→
n∑

k=1

xke

(
n(n − 1)

2
+ k

)
,

where {e(1), e(2), . . .} denotes an orthonormal basis for l2 . Note that the images
in(Rn) lie in orthogonal subspaces of l2 , and that dist

(
in(Xn), in′(Xn′)

)
≥

√
2

for all n 6= n′ .

Let X =
⋃

n∈N
in(Xn). We endow X with the metric d induced from l2 ,

and observe that X is a countable subset of a closed ball of radius 3. Moreover,
X is neither compact nor doubling, since it contains an infinite set of points
i1(2), i2(2, 0), i3(2, 0, 0), . . . with mutual distance 2

√
2 .

It is clear that X is not a snowflake space, since it contains collections of
equally spaced collinear points of arbitrarily large cardinality. We claim however
no weak tangent of X contains a rectifiable curve. In fact, every weak tangent of
X is either isometric with a rescaled copy of X , or is a singleton.

Suppose that some sequence (X, r−1
m d, pm) Gromov–Hausdorff converges to a

limit space (Z∞, d∞, z∞). We distinguish three cases: (i) rm ≥ c > 0, (ii) rm → 0

and pm ∈ ⋃N
n=1 in(Xn) for some N < ∞ and all m , (iii) rm → 0 and pm ∈

in(m)(Xn(m)) with n(m) → ∞ as m → ∞ . Modulo restriction to a subsequence,
one of these possibilities must occur.

Case (i) has already been mentioned (after Definition 5.2); the limit space
(Z∞, d∞) must be isometric with a rescaled copy of (X, d). In case (ii) we claim
that Z∞ must be a singleton. This is a consequence of the following

Lemma 5.14. Suppose that (X, r−1
m d, pm) Gromov–Hausdorff converges to

(Z∞, d∞, z∞) . Assume that rm → 0 and infm dist(pm, X \ {pm}) > 0 . Then

Z∞ = {z∞} .
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We are left with case (iii): rm → 0 and pm ∈ in(m)(Xn(m)) with n(m) → ∞
as m → ∞ . Here we distinguish two further subcases: (a) rm/2−n(m) → 0 and
(b) lim sup rm/2−n(m) > 0. In the former case, we may use a scaled version of
Lemma 5.14 to conclude that Z∞ is a singleton. Observe that dist(p, X \ {p}) ≥
2−n if p ∈ in(Xn).

We claim that case (iii)(b) cannot occur; in essence, the sequence (X, r−1
m d, pm)

cannot be Gromov–Hausdorff Cauchy. Passing to a subsequence, we may assume
that

rm ≥ δ · 2−n(m)

for all m and some 0 < δ < 1. Choose R = 16/δ and ε = 1/δ . For sufficiently
large m , there exists a map fm from the ball B(pm, rmR) in (X, ‖ · ‖2) to Z∞

with fm(pm) = z∞ ,

(5.15)

∣∣∣∣d∞

(
fm(x), fm(x′)

)
− ‖x − x′‖2

rm

∣∣∣∣ < ε,

and

(5.16) B(z∞, R − ε) ⊂ Nεfm

(
B(pm, rmR)

)
,

where B(pm, rmR) denotes the ball in X centered at pm with radius rmR .
Assume that m , m′ are sufficiently large that max{rm, rm′} < 1/R . Then

B(pm, rmR) = Bl2(pm, rmR) ∩ X ⊂ in(m)(Xn(m))

and
B(pm′ , rm′R) ⊂ in(m′)(Xn(m′)).

Note that

fm

(
B

(
pm, 1

2rmR
)
⊂ B

(
z∞, 1

2R + ε
)
⊂ B(z∞, R − ε) ⊂ Nεfm′(B(pm′ , rm′R)

)

by (5.15).
From the choice of the sets Xn , each of the balls B

(
pm, 1

2rmR
)
⊂ X contains

a set of cardinality at least n(m), whose mutual distances are all at least 1
2
rmR .

Then (5.15) implies that B(z∞, R− ε) ⊃ fm

(
B

(
pm, 1

2rmR
))

contains a set of the
same cardinality whose mutual distances are all at least 1

2
R − ε ; (5.16) then im-

plies that fm′

(
B

(
pm′ , rm′R

))
contains a set of the same cardinality whose mutual

distances are all at least 1
2
R − 3ε . Finally, a second application of (5.15) shows

that B(pm′ , rm′R) contains a set of n(m) points whose mutual distances are all
at least

rm′

(
1
2R − 4ε

)
= 1

4rm′R.

Since B(pm′ , rm′R) ⊂ in(m′)(Xn(m′)) which contains at most 2n(m′)2+2n(m′)−1

points, we obtain a contradiction provided m is sufficiently large. We conclude
that case (iii)(b) cannot occur.
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Remark 5.17. Modify the above construction by replacing each point z in
in(Xn) by a scaled von Koch snowflake arc of diameter 2−n−10 containing z . The
resulting space Y is again not a snowflake space, and each weak tangent of Y is
either a scaled copy of Y or a scaled von Koch snowflake arc.

6. The polygasket PG(N) is a snowflake if N = 5 or N ≥ 7

The polygasket PG(N) is the self-similar subset of R2 characterized by the
following iterative procedure: fix an initial regular N -gon P∅ with sides of unit
length, called the level 0 polygon, and at the mth step, replace each level m
polygon Π with N regular N -gons Π1, . . . , ΠN , pairwise congruent and contained
in Π, which satisfy two properties:

(i) Each Πi shares a single vertex with Π.
(ii) Πi and Πj intersect if and only if they meet a common side of Π. Label the

Πi ’s so that Πi and Πj are disjoint if and only if |i − j| ≥ 2 (modN). If
|i − j| = 1 (mod N) and N 6= 0 (mod 4) (the post-critically finite case), the
intersection of Πi and Πj consists of a single point which is a vertex of both
Πi and Πj . If |i − j| = 1 (modN) and N = 0 (mod 4), the intersection of
Πi and Πj consists of a line segment which is a common edge of both Πi

and Πj .

We call the subpolygons Π1, . . . , ΠN the children of Π. We denote the children of
the level 0 polygon P∅ by P1, . . . , PN . Each child Πi of a given polygon Π has
side length equal to rN times the side length of Π. The scaling ratio rN can be
explicitly determined as a function of N ; see Section 6 of [12].

For each m , let Km denote the union of all level m polygons. Then

PG(N) =
∞⋂

m=0
Km.

Figure 2 shows PG(N) for N = 3, 5, 6, 8, 9.
In this subsection, we prove that PG(N) is a snowflake for N = 5 or N ≥ 7.

The seemingly obvious property ULNC for PG(N) ⊂ R2 is difficult to prove. We
opt for a less direct approach, instead verifying that no weak tangent of PG(N)
contains any nontrivial geodesic segments. The result then follows from Theo-
rems 5.7 and 4.5.

We begin by identifying the weak tangents of PG(N). Denote by P the
family of all regular N -gons in R2 . For each P in P , let φP be a similarity
map from P onto P∅ . The regular N -gons φ−1

P (Pj), j = 1, . . . , N , are called
the children of P . A regular N -gon P ′ is called a descendant of another regular
N -gon P if there is a sequence P = P (0), P (1), . . . , P (k) = P ′ of regular N -gons
so that P (j) is a child of P (j − 1) for each j = 1, . . . , k , or if P ′ = P .

The following is a variation on a definition of David and Semmes [5, Chap-
ter 13].
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Definition 6.1. A family C of regular N -gons is a normalized family if

(i) C contains the initial N -gon P∅ ,
(ii) each element of C is the child of exactly one element of C ,
(iii) all children of a given element of C are in C ,
(iv) each pair of elements of C are descended from a common ancestor.

For each m ∈ Z , denote by K̂ (C )m the union of the N -gons in C with side

length rm
N . The limiting set K̂ (C ) for the family C is

K̂ (C ) =
⋂

m∈Z

K̂ (C )m.

David and Semmes [5, Definition 13.1] define a normalized family of cubes to
be a family of closed cubes in Rn satisfying conditions (i), (ii), (iv) and

(iii ′ ) for each element Q of C , at least one child of Q lies in C .

Our condition (iii) severely limits the number and variety of normalized families.
For example, when N = 4 there are only three normalized families of squares
in R2 , modulo isometry of the limiting set. In fact, for any normalized family of
squares in R2 , the limiting set is isometric with one of the following: the quadrant
{(x, y) : x ≥ 0, y ≥ 0} , the half-plane {(x, y) : y ≥ 0} , or the full plane R2 .

Proposition 6.2. Let N ≥ 3 be fixed. Then, up to rescaling, each weak

tangent of PG(N) is isometric with either PG(N) or with ̂PG(N)(C ) for some

normalized family C of N -gons.

The proof of Lemma 13.9 in [5] can be adapted to the current setting; we
omit the details.

Modulo Proposition 6.2, the proof of Theorem 1.6 reduces to verifying that no

limiting set ̂PG(N)(C ) contains a nontrivial line segment when N = 5 or N ≥ 7.
It suffices to prove that PG(N) itself contains no nontrivial line segments. To see

this, observe that if ̂PG(N)(C ) is contained a nontrivial (compact) line segment
L , then L is contained within one of the polygons P in C , and hence can be
mapped by the similarity φP to a nontrivial line segment in PG(N) ⊂ P∅ .

Proposition 6.3. If N = 5 or N ≥ 7 , then PG(N) contains no nontrivial

line segments.

Proof. For m = 0, 1, . . . and N ≥ 3, let lm(N) be the length of the longest
line segment contained in Km . Recall that Km denotes the union of the level
m polygons, i.e., mth generation children of P∅ . Observe that lm(3) = 1 and
lm(4) =

√
2 for all m ≥ 0, while l0(6) = 2 and lm(6) =

√
3 for all m ≥ 1. For

each N = 5, 7, 8, 9, . . ., we will show that

(6.4) lm(N) ≤ 12rm
N diam(P∅)
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for all m . Since rN < 1, this suffices to complete the proof.
The post-critically finite case N 6≡ 0 (mod 4) is easier and will be treated

first. In this case we have Pi ∩ Pi+1 = {vi} for i = 0, . . . , N − 1 (indices taken
modulo N ), and the junction points v0, . . . , vN−1 form the vertices of a new
regular N -gon. No three of these vertices are collinear, which implies that any
line segment contained within K1 meets at most three of the children of P∅ . Thus

l1(N) ≤ 3 diam(Pi) = 3rN diam(P∅).

In a similar manner, we prove that any line segment L contained within
K2 ⊂ K1 meets at most six grandchildren of P∅ . Since N 6= 3, 6, any line
segment joining distinct level one junction vertices vi, vj is not entirely contained
within K2 . Consequently L meets at most one such vertex, and is contained in two
adjacent children of P∅ . In this case, the grandchildren in question are necessarily
children of at most two adjacent children of P∅ . By the previous paragraph, L
meets at most three children of each of these two children, whence

l2(N) ≤ 6 diam(Pij) = 6r2
N diam(P∅).

Continuing in this fashion, we can prove that any line segment contained within
Km meets at most 12 level m descendants of P∅ . Thus

lm(N) ≤ 12 diam(Pi1···im
) = 12rm

N diam(P∅) for all m .

Next, we consider the case N ≡ 0 (mod 4). In this case we have Pi∩Pi+1 = Ei

for i = 0, . . . , N − 1 (indices taken modulo N ), where Ei is a junction edge
common to Pi and Pi+1 . A somewhat involved geometric argument (which we
omit) shows that at most three junction edges are collinear (we say that sets
A1, . . . , Ak are collinear if there exist points aj ∈ Aj , j = 1, . . . , k , so that
a1, . . . , ak are collinear). Thus any line segment contained within K1 meets at
most four children of P∅ , and

l1(N) ≤ 4 diam(Pi) = 4rN diam(P∅).

Next, we prove that any line segment L contained within K2 meets at most
eight of the grandchildren of P∅ . Since N 6= 4, any line segment joining two
distinct level one junction edges Ei, Ej is not entirely contained within K2 . (This
is another geometric argument which we omit.) Consequently, L meets at most
one such edge, the grandchildren in question are necessarily children of at most
two fixed adjacent children of P∅ , and the desired conclusion follows from the
previous paragraph. We conclude that

l2(N) ≤ 8 diam(Pij) = 8r2
N diam(P∅)

and similarly, that

lm(N) ≤ 8 diam(Pi1···im
) = 8rm

N diam(P∅)

for all m . With these computations the proof of the proposition is complete.
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7. Appendix

Upon reading an early draft of this paper, Tomi Laakso [8] suggested a further
geometric characterization of snowflake spaces. The results and proofs in this
section are due to Laakso.

Definition 7.1 (Laakso). A metric space (X, d) is line-fitting if for each
n ∈ N there is a metric dn on the disjoint union X

∐
[0, 1] such that (i) dn is

the usual Euclidean metric in [0, 1], (ii) dn is a constant multiple of d in X and
(iii) [0, 1] is contained in the 1/n -neighborhood of X .

Informally, (X, d) is line-fitting if it is possible to “attach” line segments to
X with arbitrarily fine accuracy.

The main result of this section is the following theorem.

Theorem 7.2. (X, d) is a snowflake if and only if it is not line-fitting.

An advantage of this characterization is that it does not require any auxiliary
embeddings of the space in “nice” Banach spaces. However, while the concept of
line-fitting is an intrinsic geometric notion, it may be rather complicated to verify
that a given space is not line fitting. Furthermore, the estimates for the exponent
p > 1 which arise in the following proof are less precise than those obtained in
the setting of Theorem 1.5, when the metric space in question admits a suitable
embedding. See Theorem 3.1.

Sketch of proof. It is easy to prove that a snowflake space cannot be line-
fitting. Indeed, suppose that (X, d) is a p -snowflake for some p > 1 and is line-
fitting. Choose c > 0 so that (1.2) holds, choose metrics dn , n ∈ N , on X

∐
[0, 1],

and associated scaling factors rn so that dn|X = rnd as in Definition 7.1, and
consider the points xi = i/n , i = 0, . . . , n . By the hypothesis, there are points
yi , i = 0, . . . , n in X so that dn(xi, yi) < 1/n for all i , whence

crp
n

(
1 − 2

n

)p

< crp
nd(y0, yn)p ≤

n∑

i=1

rp
nd(yi, yi−1)

p < rp
nn

(
3

n

)p

.

For sufficiently large n , this gives a contradiction.
Conversely, suppose that X is not line-fitting, and choose s > 0 so that for

any metric d′ on X
∐

[0, 1] with d′ a constant multiple of d on X and d′ equal
to the Euclidean metric on [0, 1], the estimate

(7.3) sup
0≤t≤1

dist(t, X) > s

holds. Choose J and δ > 0 so that 2−J < 2/s and (1 + 2δ)J < 1 + s .
For any x and y in X , consider the following recursive procedure. Begin with

p0 = x and p1 = y . Assume that points pi·2−j , i = 0, . . . , 2j , are given for some
j ≥ 0. If one of the lens sets Li := L

(
p(i−1)2−j , pi·2−j ; 1

2 , δ
)
, i = 1, . . . , 2j , is empty,

terminate the procedure. Otherwise, for each such i , choose p(2i−1)2−j−1 ∈ Li .



Characterizations of snowflake metric spaces 335

Claim. This procedure terminates in fewer than J steps.

To see why the claim holds, suppose that this procedure may be continued at
least J steps, yielding points pi·2−J , i = 0, . . . , 2J , in X . From the construction,
it is easy to see that the estimate

(7.4) 2−J |i − l| − s ≤ d(pi·2−J , pl·2−J )

d(x, y)
≤ 2−J |i − l| + s

holds true for each 0 ≤ i, l ≤ 2J . Set r = d(x, y)−1 and define a distance function
d′ in X

∐
[0, 1] as follows: d′|X = rd , d′|[0,1] = Euclidean metric, and

d′(a, t) = min
i=0,...,2J

rd(a, pi·2−J ) + |i · 2−J − t| + 1
2
s

for all a ∈ X and t ∈ [0, 1]. Observe that d′(pi·2−J , i · 2−J) = 1
2s for each

i = 0, . . . , 2J . From (7.4) it easily follows that d′ is a metric on X
∐

[0, 1] and
[0, 1] is contained in the 3

4s -neighborhood of X . This contradicts (7.3).
If one could conclude from the claim that

(7.5) L(x, y; λ, ξ) = ∅

for some 0 < λ < 1 and ξ > 0, then the snowflake property would follow as in
the proof of Theorem 3.1. However, (7.5) need not be true in general. Neverthe-
less, (X, d) is a p -snowflake as may be shown by an elaboration on the proof of
Theorem 3.1.

It suffices to prove that (1.2) holds for some c > 0 and p > 1. Let β =
{x0, x1, . . . , xN} be a chain of points in X with N ≥ 2J . (If N ≤ 2J the
conclusion follows with any p and c = 2−pJ by the triangle inequality.) If β ∩
L

(
x0, xN ; 1

2 , δ
)

= ∅ then (1.2) holds for a suitable choice of p > 1 and c > 0
depending only on δ as in the proof of Theorem 3.1. Otherwise, choose xk ∈
β ∩ L

(
x0, xN ; 1

2 , δ
)

and consider the subchains βL = {x0, . . . , xk} and βR =

{xk, . . . , xN} . If βL ∩ L
(
x0, xk; 1

2
, δ

)
= ∅ then

∑k
i=1 d(xi, xi−1)

p ≥ cd(x0, xk)p ,

while if βR ∩L
(
xk, xN ; 1

2 , δ
)

= ∅ , then
∑N

i=k+1 d(xi, xi−1)
p ≥ cd(xk, xN)p for the

same choice of p > 1 and c > 0 as above. If both sets are nonempty, then choose
xm ∈ βL ∩ L

(
x0, xk; 1

2 , δ
)

and xq ∈ βR ∩ L
(
xk, xN ; 1

2 , δ
)

and iterate the above
procedure.

By the claim, this procedure will terminate in fewer than J steps, and yield
indices i′, i′′ ∈ {0, . . . , N} , i′ ≤ i′′ , so that β̃ ∩ L

(
xi′ , xi′′ ;

1
2 , δ

)
= ∅ , where β̃ =

{xi′ , . . . , xi′′} . Again it follows from the proof of Theorem 3.1 that

i′′∑

i=i′+1

d(xi, xi−1)
p ≥ cd(xi′ , xi′′)

p.
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The estimate d(xi′ , xi′′) ≥
(

1
2−δ

)J
d(x0, xN) follows from the construction, whence

N∑

i=1

d(xi, xi−1)
p ≥

i′′∑

i=i′+1

d(xi, xi−1)
p ≥ c

(
1
2
− δ

)J
d(x0, xN )p.

Thus (1.2) holds for some p > 1 and c′ = c
(

1
2 − δ

)J
> 0 depending only on s .

(Recall that J and δ were chosen depending only on s .) This completes the
proof.
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