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Abstract. The harmonic measure distribution function of a planar domain relates the geom-
etry of the domain to the behaviour of Brownian motion in the domain. The value of the function
h(r) specifies the harmonic measure of the part of the boundary of the domain which lies within
any given distance r of a fixed basepoint in the domain. A longterm goal is to realize all suitable
functions as distribution functions, by explicit construction of appropriate domains. We show here
that increasing step functions can be realized as distribution functions of discs with concentric
circular arcs deleted from their interiors.

1. Introduction

We consider a function that captures some of the behaviour of Brownian
motion in a planar domain. Let D ⊂ C be a bounded or unbounded domain, and
fix a basepoint z0 in D . For each r ≥ 0, let h(r) = hD,z0

(r) denote the probability
that the first hit on the boundary of D by a Brownian traveller starting at z0

occurs within distance r of z0 . We call h: [0,∞) → [0, 1] the harmonic measure

distribution function of D with respect to z0 .
By Kakutani’s result [K] on the connection between Brownian motion and

harmonic measure, h(r) is equal to the harmonic measure in D at z0 of the part
of the boundary ∂D within distance r of z0 :

(1) h(r) = ω
(

z0, ∂D ∩ B(z0, r), D
)

.

Here, given a subset E of the boundary ∂D , the harmonic function u(z) =
ω(z, E, D) is the solution to the Dirichlet problem ∆u = 0 on D , with boundary
values equal to 1 on E and 0 on the rest of the boundary.
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The current paper is motivated by these questions: Which functions h(r) can
arise as the harmonic measure distribution functions of domains? Given such a
function, can one construct a domain which generates it?

It follows from the definition that h(r) is a right-continuous function, in-
creasing from 0 towards 1. In [WW1], it is shown that h(r) does not uniquely
determine the domain, and a lower bound for h(r) (in the case of simply connected
domains) is established using Beurling’s solution to the Milloux problem [A]. Re-
sults on the possible asymptotic behaviours of h(r) for r ≈ dist (z0, ∂D) are
proved in [WW1] and [WW2]. A result on the effect of moving the basepoint z0

is proved in [WW2]. Some of the questions posed in [WW1] are answered in [BS].
In this paper we identify a useful class of functions which do arise as harmonic

measure distribution functions. A preliminary version of this work can be found
in [S].

Theorem 1. Every increasing step function on [0,∞) which increases from

0 to 1 by finitely many steps arises as the harmonic measure distribution function

of some planar domain.

A more precise version of Theorem 1 is stated as Theorem 2 in Section 2
below.

In [BH, Problem 6.116], Stephenson posed several questions about the related
function

(2) w(r) = wD(r) = ω
(

0, ∂Dr ∩ {|z| = r}, Dr

)

.

Here D is a domain in C containing 0, and Dr denotes the connected component
of D ∩B(0, r) containing 0. For comparison, setting the basepoint for h(r) at 0,
we have

1 − w(r) = ω
(

0, ∂Dr ∩ B(0, r), Dr

)

, while(3)

h(r) = ω
(

0, ∂D ∩ B(0, r), D
)

.(4)

The main difference is that 1 − w(r) asks about the location of a Brownian trav-
eller’s first exit from the bounded component Dr , while h(r) asks about the
location of the first exit from the whole domain D . In particular, the values of
1 − w(r) for small r , 0 < r < R , are completely determined by the geometry
of the part of the boundary within distance R of 0, while the values of h(r) for
0 < r < R depend on the geometry of the full boundary of D , at all distances
from 0.

Tsuji proved an upper estimate [T, Theorem III.67, p. 112] for a function
ur(0) almost identical to Stephenson’s w(r).

In a remark after Theorem 2, we indicate how our results answer the analogues
for our h(r) of some of Stephenson’s questions.

We thank Bruce Palka and Henry Krieger for reading earlier versions of this
paper, Mario Bonk for pointing out Brouwer’s theorem on invariance of domain,
and Byron Walden and Jorge Aarão for many helpful discussions.
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2. Increasing step functions arise from circle domains

We prove that all step functions that increase from 0 to 1 through finitely
many steps can be generated as the harmonic measure distribution functions of
certain domains. In fact there are uncountably many essentially different domains
for each such step function.

The simplest such step function takes the value 0 for small r , say for 0 <
r < r1 , and jumps to 1 at r = r1 . This step function is generated by the domain
which is a disc of radius r1 and has its basepoint at the origin. Further, the same
step function arises from any domain whose boundary is an arc (or any subset
of positive one-dimensional Hausdorff measure) of the circle of radius r1 centred
at the basepoint. (Brownian motion in the plane is recurrent, and a Brownian
traveller will hit such a boundary with probability one, irrespective of whether the
domain is bounded.)

This suggests our definition of circle domains as discs with deleted concentric
boundary arcs. See Figure 1.

For convenience, by the radius of a circular arc we mean the radius of the
circle on which the arc lies.

Definition 1. A circle domain D with n arcs is a bounded domain, con-
taining the origin, whose boundary consists of finitely many concentric circular
arcs A1, . . . , An , of radii r1, . . . , rn respectively, centred at the origin, together
with a concentric boundary circle An+1 , of radius rn+1 , enclosing the arcs. Here
0 < r1 < · · · < rn < rn+1 . Choose the origin as the basepoint of D . For
i = 1, . . . , n , let xi denote the angle subtended by Ai at 0; we call xi the length

of the arc Ai .

We assume that the midpoints of the boundary arcs all lie on the positive
real axis, unless otherwise specified. Of course these midpoints could also be set
at any preassigned angles from the positive real axis.

The harmonic measure distribution function hD(r) of a circle domain D is a
right-continuous increasing step function, whose finitely many discontinuities may
occur only at r1, . . . , rn+1 . The step function has height 0 for 0 < r < r1 , and
height 1 for r ≥ rn+1 . We denote by hi the size of the jump in hD(r) at ri , and
by yi the height of the step function for ri ≤ r < ri+1 , so that for 1 ≤ i ≤ n ,

hi = hD(r+

i ) − hD(r−

i ) = hD(ri) − hD(r−

i ) = ω(0, Ai, D),(5)

yi =
∑

1≤j≤i

hj = ω(0, A1 ∪ · · · ∪ Ai, D).(6)

Note that 0 ≤ y1 ≤ · · · ≤ yn ≤ 1.

We parametrize the space X of circle domains D with n arcs located at
radii r1, . . . , rn+1 by the n -tuple of angles xi subtended at 0 by the arcs.
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D D
′

D0 = D ∩D
′

Figure 1. Circle domains with two arcs at fixed radii: D , D′ with longer inner arc and shorter

outer arc than in D , and D0 = D ∩ D′ .

Definition 2. Fix an integer n ≥ 1 and numbers ri with 0 < r1 < · · · <
rn+1 . Let

(7) X = X (n, r1, . . . , rn+1) =
{

(x1, . . . , xn) : 0 ≤ xi ≤ 2π, 1 ≤ i ≤ n
}

denote the space of circle domains with n arcs placed at radii ri , 1 ≤ i ≤ n , and
with boundary circle of radius rn+1 .

We also consider the space Y of all right-continuous step functions, increasing
from 0 to 1, with at most n + 1 discontinuities, occurring only at the points
r1, . . . , rn+1 . We parametrize Y by the n -tuple of values yi taken by the step
function on the intervals [ri, ri+1), for 1 ≤ i ≤ n .

Definition 3. Fix an integer n ≥ 1 and numbers ri with 0 < r1 < · · · <
rn+1 . Let

(8) Y = Y (n, r1, . . . , rn+1) =
{

(y1, . . . , yn) : 0 ≤ y1 ≤ · · · ≤ yn ≤ 1
}

denote the space of step functions associated with the radii r1, . . . , rn+1 .

The boundary ∂X consists of those elements ~x ∈ X such that xi = 0 or
xi = 2π for at least one i ∈ {1, . . . , n} . In other words, such an ~x represents a
circle domain whose ith arc Ai has length zero (so Ai is either the empty set or a
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single point) or is a full circle. The boundary ∂Y consists of those elements ~y ∈ Y

such that at least one of the following holds: y1 = 0, or yn = 1, or yi = yi+1 for
some i ∈ {1, . . . , n − 1} . In other words, such a ~y represents a step function in
which at least two adjacent steps have the same height.

As noted above, the step function generated as the harmonic measure dis-
tribution function of a circle domain in X is an element of Y . We now prove
that all suitable step functions (in other words, all step functions in Y ) can be
generated as harmonic measure distribution functions of circle domains. Here is a
more precise version of Theorem 1.

Theorem 2. Let f(r) be a right-continuous step function, increasing from

0 to 1 , with its discontinuities at r1, . . . , rn+1 , where 0 < r1 < · · · < rn+1 . Then

there exists a circle domain D with n arcs whose harmonic measure distribution

function hD(r) is equal to f(r) . The radii of the n arcs and of the boundary

circle in D are given by r1, . . . , rn and by rn+1 respectively.

Proof. Fix the number n of concentric circular arcs, and the radii r1 , . . .,
rn+1 . Let F : X → Y be the function which takes the point (x1, . . . , xn) ∈
X representing the circle domain D with arc lengths x1, . . . , xn to the point
(y1, . . . , yn) ∈ Y representing the harmonic measure distribution function hD(r)
of D . Here hD(r) is an increasing step function with step heights 0, y1, . . .,
yn , 1.

(Numerical evidence [C] suggests that F is nonlinear. Specifically, it sug-
gests that in the case of circle domains with two arcs at fixed radii, F is not the
restriction to X of a linear transformation of R2 .)

The map F is not one-to-one on the boundary ∂X at points where any of
the lengths xi are equal to 2π , for i < n + 1. For once the ith arc Ai becomes a
full circle, the outer arcs are no longer accessible to a Brownian traveller from the
origin. Therefore changing the lengths of any arcs with radii larger than ri does
not change hD(r).

We observe that F maps the boundary of X into the boundary of Y , and
the interior Int X into the interior Int Y . First, if ~x ∈ ∂X and xi = 0, then the
harmonic measure hi of Ai is zero, and so yi−1 = yi and ~y = F (~x) is in ∂Y . If
~x ∈ ∂X and xi = 2π , then 1 = ω(0, A1∪· · ·∪Ai, D) = yi = yi+1 = · · · = yn , and
so ~y = F (~x) is in ∂Y . Second, if ~x ∈ Int X , then each arc Aj has length strictly
between 0 and 2π , so each arc has a positive (but less than one) probability of
being hit by a Brownian traveller from 0, so the jumps hj in the step function
~y = F (~x) are all greater than zero. Therefore ~y /∈ ∂Y , and so F (IntX ) ⊂ Int Y .

(We show below, in part (iii) of the proof, that in fact F maps ∂X onto ∂Y

and Int X onto Int Y .)

We show that F is a homeomorphism between the interiors of X and Y ,
and that F is a continuous map of X onto Y . The main part of the proof is to
show that F is onto.
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(i) F : X → Y is continuous. One can easily see that, since harmonic mea-
sure is continuous up to the boundary, F is continuous up to and including the
boundary.

(ii) F is one-to-one on the interior of X . Consider two distinct circle do-
mains D and D′ in X . Let S be the collection of arcs in ∂D that are strictly
longer than their counterparts (at the same radii) in the collection S ′ ⊂ ∂D′ . We
may assume S is non-empty, exchanging D and D′ if necessary. Let T be the
collection of those arcs (if any) in ∂D that are strictly shorter than their coun-
terparts in T ′ ⊂ ∂D′ . Construct a new domain D∗ ∈ X using at each radius ri

the longer of the boundary arcs Ai and A′
i . In particular S∗ = S and T ∗ = T ′ .

Then by the monotonicity of harmonic measure,

(9) ω(0, S, D) ≥ ω(0, S∗, D∗) ≥ ω(0, S′, D′).

Since S is non-empty, the second inequality is actually strict. But then D and
D′ cannot have the same step function h(r), since for instance ω(0, S, D) is the
sum of the jump heights in h(r) at the values ri corresponding to the arcs in S ,
and this is strictly greater than the analogous sum for D′ .

(iii) F : X → Y is onto. We use induction on the dimension n of X

(and Y ).
When D has only one boundary arc, then X = [0, 2π] , Y = [0, 1], F (0) = 0,

and F (2π) = 1, and so by continuity F is onto.
Suppose that F maps X onto Y when there are n arcs. Consider the case

of n + 1 arcs, so X = X (n + 1, r1, . . . , rn+2) and Y = Y (n + 1, r1, . . . , rn+2).
We show first that F maps the interior Int X onto Int Y , and then that F maps
the boundary ∂X onto the boundary ∂Y .

We have shown that F : X → Y is continuous and injective on the open
subset Int X of Rn+1 . Therefore the image F (Int X ) is an open subset of
Rn+1 , by Brouwer’s theorem on invariance of domain. (See for example [M,
p. 207].) Since F (IntX ) ⊂ Int Y , we have that F (Int X ) is an open subset of
Int Y .

Suppose that F (Int X ) is not the whole of Int Y . We claim there is a point
~y ∈ ∂F (X )∩Int Y . For by assumption, there is a point ~y1 ∈ Int Y \F (X ). Take
any point ~y2 in F (IntX ) ⊂ Int Y . Since Y is convex, the line segment γ joining
~y1 to ~y2 lies entirely in Int Y . Since ~y2 is in F (IntX ) ⊂ F (X ) and ~y1 is not in
F (X ), there is some point ~y on γ such that ~y ∈ ∂F (X ). So ~y ∈ ∂F (X )∩Int Y .

Next, F (X ) is compact, because X is compact and F is continuous. There-
fore ~y ∈ F (X ). So there is some ~x ∈ X such that ~y = F (~x). Since F (∂X ) ⊂
∂Y and ~y ∈ IntY , ~x must lie in Int X , and so ~y ∈ F (Int X ).

As noted above, F (Int X ) is an open subset of Y . So there is a neighbour-
hood U of ~y such that ~y ∈ U ⊂ F (Int X ). This contradicts ~y ∈ ∂F (X ), since
U does not intersect the complement of F (X ).
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Therefore F maps Int X onto Int Y , as required.
Next we consider the boundary. Let ~y be a step function in the boundary

∂Y (n + 1, r1, . . . , rn+2). Denote by hj the height of the jth step, i.e., h1 = y1 ,
hj = yj − yj−1 for 2 ≤ j ≤ n + 1, and hn+2 = 1 − yn+1 . Then for some
j ∈ {1, . . . , n + 2} , the jump hj = 0 in ~y . Therefore, ~y is also an element
of the new space of step functions Y ′(n, r′1, . . . , r

′
n+1), where {r′1, . . . , r

′
n+1} =

{r1, . . . , rn+2} \ {rj} . By the induction hypothesis, there exists a circle domain
~x with n arcs in the space X

′(n, r′1, . . . , r
′
n+1) such that F (~x) = ~y . The circle

domain ~x is also an element of the boundary ∂X (n+1, r1, . . . , rn+2), with xj = 0,
where xj is the length of the arc Aj at radius rj . Thus F maps ∂X onto ∂Y .

(iv) F−1: Int Y → Int X is continuous. Since F is a continuous function
from the compact set X to the compact subset Y of Rn , it maps closed subsets
of X to closed subsets of Y .

We have shown that F : Int X → Int Y is a homeomorphism, and that F
maps X onto Y . This completes the proof of Theorem 2.

Remark 1. Non-uniqueness: In fact, there are uncountably many circle
domains that generate the given step function. The proof above establishes the
existence of such a domain with the midpoints of the arcs located on the positive
real axis. The same arguments show that there is such a domain with the arc
midpoints set at any preassigned angles. One could also construct examples in
which several boundary arcs lie on the same circle.

Remark 2. Analogues of Stephenson’s questions: First, the circle domains
discussed in Remark 1 give examples, different from those in [WW1], which an-
swer negatively the analogue for h(r) of Stephenson’s question (b) on uniqueness.
Namely, there are essentially different domains (differing on sets of positive capac-
ity, in particular) whose harmonic measure distribution functions are all the same

step function. So hD , or hD restricted to some interval R1 < r < R2 , do not
uniquely determine the domain.

Next, Theorem 2 is related to the analogue of question (c): Given a function
hD , can one ‘reconstruct’ D? However, our theorem refers only to the special
case of suitable step functions, and the reconstruction is not completely explicit,
in that the lengths of the boundary arcs are not specified.

Finally, one cannot infer the connectivity of D (analogue of question (d))
from hD , at least within the class of step functions. For example, the step function
with a single jump from 0 to 1 at r1 arises as the harmonic measure distribution
function of every domain D whose boundary lies entirely on the circle |z| = r1

and has positive harmonic measure (or, equivalently, ∂D ⊂ {|z| = r1} and ∂D
has positive length). Here ∂D can have any number of components.
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