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Abstract. We commence a geometric theory of the weighted spaces of holomorphic functions
on bounded open subsets of Cn , Hv(U) and Hvo

(U) by finding an upper bound for the set of
extreme points of the unit ball of Hvo

(U) . When U is balanced and v is radial we show that
Hvo

(U) is not isometrically isomorphic to a subspace of co . We give a Choquet type theorem for
Hvo

(U) and use it to study the centraliser of Hvo
(U) .

1. Introduction

From a functional analysis point of view spaces of weighted holomorphic func-
tions have been studied, to date, under at least four broad headings. The duality
problem (see [37], [41], [42], [43], [19], [6], [38], [39]) which seeks to represent the
dual and bidual of Hvo

(U) (defined below) as spaces of analytic functions. The
theory of M-ideals (see [45], [46], [24]) which studies Hvo

(∆) as an M-ideal in its
bidual. The isomorphic theory (see [28], [29], [30], [31], [32], [33], [34], [9]) which
seeks to classify Hvo

(U) as a Banach space up to isomorphism. The theory of
composition and multiplication operators on Hvo

(U) and its bidual Hv(U) (see
[7], [8], [16], [17], [20], [40], [44], [15]). In this paper we examine a new aspect of
weighted spaces of holomorphic functions—the isometric theory. As we shall see
this new aspect leads to a deeper understanding of all the previous aspects men-
tioned above. The isometric theory of weighted spaces of holomorphic functions
is further investigated in [11], [12] and [13].

Let U be a bounded open subset of Cn . A continuous weight v on U is a
bounded, strictly positive real valued function on U . We shall mainly concentrate
on weights which converge to 0 on the boundary of U . On occasions we will restrict
our attention to balanced domains. Here radial weights (weights v with the prop-
erty that v(z) = v(λz) whenever |λ| = 1) will play an important role in both our
theory and examples. We will use Hv(U) to denote the space of all holomorphic
functions f on U which have the property that ‖f‖v := supz∈U v(z)|f(z)| < ∞ .
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Endowed with ‖ · ‖v , Hv(U) becomes a non-separable Banach space. A separable
subspace of Hv(U) is got by considering all f in Hv(U) with the property that
|f(z)|v(z) converges to 0 as z converges to the boundary of U i.e. given ε > 0
there is a compact subset K of U such that v(z)|f(z)| < ε for z in U \ K . This
subspace is denoted by Hvo

(U). Thus Hv(U) may be regarded as all holomorphic
functions on U which satisfy a growth condition of order O

(

1/v(z)
)

while Hvo
(U)

are those functions with a growth rate of order o
(

1/v(z)
)

. Under moderate condi-
tions on U and v (see [6]), Hv(U) is the bidual of Hvo

(U). When this happens the
dual of Hvo

(U) is denoted by Gv(U). The geometry of the unit ball of Hvo
(U)′ is

the primary object of study of this paper. An upper bound for the set of extreme
points of the unit ball of Hvo

(U)′ is given by {λv(z)δz : z ∈ U, |λ| = 1} . We shall
use Bv(U) to denote the set of z ∈ U for which v(z)δz is an extreme point of
the unit ball of Hvo

(U)′ . We study the topological properties of this set showing
that the mapping which takes z to v(z)δz is a homeomorphism onto its range.

The set Bv(U) enables us to study the geometry of Hvo
(U). An example

of the type of result we obtain is: if v is radial on a balanced domain then a
bounded sequence (fk)k in Hvo

(U) converges weakly to f in Hvo
(U) if and only

if (fk)k converges pointwise to f . Bonet and Wolf, [9], and Lusky, [28], [29], [30],
[31], [32], [33] have shown that Hvo

(U) is isomorphic to a subspace of co . We
will show that when v is either complete or radial this isomorphism is never an
isometry. A Choquet type theorem allows us to recover the values of functions
in Hvo

(U) from the values it obtains on Bv(U). This allows us to examine the
centraliser of weighted spaces of holomorphic functions. In [11] we shall examine
the weak∗ -exposed and weak∗ -strongly exposed points of the unit ball of Hvo

(U)
and in [12] and [13] we make use of the v -boundary to classify isometries between
weighted spaces of holomorphic functions.

During the summers of 2001, 2002 and 2003 the first author made short visits
to the University of Valencia. He wishes to thank the Department of Mathematical
Analysis there for its hospitality during those visits.

2. Elementary theory of the v -boundary

Let U be a bounded open subset of Cn and v: U → R+ be a continuous
strictly positive weight. We use Gv(U) to denote the space of linear functionals
on Hv(U) whose restriction to the unit ball of Hv(U), BHv(U) , are continuous
for the compact open topology, τo . If we endow Gv(U) with the topology induced
from Hv(U)′ then it follows from [6, Theorem 1.1(a)] that Gv(U)′ is isometrically
isomorphic to (Hv(U), ‖ · ‖v). We shall say that v converges to 0 as z converges
to the boundary of U if given ε > 0 there is a compact subset K of U such that
v(z) < ε for z in U \ K .

Given a bounded open subset U of Cn and v: U → R+ a continuous strictly
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positive weight we use Hvo
(U) to denote the subspace of Hv(U) defined by

Hvo
(U) :=

{

f ∈ Hv(U) : lim
z→∂U

v(z)|f(z)| = 0
}

.

We endow Hvo
(U) with the norm induced from Hv(U). If we assume that v(z)

converges to 0 as z converges to the boundary of U , that U is balanced and v is
radial, then Hvo

(U) is equal to the closure of the polynomials with respect to the
norm ‖ · ‖v . Bierstedt and Summers, [6, Theorem 1.1(b)] show that the condition
that BHvo (U) is τo -dense in BHv(U) is a necessary and sufficient condition to en-
sure that Gv(U) is isometrically isomorphic to the dual of Hvo

(U). In particular,
if BHvo(U) is τo -dense in BHv(U) then as Gv(U) is a dual Banach space its unit
ball will have extreme points.

The purpose of this paper is to examine the geometric structure of the space
Hvo

(U)′ . In particular, we will investigate how the geometric theory of Hvo
(U)′

depends on the weight v . In the special case when U = ∆ is the unit disc in C , and
v(x) ≡ 1, (Hv(∆), ‖ · ‖v) = (H ∞(∆), ‖ · ‖∞), the Banach space of all bounded
holomorphic functions on the unit disc. We let L1(δ∆) denote the space of all
integrable functions on the unit circle and H1

o denote the space of all holomorphic

functions f on the unit disc with sup0<r<1

(∫ 2π

0
|f(reiθ)| dθ

)

< ∞ and f(0) = 0.
The Banach space H1

o can be identified with a subspace of L1(δ∆). A classical
result of Ando, [1], shows that L1(δ∆)/H1

o (∆) is the unique isometric predual of
(H ∞(∆), ‖ · ‖∞). Furthermore, Ando, [1], shows that the set of extreme points
of the unit ball of L1(δ∆)/H1

o (∆) is empty.
Let us begin our description of the geometry of the unit ball of Hvo

(U)′ with
an upper bound on the possible extreme points this set may have. We shall use Γ
to denote the set {λ ∈ C : |λ| = 1} .

Given a Banach space E we use ExtBE to denote the set of extreme points
of the closed unit ball of E .

Proposition 1. Let U be a bounded open subset of Cn and v be a contin-
uous strictly positive weight on U which converges to 0 on the boundary of U .
Then the extreme points of the unit ball of Hvo

(U)′ are contained in the set
{λv(z)δz : z ∈ U, λ ∈ Γ} .

Proof. The mapping f → fv is an isometric isomorphism of Hvo
(U) onto

a subspace of C(U ) (fv tends to 0 on the boundary of U ). Applying [18,
Lemma V.8.6] we see that the set of extreme points of the unit ball of Hvo

(U)′ is
contained in the set of extreme points of the unit ball of C(U )′ . However the set
of extreme points of the unit ball of C(U )′ is {λδz : z ∈ U, λ ∈ Γ} . Restricting
these to the image of the unit ball of Hvo

(U)′ we get that the extreme points of
the unit ball of Hvo

(U)′ are contained in the set {λv(z)δz : z ∈ U, λ ∈ Γ} .

In particular, if U is a bounded balanced open subset of Cn and v is a
continuous strictly positive radial weight on U which tends to 0 on the boundary
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of U then the extreme points of the unit ball of Gv(U) are contained in the set
{λv(z)δz : z ∈ U, λ ∈ Γ} .

From the remark before [5, Proposition 1.2], [5, Theorem 1.5(c)] and [6, The-
orem 1.1] (see also [38, Proposition 2.2.1]) we have the following result:

Proposition 2. Let U be a bounded open subset of Cn and v be a con-
tinuous strictly positive weight on U . Then Hvo

(U) contains all polynomials on
Cn if and only if v extends continuously to the boundary of U with v|∂U ≡ 0 .
Furthermore, if U is balanced and v is radial, either of these equivalent conditions
will imply that Gv(U) is isometrically isomorphic to the dual of (Hvo

(U), ‖ · ‖v) .

Under the conditions of Proposition 2 we have:

Theorem 3. Let U be a bounded balanced open subset of Cn and v be a
continuous strictly positive radial weight which converges to 0 on the boundary
of U . Then Gv(U) is the unique isometric predual of Hv(U) .

Proof. Since U is separable and the mapping z → v(z)δz is continuous the
set {v(z)δz : z ∈ U} is separable. Hence, its closed linear span, Gv(U), is also
separable. By Proposition 2 Gv(U) is a separable dual space and so has the
Radon–Nikodým Property. [21, Theorem 10] (see also [23, (b), p. 144]) implies
that Gv(U) is the unique isometric predual of Hv(U).

Suppose that z ∈ U is such that v(z)δz is not an extreme point of the unit
ball of Hvo

(U)′ . Then v(z)δz = 1
2
(φ1 + φ2) for some φ1 , φ2 in the unit ball of

Hvo
(U)′ . As λv(z)δz = 1

2(λφ1 + λφ2) for every λ in C with |λ| = 1 we see that
λv(z)δz will not be an extreme point of the unit ball of Hvo

(U)′ for any λ in Γ.
With this observation, we give the following definition:

Definition 4. Let U be a bounded open subset of Cn and v be a continuous
strictly positive weight on U which converges to 0 on the boundary of U . The
v -boundary of U , Bv(U), is {z ∈ U : v(z)δz is an extreme point of the unit ball
of Hvo

(U)′} .

Radial weights have radial v -boundaries.

Lemma 5. Let U be a balanced bounded open subset of Cn and v be a
continuous strictly positive weight on U which converges to 0 on the boundary
of U . If v is radial then Bv(U) is radial in the sense that z ∈ Bv(U) implies
λz ∈ Bv(U) for all λ ∈ Γ .

Proof. Given f ∈ Hvo
(U) and λ ∈ Γ we define fλ by fλ(z) = f(λz). We

note that f ∈ BHvo (U) if and only if fλ ∈ BHvo (U) . Given φ ∈ Hvo
(U)′ we define

φλ by φλ(f) = φ(fλ). It follows from the definition of the norm on Hvo
(U)′ , that

‖φλ‖ = ‖φ‖ .
Suppose that z ∈ U but z /∈ Bv(U). Then we can find φ1 , φ2 in the unit

ball of Hvo
(U)′ , φ1 6= φ2 , so that v(z)δz = 1

2 (φ1 + φ2). Then for λ ∈ Γ and each
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f ∈ Hvo
(U) we have

v(λz)δλz(f) = v(z)f(λz) = v(z)fλ(z) = 1
2

(

φ1(fλ)+φ2(fλ)
)

= 1
2

(

(φ1)λ+(φ2)λ

)

(f).

Therefore v(λz)δλz = 1
2

(

(φ1)λ + (φ2)λ

)

. Hence λz /∈ Bv(U) and the result is
proven.

Definition 6. Let U be a bounded open subset of Cn and v be a continuous
strictly positive weight on U which converges to 0 on the boundary of U . We
shall say that v is a complete weight if Bv(U) = U .

We recall the following definition:

Definition 7. Let E be a complex Banach space. A point x in E is said to
be an exposed point of the unit ball of E if there is φ ∈ E ′ of norm 1 such that
Re

(

φ(x)
)

= 1 and Re
(

φ(y)
)

< 1 for all y ∈ E , ‖y‖ ≤ 1, y 6= x . When E = F ′ is
a dual space and the vector φ which exposes x in BE is in F , we say that x is
weak∗ -exposed and that φ weak∗ exposes the unit ball of E at x .

A continuous strictly positive weight v on BCn is said to be unitary if v(z) =
v(Az) for every n × n unitary matrix A . Hence v is unitary if and only if
v(z) = v(w) whenever ‖z‖ = ‖w‖ . If n = 1 the concept of a unitary weight
coincides with the concept of a radial weight. For n = 2 the weight v(z) =

(1 − ‖z‖1+2/π tan−1(|z2|/|z1|)) is a radial weight which is not unitary. It is readily
shown that if v is unitary then Bv(BCn) is unitary in the sense that z ∈ Bv(BCn)
if and only if Az ∈ Bv(BCn) for all unitary matrices A .

In [11] we obtain the following sufficient condition for completeness of a uni-
tary weight on BCn .

Proposition 8. Let v: BCn → R be a continuous strictly positive
strictly decreasing unitary weight on the unit ball of Cn which converges
to 0 on the boundary of BCn such that v(x) is twice differentiable and
(

∂v(x)/∂x1

)2
− v(x)∂2v(x)/∂x2

1 > 0 for x of the form (x1, 0, . . . , 0) with x1 in
(0, 1) . Then the weak∗ -exposed points (and hence the extreme points) of the unit
ball of Hvo

(BCn)′ is the set {v(z)λδz : λ ∈ Γ, z ∈ BCn} .

This condition allows us to show that when α > 0, β ≥ 1 each of the following
weights on the unit ball of Cn is complete.

(a) vα,β(z) = (1 − ‖z‖β)α .

(b) wα,β(z) = e−α/(1−‖z‖β) .
(c) v(z) =

(

log(2 − ‖z‖)
)α

.

(d) v(z) =
(

1 − log(1 − ‖z‖)
)−α

.

(e) v(z) = cos
(

1
2π‖z‖

)

.
(f) v(z) = cos−1 ‖z‖ .
(g) Finite products of the examples in (a) to (f).
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3. Structure of the v -boundary

Lemma 9. Let U be a bounded open subset of Cn and v be a continuous
strictly positive weight which converges to 0 on the boundary of U .

(a) If λ, µ ∈ Γ and z, w ∈ U then λv(z)δz = µv(w)δw on Hvo
(U) implies z = w

and λ = µ .
(b) Let z ∈ U . If v(z)δz = 0 on Hvo

(U) then z ∈ ∂U .
(c) Let λ, µ ∈ Γ and z, w ∈ U . If λv(z)δz = µv(w)δw in Hvo

(U)′ then z = w
or z , w ∈ ∂U .

Proof. (a) If z 6= w we may suppose without loss of generality that z1 6= w1

and take

p(t) =
2

v(w)µ

t1 − z1

w1 − z1
+

1

v(z)λ

t1 − w1

z1 − w1
.

Then p ∈ Hvo
(U) and

λv(z)p(z) = 1 6= 2 = µv(w)p(w).

(b) If z ∈ U then v(z) > 0 and the constant map p(w) ≡ 1/v(z) ∈ Hvo
(U).

But then v(z)δz(p) = 1.
Part (c) follows from (a) and (b).

Lemma 10. Let U be a bounded open subset of Cn and v be a continuous
strictly positive weight which converges to 0 on the boundary of U . Then the
map

µ: U →
(

Hvo
(U)′, σ

(

Hvo
(U)′, Hvo

(U)
))

given by µ(z) := v(z)δz is a homeomorphism onto its image.

Proof. Consider µ: U →
(

Hvo
(U)′, σ

(

Hvo
(U)′, Hvo

(U)
))

given by µ(z) :=

v(z)δz . Define the relation ∼ on U by z ∼ w if µ(z) = µ(w) and consider the
quotient space U /µ . Consider the map µ̄: U /µ → Hvo

(U)′ given by µ̄ ◦ q = µ ,
where q: U → U /µ is the natural quotient map. (The set U /µ may also be
regarded as the one-point compactification of U .) Let us show that µ̄ is continuous
when Hvo

(U)′ is endowed with the weak∗ -topology. Let z0 ∈ U and consider the
subbasic neighbourhood of v(z0)δz0

N(z0; f, ε) := {φ ∈ Hvo
(U)′ : |φ(f) − v(z0)δz0

(f)| < ε},

where f ∈ Hvo
(U) and ε > 0. Since vf is continuous on U , the set

N(z0; ε) := {z ∈ U : |v(z)f(z) − v(z0)f(z0)| < ε}

is an open neighbourhood of z0 in U and µ
(

N(z0; ε)
)

⊂ N(z0; f, ε).

As U is compact U /µ is compact. Hence µ̄ is a uniform homeomorphism
onto its image. On the other hand, by Lemma 9 µ|U is injective. Let us show that
µ|U is an open map: given A ⊂ U open there exists an open subset B ⊂ U such
that A = B ∩U . Then µ(B) is open in µ(U ). By Lemma 9 µ(A) = µ(B)∩µ(U)
and therefore µ(A) is open in µ(U). Thus µ|U is a homeomorphism onto its
image.
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Let U be a bounded open subset of Cn , and let v be a continuous strictly
positive weight which converges to 0 on the boundary of U . We know that the
extreme points of the unit ball of Hvo

(U)′ are contained in the set {λv(z)δz : λ ∈
Γ, z ∈ U} . Let us investigate the topological structure of this set.

Lemma 11. Let U be an open subset of Cn and v be a continuous
strictly positive weight which converges to 0 on the boundary of U . Then

Ext(BHvo(U)′)
σ∗

=
{

λv(z)δz : z ∈ Bv(U), λ ∈ Γ
}

.

Proof. As BHvo (U) is separable it follows from [14, Proposition 2.5.12] that
(

Hvo
(U)′, σ

(

Hvo
(U)′, Hvo

(U)
))

is metrizable. Let φ ∈ Ext(BHvo(U)′)
σ∗

. Then
there exist (λn)n ⊂ Γ and (zn)n ⊂ Bv(U) such that

φ = w∗ lim
n

λnv(zn)δzn
= w∗ lim

n
λnµ(zn).

Since λn ∈ Γ, there exists a subsequence (λnk
)k of (λn)n converging to some λo

of modulus 1. Then
(

µ(znk
)
)

k
w∗ -converges to 1/λoφ . By Lemma 10 and using

that µ̄ is a uniform homeomorphism onto its image, znk
= µ−1µ(znk

) converges

to some zo ∈ Bv(U). Hence φ = w∗ limk→∞ λnk
µ(znk

) = λov(zo)δzo
.

Conversely, if z ∈ Bv(U) we have z = limn zn where zn belongs to Bv(U).

Then v(z)δz = w∗ limn v(zn)δzn
∈ Ext(BHv(U)′)

σ∗

.

Note that if we start in the proof with φ ∈ Ext(BHvo(U)′)
σ∗

\ Ext(BHvo(U)′)

then z0 = limk znk
∈ Bv(U) \ Bv(U).

Proposition 12. Let U be an open subset of Cn and v be a continuous
strictly positive weight which converges to 0 on the boundary of U . Then Bv(U)
is a Gδ subset of U .

Proof. We use the fact that
(

Hvo
(U)′, σ

(

Hvo
(U)′, Hvo

(U)
))

is metrizable
(see Lemma 11). Applying [35, Proposition 1.3] it follows that ExtBHvo (U)′ is a
Gδ set in Hvo

(U)′ \ {0} endowed with the weak∗ -topology. Let

ExtBHvo(U)′ =
∞
⋂

n=1
Gn

with each Gn open in Hvo
(U)′ \ {0} endowed with the weak∗ -topology. We can

assume by the proof of [35, Proposition 1.3] that each Gn is radial. Define an
equivalence relation ≡ on Hvo

(U)′ \ {0} by φ1 ≡ φ2 if φ1 = λφ2 for some λ ∈ Γ
and let π be the quotient mapping from Hvo

(U)′\{0} onto Hvo
(U)′\{0}/ ≡ . We

shall consider Hvo
(U)′ \{0}/ ≡ endowed with the quotient topology of the weak ∗

topology on Hvo
(U)′ \ {0} . Since π−1

(

π(A)
)

=
⋃

λ∈Γ λA , π is an open mapping.

As each Gn is radial it is easily checked that π
(
⋂∞

n=1 Gn

)

=
⋂∞

n=1 π(Gn) and
then ExtBHvo (U)′/ ≡ is a Gδ set in Hvo

(U)′ \ {0}/ ≡ . Further, as the image of
each z in U under µ lies in at most one ≡ -equivalence class of Hvo

(U)′ \ {0} ,
it is readily checked that π ◦ µ is a homeomorphism onto its image. Under this
mapping Bv(U) is mapped onto ExtBHvo(U)′/ ≡ and result follows.
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We shall see in [11] that U is equal to the intersection of U with the H ∞ -
convex hull of Bv(U).

4. Convergence of weighted holomorphic functions

The study of the v -boundary allows us to show in [11, Theorem 24 and 25]
that Hvo

(U) and Hv(U) are never smooth and (under moderate conditions on
the weight) that both spaces are not rotund. In [12] the v -boundary is central in
the isometric classification of Hvo

(U) and Hv(U).
We present some applications of the v -boundary to the geometry of Hvo

(U)
and Hv(U). The following theorem characterises weak convergence and weak
compactness in Hvo

(U).

Theorem 13. Let U be a bounded open subset of Cn and v be a continuous
strictly positive weight on U which converges to 0 on the boundary of U . Then

(a) A bounded sequence (fk)k in Hvo
(U) converges weakly to f in Hvo

(U) if
and only if (fk)k converges pointwise to f .

(b) A bounded subset of Hvo
(U) is weakly relatively compact if and only if it

is relatively countably compact for the topology of pointwise convergence on
Hvo

(U) .

Proof. We showed in Proposition 1 that the extreme points of the unit ball of
Hvo

(U)′ are contained in the set {λv(z)δz : z ∈ U, λ ∈ Γ} . Part (a) now follows
from Rainwater’s theorem, [36], while part (b) is a consequence of a theorem of
Bourgain and Talagrand, [10].

Proposition 14. Let U be a balanced bounded open subset of Cn and
let v be a continuous strictly positive radial weight which converges to 0 on the
boundary of U . Let (zα)α be a net in U and z be a point of U . If v(zα)f(zα) →
v(z)f(z) for all f ∈ Hvo

(U) then f(zα)v(zα) → f(z)v(z) for all f ∈ Hv(U) .

Proof. By [24, Examples III.1.4] Hvo
(U) is an M-ideal in Hv(U). (The proof

in [24] is for the open unit disc ∆ but is easily extended to arbitrary balanced
domains in Cn .) The result now follows by [24, Corollary III.2.15] (see also [22]).

Proposition 15. Let U be a balanced bounded open subset of Cn and
let v be a continuous strictly positive radial weight which converges to 0 on the
boundary of U . Then given (zn)n in U and (fm)m in the unit ball of Hv(U) we
have that

lim
m→∞

lim
n→∞

v(zn)fm(zn) = lim
n→∞

lim
m→∞

v(zn)fm(zn).

Proof. It follows from Lemma 10 that the set {v(z)δz : z ∈ U} is relatively
compact for the σ

(

Hvo
(U)′, Hvo

(U)
)

-topology. Applying [24, Corollary III.2.15]
we now see that it is therefore weakly relatively compact. It now follows from [25,
Lemma 19.A.1] that for all (zn)n in U and (fm)m in the unit ball of Hv(U) we
have that

lim
m→∞

lim
n→∞

v(zn)fm(zn) = lim
n→∞

lim
m→∞

v(zn)fm(zn).
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5. C(K)-spaces

Let X be a locally compact Hausdorff space and A be a closed subspace of
Co(X). According to Araujo and Font [2] A is strongly separating if for each
pair of points x1 and x2 in X there is f ∈ A such that |f(x1)| 6= |f(x2)| . They
define the Choquet boundary of A as {x ∈ X : ex is an extreme point of BA′} ,
ex is evaluation at x . It follows from [2, Corollary 4.2] that if Hvo

(U) is isomet-
rically isomorphic to a strongly separating subspace A of Co(X) then Bv(U) is
homeomorphic to the Choquet boundary of A .

A compact set K is said to be perfect if it has no isolated points. A compact
set K is said to be scattered (dispersed) if it contains no perfect subsets.

Theorem 16. Let U be a bounded open subset of Cn and v be a continuous
strictly positive weight on U which converges to 0 on the boundary of U . If
Hvo

(U) is isometrically isomorphic to a subspace of (complex) C(K) with K
scattered then Bv(U) is a countable (and therefore discrete) subset of U .

Proof. Define an equivalence relation ≡ on ExtBHvo (U)′ by λ1v(z)δz ≡
λ2v(w)δw if z = w . Suppose that T is an isometry from Hvo

(U) onto a subspace
M of C(K). Then T ∗ maps ExtBC(K)′ with the weak∗ -topology, which is ho-
meomorphic to Γ × K , onto a set which contains {λv(z)δz : λ ∈ Γ, z ∈ Bv(U)}
endowed with the σ

(

Hvo
(U)′, Hvo

(U)
)

-topology. As T ∗ is linear it induces a
map T ∗

1 from K onto a set containing {λv(z)δz : λ ∈ Γ, z ∈ Bv(U)}/ ≡
or equivalently a set containing Bv(U). As T ∗ is continuous and surjective,
it is σ(M ′, M) − σ

(

Hvo
(U)′, Hvo

(U)
)

open, see [26, Proposition 3.17.17]. Hence
µ−1◦T ∗

1 is a continuous, open mapping and so µ−1◦T ∗
1 (K) is scattered. It follows

that Bv(U) is also scattered. As U is metrizable the proof of [25, Lemma 25.D]
gives us that Bv(U) is countable and hence must be discrete.

Corollary 17. Let U be a bounded open subset of Cn and v be a continuous
strictly positive weight on U which converges to 0 on the boundary of U . If v is
complete or if U is balanced and v is radial then Hvo

(U) cannot be isometrically
isomorphic to a subspace of C(K) with K scattered. In particular, Hvo

(U)
cannot be isometrically isomorphic to a subspace of co .

Proof. In either of the above cases Bv(U) contains a non-trivial connected
component and so cannot be scattered.

In [28, Corollary 2.4(i)] Lusky proved that if v is a continuous strictly positive
radial weight on ∆ which converges to 0 on the boundary of ∆ then Hvo

(∆) is

isomorphic to a subspace of co . The weight v(z) =
(

1 − log(1 − |z|)
)β

, β < 0,
is an example of a weight on ∆ which gives a Banach space Hvo

(∆) which is
isomorphic to a subspace of co yet not isomorphic to co . See [29]. Bonet and
Wolf [9] have recently extended this result by showing that if U is an open subset
of Cn and v is a continuous strictly positive weight on U then Hvo

(U) is almost
isometrically isomorphic to a subspace of co . The previous corollary shows that
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this isomorphism can never be an isometric embedding whenever U is bounded
and v is either a complete or radial weight which converges to 0 on the boundary
of U .

6. A Choquet theorem

In this section we present an ‘analytic’ representation of the v -boundary ob-
tained from an application of Choquet’s theorem.

Theorem 18 (A Choquet type theorem). Let U be a bounded open subset
of Cn and v be a continuous strictly positive weight on U which converges to 0
on the boundary of U . Then for each z ∈ U there is a C -valued measure, νz , of

bounded variation with support contained in Bv(U)
U

so that

(∗) f(z) =

∫

Bv(U)
U

f(w) dνz(w)

for all f in Hvo
(U) . Moreover we have that νz

(

Bv(U)
U)

= 1 .

Proof. We consider BHvo (U)′ with the weak∗ -topology. By definition the
set of extreme points of the unit ball of Hvo

(U)′ is equal to {λv(z)δz : λ ∈
Γ, z ∈ Bv(U)} . Hence by the Choquet–Bishop–de Leeuw theorem, [35, Chapter 4,
Theorem] and Lemma 11, for each z in U there is a probability measure, µz , with

support contained in Γ × Bv(U)
U

so that

(∗∗) f(z)v(z) =

∫

Γ×Bv(U)
U

λf(w)v(w) dµz(λ, w)

for all f in Hvo
(U). Define a measure νz on Bv(U)

U
by

νz(E) =
1

v(z)

∫

Γ×E

λv(w) dµz(λ, w).

By the Radon–Nikodým theorem we have that

f(z) =

∫

Bv(U)
U

f(w) dνz(w)

and the first part of the result is proven.
Let M = supw∈Bv(U) v(w) and E be a measurable subset of Bv(U). Then

|νz(E)| ≤ M/v(z) and thus νz has total variation at most 4M/v(z). Taking

f ≡ 1 we get that νz

(

Bv(U)
U)

= 1.
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If z belongs to Bv(U) then a result of Bauer, [3], (see [35, Proposition 1.4])
shows that the point mass εv(z)δz

is the unique probability measure with support
contained in BHvo(U)′ which represents z . However, it is not possible to ‘lift’ this
result and conclude δz is the unique probability measure on U which satisfies (∗).
To see this consider any strictly positive weight v on ∆ which converges to 0 on
the boundary of ∆. Let z ∈ Bv(∆) and let r be such that |z| < r < 1. By
Cauchy’s integral formula

f(z) =
1

2πi

∫

|λ|=r

f(λ)

λ − z
dλ

for all f ∈ Hvo
(∆) and thus

ρz(E) =
1

2πi

∫

E∩{λ:|λ|=r}

dλ

λ − z

is another probability measure representing z .
Theorem 18 shows that the v -boundary is a determining set for Hvo

(U) in
the sense that if f, g ∈ Hvo

(U) and f = g on Bv(U) then f = g on U .
The above result should be compared with [6, Proposition 3.2]. Theorem 18

and [27, Chapter 9] explain our use of the term “v -boundary”.

7. The centralizer of weighted spaces of holomorphic functions

We introduce some notation of Behrends [4].

Definition 19. Let E be a Banach space and T : E → E be a continuous
linear operator. Then T is a multiplier if every extreme point of the unit ball of
E′ is an eigenvalue of T ∗ . That is

T ∗(e) = aT (e)e

for some real or complex number aT (e) and every e ∈ ExtBE′ . We let Mult(E)
denote the set of all multipliers on E .

Definition 20. Let E be a Banach space. The centralizer of E , Z(E), is the
set of all T ∈ Mult(E) for which there is T in Mult(E) with ( T )∗(e) = aT (e)e
for all e ∈ ExtBE′ .

We say that Z(E) is trivial if Z(E) = K.Id, (K = R or C depending on
whether E is a real or complex Banach space).

Let U be a bounded open subset of Cn , v be a continuous strictly positive
weight on U which converges to 0 on the boundary of U . Given g ∈ H

∞(U) we
let Mg: Hvo

(U) → Hvo
(U) be the pointwise multiplication operator

(

Mg(f)
)

(z) = g(z)f(z).

Proposition 21. Let U be a bounded connected open subset of Cn , v be
a continuous strictly positive weight on U which converges to 0 on the boundary

of U . Suppose that the
◦

Bv(U) is non-empty. Then Mult(Hvo
(U)) = {Mg : g ∈

H ∞(U)} and Z
(

Hvo
(U)

)

is trivial.
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Proof. Suppose that T ∈ Mult
(

Hvo
(U)

)

. Then for z ∈ Bv(U) v(z)δz is an
extreme point of the unit ball of Hvo

(U)′ . Therefore we have

T ∗v(z)δz = a(z)v(z)δz

for some a(z) in C . Hence for each f in Hvo
(U) and z in Bv(U) we have that

(Tf)(z) = a(z)f(z).

Taking f ≡ 1 we see that a extends to a holomorphic function in Hvo
(U) which

we also denote by a . By continuity we get that (Tf)(z) = a(z)f(z) for all z in

Bv(U) and all f ∈ Hvo
(U) for some a(z) ∈ C . Since

◦

Bv(U) is non-empty the
principle of analytic continuation implies that

(Tf)(z) = a(z)f(z)

for all z ∈ U . As

|a(z)| =
‖T ∗(δz)‖

‖δz‖
≤ ‖T ∗‖

a is bounded on U and this proves the first part of the proposition.
Suppose that T = Mg is in Z

(

Hvo
(U)

)

. Then M g is also a multiplier and
so

(

M g(f)
)

(z) = ḡ(z)f(z) = Mh(f)(z) = h(z)f(z)

for all z in
◦

Bv(U)B(U) all f ∈ Hvo
(U) and some h ∈ H ∞(U). Thus g is both

analytic and conjugate analytic on
◦

Bv(U)B(U) and therefore must be constant.

Corollary 22. Let U be a bounded open subset of Cn , v be a continuous
strictly positive complete weight on U which converges to 0 on the boundary
of U . Then Mult

(

Hvo
(U)

)

= {Mg : g ∈ H ∞(U)} and Z
(

Hvo
(U)

)

is trivial.

A different assumption also gives us trivial centralisers.

Proposition 23. Let U be a bounded open subset of Cn and let v be a
continuous strictly positive weight on U which converges to 0 on the boundary
of U . Suppose that H ∞(U) separates Hvo

(U)′ . Then Mult
(

Hvo
(U)

)

= {Mg :
g ∈ H

∞(U)} .

Proof. Arguing as in Proposition 21 we get a holomorphic function a in
Hvo

(U) so that
(Tf)(z) = a(z)f(z)

for all z in Bv(U) and all f in Hvo
(U). For each f in H ∞(U) we have that

af belongs to Hvo
(U). As

(Tf)(z) = a(z)f(z)
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for all z in Bv(U) applying Theorem 18 we see that

T (f)(z) =

∫

Bv(U)
U

T (f)(w) dνz(w) =

∫

Bv(U)
U

a(w)f(w) dνz(w) = a(z)f(z)

for all z in U . Hence, we have that

〈T ∗δz, f〉 = 〈a(z)δz, f〉

for all z in U and all f in H ∞(U). Since H ∞(U) separates Hvo
(U)′ we have

that T ∗δz = a(z)δz for all z in U .
The remainder of the proposition follows as in Proposition 21.

In particular we get:

Proposition 24. Let U be a balanced bounded open subset of Cn and v be
a continuous strictly positive radial weight which converges to 0 on the boundary
of U . Then Mult

(

Hvo
(U)

)

= {Mg : g ∈ H ∞(U)} . Furthermore, when n = 1

Z
(

Hvo
(U)

)

is trivial.

Proof. It is shown in [5, Proposition 1.2] that polynomials are dense in
Hvo

(U). They therefore will separate Hvo
(U)′ . The first part of the result now

follows from Proposition 23. Let n = 1 and suppose that T = Mg is in the cen-
traliser of Hvo

(U). As v is radial, Bv(U) contains a circle and so we have h in
H ∞(U) so that

(

M g(f)
)

(z) = g(z)f(z) = Mh(f)(z) = h(z)f(z)

for all z in
◦

Bv(U) and all f ∈ Hvo
(U). Consider z in

◦

Bv(U) with |z| = r .
As v is radial we have g(z) = h(z) for |z| = r . Taking a Poisson integral we get
g(z) = h(z) for |z| ≤ r which proves that all g for which Mg is in the centraliser
of Hvo

(U) are constant.
From [24, Theorem III.2.3] we get:

Proposition 25. Let U be a balanced bounded open subset of C , v be
a continuous strictly positive radial weight on U which converges to 0 on the
boundary of U . Then Z

(

Hv(U)
)

is trivial.

Definition 26. A Banach space E is a Cσ -space if there is a compact
Hausdorff set K and an involutory homeomorphism σ: K → K (σ2 = Id) such
that E is isometrically isomorphic to

{

f ∈ C(K) : f(x) = −f
(

σ(x)
)

for all x ∈ K
}

.

From Proposition 21 and [24, Theorem II.5.9] we get:
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Proposition 27. Let U be a bounded open subset of Cn , v be a continuous
strictly positive complete weight on U which converges to 0 on the boundary
of U . Then Hvo

(U) is not a Cσ -space.

The above proposition is also valid for radial weights on balanced bounded
open subsets of C .

Given a Banach space E we shall use ZE to denote ExtBE′

σ∗

\ {0} . For a
Banach space E there is a canonical isometric embedding of E into Co(ZE) (see

[24, Examples I.3.4]). We have seen that ExtBHv(U)′
σ∗

\{0} may be identified with

Bv(U). Thus in this case we are identifying Hvo
(U) with a subspace of Co(U).

Definition 28. A Banach space E has the strong Banach–Stone property if
given locally compact Hausdorff spaces X and Y and an isometric isomorphism
T : Co(X; E) → Co(Y ; E) there is a homeomorphism φ: Y → X and a continuous
function h from Y into the isometries of E endowed with the strong operator
topology such that

(

T (f)
)

(y) = h(x)f
(

φ(y)
)

for all f ∈ Co(X, E) and all y ∈ Y .

We have:

Proposition 29. Let U be a bounded open subset of Cn , v be a continuous
strictly positive weight on U which converges to 0 on the boundary of U . Suppose

that
◦

Bv(U) is non-empty. Then Hvo
(U) has the strong Banach-Stone property.

Alternatively, if U is a balanced bounded open subset of C and v is a continuous
strictly positive radial weight then Hvo

(U) and Hv(U) have the strong Banach–
Stone property.

Proof. Apply Proposition 21, Proposition 24, [4, Theorem 8.11] and Proposi-
tion 25.
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