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Abstract. We started a study of regularity of the conjugacy between two dynamical sys-
tems with singularities. We complete this study for quasi-hyperbolic maps. We prove that if the
conjugacy between two quasi-hyperbolic maps is differentiable at one point with uniform bound,
then it is piecewise smooth. Furthermore, if the exponents of these two maps at all power law
critical points are also the same, then the conjugacy is piecewise diffeomorphic. The degree of the
smoothness of the conjugacy can be also calculated.

1. Introduction

A remarkable result in geometry is the so-called Mostow’s rigidity theorem.
This result assures that two closed hyperbolic 3-manifolds are isometrically equiva-
lent if they are homeomorphically equivalent [Mo]. A closed hyperbolic 3-manifold
can be viewed as the quotient space of a Kleinian group acting on the upper-half 3-
space. So a homeomorphic equivalence between two closed hyperbolic 3-manifolds
can be lifted to a homeomorphism of the upper-half 3-space preserving group ac-
tions. The homeomorphism can be extended to the boundary of the upper-half
3-space as a boundary map. The boundary is the complex plane and the boundary
map is a quasi-conformal homeomorphism. A quasi-conformal homeomorphism of
the complex plane is absolutely continuous. Following this property plus the group
action is that the boundary map has no invariant line field. Thus it is a Möbius
transformation.

For closed hyperbolic Riemann surfaces, the situation is quite complicated.
A closed hyperbolic Riemann surface can be viewed as a Fuchsian group acting
on the upper-half plane too. A homeomorphic equivalence between two closed
hyperbolic Riemann surfaces can be also lifted to a homeomorphism of the upper-
half plane preserving group actions. This homeomorphism can be extended to the
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boundary of the upper-half plane as a boundary map. In this case, the boundary
is the real line and boundary map is a quasisymmetric homeomorphism. The com-
plication comes from the fact that a quasisymmetric homeomorphism may not be
absolutely continuous. However, this complication is a rich supply for Teichmüller
theory. Actually if the boundary map is absolutely continuous, then following
the idea in the proof of Mostow’s rigidity theorem, it is a Möbius transformation.
Furthermore, Tukia [T] proved that the boundary map is, in general, uniformly
complicated at every point. Actually if the boundary map is smooth at one point,
then it is absolutely continuous, therefore, it is a Möbius transformation.

Shub and Sullivan [SS] introduced this kind of study for the conjugacy be-
tween two smooth expanding circle maps. The conjugacy in this case is always
quasisymmetric (refer to [J4, Chapter 3]). They proved that if the conjugacy is
absolutely continuous then it is smooth. The degree of the smoothness is the same
as the degree of the smoothness for both maps.

Following Shub and Sullivan, we started a similar study for dynamical sys-
tems with singularies. In the paper [J3], we investigated the conjugacy between
two generalized Ulam–von Neumann transformations. A generalized Ulam–von
Neumann transformation is a certain interval map with one power law type sin-
gularity (see Section 2 for more details). We proved that the conjugacy between
two generalized Ulam–von Neumann transformations is smooth if they have the
same type power law singularity and their asymmetries are the same and their
eigenvalues at all corresponding periodic points are the same. Later, the asym-
metry is removed from the result in [J5], [J6]. Moreover, in [J5], [J6], we studied
the smoothness of the conjugacy between two geometrically finite one-dimensional
maps. A geometrically finite one-dimensional map is a certain one-dimensional
map with finitely many power law singularities and with certain Markovian prop-
erty (see Section 2 for more details). In our previous paper [J1], we have proved
that the conjugacy between two geometrically finite one-dimensional maps is qua-
sisymmetric always. In [J5], [J6], we defined a smooth invariant called the scaling
function for a geometrically finite one-dimensional map. We further showed that
the scaling function and the exponents of power law singularities are complete
smooth invariants. That is, the conjugacy between two geometrically finite one-
dimensional maps are smooth if and only if they have the same scaling function
and the exponents of the corresponding singularities are the same.

In this paper, we continue our study and make a more complete theory for
quasi-hyperbolic maps which is a certain one-dimensional map with finitely many
non-recurrent critical points (see Definition 2). We first study one point differ-
entiable rigidity problem in dynamical systems. The problem concerns how the
differentiability of the conjugacy between two dynamical systems at one point
affects the global differentiability of the conjugacy. Our first theorem is a re-
sult similar to Tukia’s results [T] for Fuchsian groups. This result (Theorem 1)
says that if the conjugacy between two quasi-hyperbolic maps is differentiable at
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one point with uniform bound then it is piecewise C1 . The exceptional points
are those in the closure of post singular orbits. The asymptotic behavior of the
derivative of the conjugacy near those points is taken care of in the second result.
Our second theorem (Theorem 2) says that, in addition to the assumption in our
first theorem, if exponents at all corresponding singular points are the same, then
the conjugacy is a piecewise C1+β diffeomorphism. Actually, from the proof of
our second theorem, we know exactly how exponents at singular points affect the
asymptotic behavior of the derivative of the conjugacy at those points. In addition,
if both quasi-hyperbolic maps satisfy a certain α -Hölder condition, 0 < α ≤ 1,
(see Definition 1 for more precise meaning about this) and if γ is the maximum
number among all the exponents at all singularities for both maps, then β = α/γ
in our second theorem.

Following our first and second theorems, we could get more results in the
study of the rigidity problem in dynamical systems. For example, we show two
stronger conditions than that in Theorem 1. The first condition is given in our third
result (Lemma 6). We prove that if the conjugacy is differentiable at one point
with non-zero derivative and if there is a neighborhood about this point such that
the absolute value of the eigenvalue at every periodic point in this neighborhood
is the same as that at the corresponding periodic point, then the conjugacy is
differentiable at this point with uniform bound. This result combined with our
first and second theorems gives us that if the conjugacy is differentiable at one
point with non-zero derivative and if the absolute value of the eigenvalue at every
periodic point in a small neighborhood of this point is the same as that at the
corresponding periodic point, then the conjugacy is piecewise C1 . Furthermore,
if all the exponents at the corresponding singular points are also the same, then
the conjugacy is a piecewise C1+β diffeomorphism for some fixed 0 < β ≤ 1
(Corollary 1).

The other condition is absolute continuity. We show that if the conjugacy is
absolutely continuous on any small interval, then it is piecewise C1 . Furthermore,
if all the exponents at the corresponding singular points are also the same, then
the conjugacy is a piecewise C1+β diffeomorphism for some fixed 0 < β ≤ 1
(Corollary 2).

The paper is organized as follows. In Section 2, we define a quasi-hyperbolic
map (Definition 2). We also provide several examples of such a map. In Section 3,
we study the nonlinearity of a quasi-hyperbolic map. In this section, we prove one
of our key technical results, the C1+Hölder –Koebe–Denjoy type distortion lemma
(Lemma 2) for a quasi-hyperbolic map. By using this technical result, we prove in
Section 4 our main results (Theorems 1 and 2). In the same section, we show two
stronger conditions than those in Theorem 1 and prove two more rigidity results
(Lemma 6, Corollary 1, and Corollary 2).
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2. Quasi-hyperbolic one-dimensional maps

Let M be the interval [0, 1] or the unit circle R/Z . Let f : M → M be a
piecewise C1 map. A point c ∈ M is said to be singular if either f ′(c) does not
exist or f ′(c) exists but f ′(c) = 0. A singular point c is said to be power law

if there is an interval (c − τc, c + τc), τc > 0, such that the restrictions of f to
(c − τc, c) and to (c, c + τc) are C1 and such that there is a real number γ ≥ 1
such that the limits

lim
x→c−

f ′(x)

|x − c|γ−1
= B− and lim

x→c+

f ′(x)

|x − c|γ−1
= B+

exist and are non-zero. The number γ is called the exponent at c .
For a power law singular point c , let

rc,−(x) =
f ′(x)

|x − c|γ−1
, x ∈ (c − τc, c)

and

rc,+(x) =
f ′(x)

|x − c|γ−1
, x ∈ (c, c + τc).

A singular point c is called critical if γ > 1.
Let SP denote the set of all singular points and let CP denote the set of all

critical points. Let PSO =
⋃∞

i=1 f i(SP) be the set of post-singular orbits.

Remark 1. The exponent is C1 -invariant meaning that if f and g are C1

conjugated maps (i.e., there is a C1 diffeomorphism h such that h ◦ f = g ◦ h),
then the exponents of f and g are the same at corresponding power law critical
points.

Remark 2. In general, we can define the left and right exponents at a singular
point as follows. A singular point c is said to be power law if there is an interval
(c − τc, c + τc), τc > 0, such that f |(c − τc, c) and f |(c, c + τc) are C1 and there
are two real numbers γ− ≥ 1 and γ+ ≥ 1 such that the limits

lim
x→c−

f ′(x)

|x − c|γ−−1
= B− and lim

x→c+

f ′(x)

|x − c|γ+−1
= B+

exist and are non-zero. The numbers γ− and γ+ are called the left and right
exponents of f at c . For a power law critical point c , let

rc,−(x) =
f ′(x)

|x − c|γ−−1
, x ∈ (c − τc, c)

and

rc,+(x) =
f ′(x)

|x − c|γ+−1
, x ∈ (c, c + τc).
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The left and right exponents are orientation-preserving C1 -invariant, meaning
that if h is an orientation-preserving C1 diffeomorphism such that

h ◦ f = g ◦ h,

then the left and right exponents of f and g are the same at corresponding power
law critical points. Under this definition of a power law singular point, our main
results (Theorems 1 and 2) will be true too if we replace the conjugacy by the
orientation-preserving conjugacy.

Our f in this paper always satisfies that

(1) SP is finite (could be empty) and
(2) every singular point in SP is of power law type.

Let τ > 0 be a real number. For every critical point c ∈ CP, let Uc =
[c − τ, c + τ ] . Define

U(τ) =
⋃

c∈CP

Uc and V (τ) = M \ U
(

1
2
τ
)

.

Denote
Uc,− = Uc ∩ (c − τ, c) and Uc,+ = Uc ∩ (c, c + τ).

Definition 1. We call f in this paper C1+α for some 0 < α ≤ 1 if there is
τ > 0 such that

(i) f on every component of M \ SP is C1 and the derivative is α -Hölder
continuous, and

(ii) every rc,± | Uc,± is α -Hölder continuous.

A sequence of intervals {Ii}
n
i=0 is called a chain (with respect to f ) if

(a) Ii ⊂ M \ SP for all 0 ≤ i ≤ n ;
(b) f : Ii → Ii+1 is a C1 -diffeomorphism for every 0 ≤ i ≤ n − 1; and
(c) either Ii ⊆ V (τ) for all 0 ≤ i ≤ n − 1 or the last interval In ⊆ U(τ) (but

in the latter case, some Ii , 0 < i < n − 1, may not be contained in U(τ)
or V (τ)).

Definition 2. We call f quasi-hyperbolic if

(1) f is C1+α for some 0 < α ≤ 1;
(2) PSO ∩ U(τ) = ∅ for some number τ > 0; and
(3) there are two constants C > 0 and 0 < µ < 1 such that for any chain {Ii}

n
i=0 ,

|I0| ≤ Cµn|In| .

Let τ > 0 be a fixed small number in the rest of this paper.
We first show several examples of f which are quasi-hyperbolic. A point

p ∈ M is called periodic of period k if f i(p) 6= p for all 0 < i < k but fk(p) = p .
When k = 1, we also call it fixed. For a periodic point p of period k , ep = (fk)′(p)
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is called the eigenvalue of f at p . Then p is called attractive if |ep| < 1; parabolic
if |ep| = 1; expanding if |ep| > 1. The first example comes from a theorem
(see [MS, Theorem 6.3, pp. 261–262]). A critical point c of a C2 map is called
non-degenerate if f ′(c) = 0 and f ′′(c) 6= 0.

Example 1. A C2 map f with only non-degenerate critical points such
that PSO and SP are both finite and PSO ∩ SP = ∅ and all periodic points are
expanding.

The Schwarzian derivative of a C3 map h is defined as

S(h) =
h′′′

h′
−

3

2

(

h′′

h′

)2

.

We say that h has negative Schwarzian derivative if S(h)(x) < 0 for all x . Singer
(see [Si]) proved that if f is C3 and has negative Schwarzian derivative, then
the immediate basin of every attractive or parabolic periodic orbit contains at
least one critical orbit. Therefore, if f has negative Schwarzian derivative and
if PSO ∩ SP = ∅ and if PSO contains neither attractive nor parabolic periodic
points, then all periodic points of f are expanding. The map f is said to be
preperiodic if for every singular point c , fm(c) is an expanding periodic point for
some integer m ≥ 1. Then PSO = PSO contains neither attractive nor parabolic
periodic points. A special case of Example 1 is that

Example 2. A preperiodic C3 map f having negative Schwarzian derivative.

Let SO =
⋃∞

n=0 fn(SP) be the union of singular orbits of f . If SO is non-
empty and finite, let η1 = {I0, . . . , Ik−1} be the set of the closures of intervals in
M \ SO, then (f, η1) has Markovian property. That means that

(i) I0, . . . , Ik−1 have pairwise disjoint interiors,

(ii) the union
⋃k−1

i=0 Ii of all intervals in η1 is M ,
(iii) the restriction f : I → f(I) for every interval I in η1 is homeomorphic, and
(iv) the image f(I) of every interval I in η1 is the union of some intervals in η1 .

We call η1 a Markov partition. Let gi = (f | Ii)
−1 be the inverse of f : Ii →

f(Ii) for each Ii ∈ η1 . A sequence wn = i0 · · · in−1 of 0’s, · · · , (k − 1)’s is
called admissible if the domain f(Iil

) of gil
contains Iil+1

for all 0 ≤ l < n − 1.
For an admissible sequence wn = i0 · · · in−1 of 0’s, · · ·, (k − 1)’s, we can define
gwn

= gi0 ◦ · · · gin−1
and Iwn

= gwn

(

f(Iin−1
)
)

. Let ηn be the set of the intervals
Iwn

for all admissible sequences of length n . It is also a Markov partition of M
with respect to f . We call it the nth -partition of M induced from (f, η1). Let
κn be the maximum of the lengths of intervals in ηn .

Definition 3. We call f geometrically finite if

(i) the set of singular orbits SO is non-empty and finite,
(ii) no critical point is periodic, and
(iii) there are constants C > 0 and 0 < µ < 1 such that κn ≤ Cµn for all n > 0.
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Our next example of a quasi-hyperbolic map is a geometrically finite map (re-
fer to [J4, Chapter 3] for more details about this). A special class of geometrically
finite maps is generalized Ulam-von Neumann transformation, which is the first
class we studied in this direction.

Definition 4. Suppose M = [−1, 1]. We call f a generalised Ulam–von

Neumann transformation if

(I) f is geometrically finite with only one singular point 0,
(II) f(−1) = f(1) = −1 and f(0) = 1,

(III) f | [−1, 0] is increasing and f | [0, 1] is decreasing.

One example of a generalized Ulam–von Neumann transformation is f(x) =
1− 2|x|γ for γ ≥ 1. Another one is f(x) = −1+2 cos

(

1
2πx

)

. If f is a generalized
Ulam–von Neumann transformation, let I0 = [−1, 0] and I1 = [0, 1]. We then
have that f(I0) = f(I1) = M . Thus η0 = {I0, I1} is a Markov partition. The
post-singular orbit PSO =

⋃∞
i=1 f i(0) is {−1, 1} . Any two generalized Ulam–von

Neumann transformations f and g are topologically conjugate by an orientation-
preserving homeomorphism. The conjugacy is quasisymmetric (refer to [J1] or [J4,
Chapter 3]). And according to our results (Theorems 1 and 2) in this paper, it
is either totally singular or smooth on (−1, 1). If the conjugacy is smooth on
(−1, 1) and if the exponents of f and g at 0 are the same, then the conjugacy is
a diffeomorphism of [−1, 1].

Our last example is a circle expanding map which was first studied by Shub–
Sullivan [SS]. Let M = R/Z be the unit circle. Then f is called a circle expanding
map if there are constants C > 0 and µ > 1 such that

(fn)′(x) ≥ Cµn, x ∈ M, n ≥ 1.

An example of an expanding circle endomorphism is x 7→ dx (mod 1) , where
d > 1 is an integer. If the topological degree of f is d , then f is topologi-
cally conjugate to x 7→ dx (mod 1) . A circle expanding map is quasi-hyperbolic
without any singular point. The conjugacy is quasisymmetric (refer to [J4]) and,
according to results in this paper, it is either a totally singular homeomorphism
or a diffeomorphism of the circle.

3. Nonlinearity of a quasi-hyperbolic map

The study of nonlinearity is extremely important in dynamical systems. In
one complex variable, Koebe’s distortion theorem (see [Bi]) represents a beauti-
ful result showing how nonlinearity can be controlled for all schlicht functions (or
called conformal maps) defined on the unit disk. In one-dimensional dynamics,
the Denjoy distortion technique becomes an important tool to estimate the nonlin-
earity of a C2 diffeomorphism of the circle (see [D]). Koebe’s distortion theorem
represents a kind of magic in mathematics because it shows that the nonlinear-
ity can be controlled universally for all schlicht functions on the unit disk. By a
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detailed analysis of the reason behind this magic, we prove a Koebe–Denjoy type
distortion lemma by combining ideas of Koebe and Denjoy. This result gives us a
wonderful technique to control the nonlinearity of a quasi-hyperbolic map.

Take f a quasi-hyperbolic map. Let α , U = U(τ), and V = V (τ) be as in
Definition 2. This notation is fixed in the rest of the paper. Dividing M into U
and V is one of the key points in this section; the set V is away from all critical
points CP and the set U is away from post-singular orbit PSO =

⋃∞
n=1 fn(SP).

In the set V we can use the Denjoy distortion technique to control the distortion
of the iterates of f (see Lemma 1); in the set U we can prove a Koebe type
distortion property (see Lemma 3) to control the distortion of the iterates of f .

A chain I = {Ii}
n
i=0 is said to be regulated if either Ii ⊆ V or Ii ⊆ U for all

0 ≤ i ≤ n . We use d( · , · ) to mean the distance between two points or two sets.

Lemma 1 (The first distortion lemma). There is a constant C > 0 such that

for any regulated chain I = {Ii}
n
i=0 satisfying Ii ⊆ V for all 1 ≤ i ≤ n − 1 and

for all x and y in I0 ,

∣

∣

∣

∣

log

(

|(fn)′(x)|

|(fn)′(y)|

)
∣

∣

∣

∣

≤ C|xn − yn|
α,

where xn = fn(x) and yn = fn(y) .

Proof. Let ξ be the set of intervals of V \ SP. Let

a = inf
x∈V \SP

|f ′(x)| > 0

and let

b = sup
x6=y∈I, I∈ξ

|f ′(x) − f ′(y)|

|x − y|α
< ∞.

For any x and y in I0 , let xi = f i(x) and yi = f i(y) for 0 ≤ i ≤ n . Then

A =
|(fn)′(x)|

|(fn)′(y)|
=

n−1
∏

i=0

|f ′(xi)|

|f ′(yi)|
.

This implies that

| log A | ≤
b

a

n−1
∑

i=0

|xi − yi|
α.

From Definition 2, there are constants C > 0 and 0 < µ < 1 such that

|xi − yi| ≤ Cµn−i|xn − yn|, 0 ≤ i ≤ n − 1.
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Therefore,

| log A | ≤
bC

a(1 − µα)
|xn − yn|

α = B|xn − yn|
α, B = (bC)/

(

a(1 − µα)
)

.

Lemma 2 (C1+Hölder–Denjoy–Koebe type distortion lemma). There are con-

stants C, D > 0 such that for any regulated chain I = {Ii}
n
i=0 and for all x and

y in I0 ,
∣

∣

∣

∣

log

(

|(fn)′(x)|

|(fn)′(y)|

)
∣

∣

∣

∣

≤ C|xn − yn|
α/γ + D

|xn − yn|

d({xn, yn}, PSO)
,

where xn = fn(x) and yn = fn(y) .

Proof. For any x and y in I0 , let xi = f i(x) and yi = f i(y) for 0 ≤ i ≤ n .
The ratio |(fn)′(x)|/|(fn)′(y)| equals the product

A =
n−1
∏

i=0

|f ′(xi)|

|f ′(yi)|
.

Let (xi, yi) mean the open interval in Ii bounded by xi and yi . We divide the
set of intervals J = {(xi, yi)}

n−1
i=0 into two subsets

J1 = {(xi, yi) | (xi, yi) ⊆ V } and J2 = {(xi, yi) | (xi, yi) ⊆ U and (xi, yi) 6⊂ V }.

Consider
∏

xi,yi∈J1

|f ′(xi)|

|f ′(yi)|
and

∏

xi,yi∈J2

|f ′(xi)|

|f ′(yi)|
.

As in the proof of Lemma 1, there are constants C1, C2 > 0 such that
∣

∣

∣

∣

log

(

∏

xi,yi∈J1

|f ′(xi)|

|f ′(yi)|

)
∣

∣

∣

∣

≤ C1

∑

xi,yi∈J1

|xi − yi|
α ≤ C2

∑

xi,yi∈J2

|xi − yi|
α.

The rightmost expression here is obtained from (3) of Definition 2.
Suppose xi and yi are in Uji

(τ). Denote ei = cji
as the critical point in

Uji
(τ) and κi = γji

as the exponent at ei . Let ti = (κi − 1)/κi . To estimate the
product

∏

xi,yi∈J2
|f ′(xi)|/|f

′(yi)| , we write it as the product of three factors:

B =
∏

xi,yi∈J2

(

|xi − ei|
κi

|f(xi) − f(ei)|

|f(yi) − f(ei)|

|yi − ei|κi

)ti

,

C =
∏

xi,yi∈J2

|yi − ei|
κi−1

|f ′(yi)|

|f ′(xi)|

|xi − ei|κi−1
,

and
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D =
∏

xi,yi∈J2

(

|f(xi) − f(ei)|

|f(yi) − f(ei)|

)ti

.

From Definition 1 and as in the proof of Lemma 1, there is a constant C3 > 0
such that

| log B|, | logC | ≤ C3

∑

xi,yi∈J2

|xi − yi|
α.

The estimation of D is a key part in the proof. Let

f(xi) − f(ei)

f(yi) − f(ei)
= 1 +

f(xi) − f(yi)

f(yi) − f(ei)
.

Then

D = exp

(r−1
∑

s=1

1

tis

log

∣

∣

∣

∣

1 +
f(xis

) − f(yis
)

f(yis
) − f(eis

)

∣

∣

∣

∣

)

where 0 ≤ i1 < i2 < · · · < ir−1 < n . Let ir = n . For each is , 1 ≤ s < r ,
consider the interval Ls bounded by yis

and eis
and the map hs = f is+1−is . Let

Rs ⊆ Ls be the maximal interval containing yis
such that hs on Rs is C1+α and

injective. One of the endpoints of Rs is yis
and the other is a preimage, denoted

as e , of a singular point q ∈ SP under f rs for some 0 ≤ rs < is+1 − is . Let
ls = is+1 − is − rs . Then hs on the minimal interval Js containing xis

and Rs

is C1+α and injective and maps Js onto an interval containing the points yis+1
,

xis+1
and f ls(q). We enlarge every interval J of V into a closed interval J ′ ⊃ J

such that J ′ ∩ CP = ∅ and such that the length of J ′ ∩ U is greater than a
constant a > 0. Let V ′ =

⋃

J∈V J ′ be the union of all these enlarged intervals
and let U ′ = M \ V ′ .

We consider each 1 ≤ s < r − 1 in two cases. The first is that f i(Js) ⊆ V ′

for all 1 ≤ i < is+1 − is . Then as in the proof of Lemma 1, there is a constant
C4 > 0 such that

|f(xis
) − f(yis

)|

|f(yis
) − f(cis

)|
≤ C4

|xis+1
− yis+1

|

|yis+1
− f ls(q)|

≤ C4
|xis+1

− yis+1
|

A

where A > 0 is the distance between U ′ and PSO. The other is opposite to the
first one. Let 1 ≤ k < is+1 − is be the smallest integer such that fk(Js)∩U ′ 6= ∅ .
Since f i(Js) ⊆ V ′ for all 1 ≤ i < k , we have

|f(xis
) − f(yis

)|

|f(yis
) − f(cis

)|
≤ C4

|xis+k − yis+k|

|yis+k − fk(e)|
.

Since yis+k is in V and fk(e) is in U ′

|f(xis
) − f(yis

)|

|f(yis
) − f(ckis

)|
≤ C4

|xis+k − yis+k|

B
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where B > 0 is the distance between V and U ′ . From Definition 2, there is a
constant C5 > 0 such that

|xis+k − yis+k| ≤ C5|xis+1
− yis+1

|.

We get
|f(xis

) − f(yis
)|

|f(yis
) − f(cis

)|
≤ C4C5

|xis+1
− yis+1

|

B
.

For s = r − 1, as in the proof of Lemma 1 and in the above argument, there
is a constant C6 > 0 such that

|f(xir−1
) − f(yir−1

)|

|f(yir−1
) − f(cir−1

)|
≤ C6

|xn − yn|

d({xn, yn}, PSO)
.

Therefore, there is a constant C7 > 0 such that

|log D | ≤ C7

∑

xi,yi∈J2

|xi − yi| + C6
|xn − yn|

d({xn, yn}, PSO)
.

Combining all the estimates, we have constants C8 such that
∣

∣

∣

∣

log

(

|(fn)′(x)|

|(fn)′(y)|

)
∣

∣

∣

∣

≤ C8

∑

xi,yi∈J2

|xi − yi|
α + C6

|xn − yn|

d({xn, yn}, PSO)
.

From Definition 2, there are constants C10 ≥ C9 > 0 and 0 < ν1 ≤ ν2 < 1
such that

|xi − yi| ≤ C9ν
ir−1−i
1 |xir−1

− yir−1
| ≤ C10ν

n−1
2 |xn − yn|

1/κr−1 .

Therefore, we have constants C, D > 0 such that
∣

∣

∣

∣

log

(

|(fn)′(x)|

|(fn)′(y)|

)
∣

∣

∣

∣

≤ C|xn − yn|
α/γ + D

|xn − yn|

d({xn, yn}, PSO)
.

A special case of Lemma 2 which is often used in this paper is

Lemma 3 (The second distortion lemma). Suppose U0 is an open set such

that d(U0, PSO) > 0 . Then there is a constant C > 0 such that for any regulated

chain {Ii}
n
i=0 with In ⊆ U0 and for all x, y ∈ I0 ,

∣

∣

∣

∣

log

(

|(fn)′(x)|

|(fn)′(y)|

)
∣

∣

∣

∣

≤ C|xn − yn|
α/γ,

where xn = fn(x) and yn = fn(y) .

Remark 3. We also proved a similar result called the geometric distortion

theorem for higher dimensional dynamical systems in [J2] (see also [J4, Chapter 2]).
Its proof is also done by a detailed analysis of the reason behind Koebe’s distortion
theorem in one complex variable and by combining ideas of Koebe and Denjoy.
This result is a kind of a generalization of Koebe’s distortion theorem for a larger
class of maps including many non-conformal maps. The reader who is interested
in this result and its application to some higher dimensional dynamical systems
may refer to [J4, Chapter 2].
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4. One-point differentiable rigidity

We use Leb to mean the Lebesgue measure on M . Our map f (or g ) in this
section satisfies three more technical conditions:

(1) PSO has measure zero, i.e., Leb(PSO) = 0.
(2) The set PSO is not an attractor. More precisely, there is an open neighbor-

hood PSO ⊂ W 6= M such that for any point p ∈ M either fn falls into
PSO eventually (i.e., {fn(p)}∞n=N ⊆ PSO for some N > 0) or it leaves W
infinitely often (i.e., there is a subsequence {f ◦ni(p)}∞i=1 ⊆ M \ W ).

(3) The map f is mixing, that is, for any intervals I, J ⊂ M , there is an integer
n ≥ 0 such that fn(J) ⊇ I .

The last two conditions are invariant under topological conjugacy. Condition (3)
says that {fn}∞n=0 would not be decomposed into several dynamical systems.

Denote M0 = M \ PSO. For any point p ∈ M , let

BO(p) =
∞
⋃

n=0
f−n(p)

be the set of all backward images of p . It is countable.
Suppose that f and g are two conjugated quasi-hyperbolic maps and that h

is the conjugacy between f and g , i.e.,

h ◦ f = g ◦ h.

If h is differentiable at p ∈ M0 , then, from the last equation, h is differentiable
at all points in BO(p).

Definition 5. We call h differentiable at p ∈ M0 with uniform bound if
there are a small neighborhood Z of p and a constant C > 0 such that

C−1 ≤ |h′(q)| ≤ C, q ∈ BO(p) ∩ Z.

For x ∈ M , let

ω(x) = {y ∈ M | there is a subsequence fni(x) → y as i → ∞}

be the set of all accumulation points of the forward orbit {f ◦n(x)}∞n=1 . Then x
is called self-recurrent if x ∈ ω(x).

Let Λ =
⋃∞

n=0 f−n(PSO). Then Leb(Λ) = 0. Let Ω be the set of all self-
recurrent points in M \Λ of f . We say a measurable set E in M has full Lebesgue
measure if Leb(E) = Leb(M). A point p in a measurable set E0 is said to be a
density point if

lim
Leb(J)→0

Leb(E0 ∩ J)

Leb(J)
= 1

where J runs over all intervals containing p .
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Proposition 1. The set Ω has full Lebesgue measure in M .

Proof. Let Λn =
⋃n

i=0 f−i(PSO). Then Leb(Λn) = 0. Let Γn = M \ Λn .
For any component J of Γn , let X(J) ⊆ J be the set of points in J such that
{f◦n(x)}∞n=1 ∩ J 6= ∅ . We claim Leb

(

J \X(J)
)

= 0. Let us first prove this claim.

Proof of the claim. We prove it by contradiction. Denote A = J \ X(J).
Assume Leb(A) > 0. Almost every point in A \ Λ is a density point of A . Since
Λ has zero measure, we can find a point u in A such that it is a density point of
A and such that there is a subsequence {f ◦ni(u)}∞i=1 converging to a point q in
M \ W where W is the neighborhood defined at the beginning of this section.

Let J0 be an open interval about q such that C1 = d(J0, PSO) > 0. Assume
that {f◦ni(u)}n

i=1 ⊂ J0 . Let Ji be the interval about u such that f◦ni : Ji → J0 is
a C1+α -diffeomorphism. Without loss of generality, we assume that {f ◦k(Ji)}

ni

k=0

is a regulated chain for every i ≥ 1. From Definition 2, Leb(Ji) → 0 as i → ∞ .
Let Ai = f◦ni(A ∩ Ji) and A∞ =

⋂∞
m=1

⋃∞
i=m Ai . Then Lemma 3 implies that

there is a constant C2 > 0 such that

C−1
2 ≤

|(f◦ni)′(z)|

|(f◦ni)′(w)|
≤ C2

for all z, w ∈ Ji and all i ≥ 1. This and the fact that

lim
i→∞

Leb(A ∩ Ji)

Leb(Ji)
= 1

imply Leb(A∞) = Leb(J0) (refer to the proof of Theorem 1). By the construction,
the forward post-orbit of every point in A∞ under iterates of f will not enter J .
But on the other hand, because f is mixing the forward post-orbit of J0 under
iterates of f must intersect with J . This is a contradiction. We proved the claim.

Note that Γn = M \ Λn gives a measurable partition of M and the lengths
of intervals in this partition tend to zero as n goes to infinity. Thus, we have
Ω =

⋂∞
n=1

⋃

J∈Γn
X(J). It is clear that

M \ Ω = Λ ∪
∞
⋃

n=1

⋃

J∈Γn

(

J \ X(J)
)

.

So

Leb(M \ Ω) ≤ Leb(Λ) +
∞
∑

n=1

∑

J∈Γn

Leb
(

J \ X(J)
)

= 0.

In other words, Leb(Ω) = Leb(M).

We are ready to state one of our main results in this paper now.
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Theorem 1. Suppose that f and g are conjugate quasi-hyperbolic maps and

h is the conjugacy between f and g . If h is differentiable at one point p ∈ M0

with uniform bound, then h | M0 is C1 .

Proof. Suppose f and g are C1+α for 0 < α ≤ 1. Let Z be an open interval
about p and let C1 > 0 be a constant such that

d
(

Z, PSO
)

, d
(

h(Z), h(PSO)
)

> C1

and such that
C−1

1 ≤ |h′(q)| ≤ C1

for all q in BO(p) ∩ Z .
Let Ψ1 be the set of intervals of f−1(Z) contained in Z . Inductively, let

Ψn be the set of intervals of f−n(Z) contained in Z \
(
⋃

I∈Ψn−1
I
)

. Because f is
mixing, there are infinitely many integers n such that Ψn is non-empty.

Suppose Ψn is non-empty. Then for any interval I ∈ Ψn , fn: I → Z and
gn: h(I) → h(Z) are C1+α -diffeomorphisms. Moreover we have that

|h(I)|

|I|
=

|(fn)′(x)|
∣

∣(gn)′
(

h(y)
)
∣

∣

|h(Z)|

|Z|

for some x, y ∈ I . Without loss of generality, we assume that {f k(I)}n
k=0 and

{gk(h(J))}n
k=0 are regulated chains.

Let q ∈ I ⊆ Z be the preimage of p under fn: I → Z . Then

(fn)′(q)

(gn)′
(

h(q)
) =

h′(q)

h′(p)
.

So we have that

C−2
1 ≤

|(fn)′(q)|
∣

∣(gn)′
(

h(q)
)
∣

∣

≤ C2
1 .

Therefore,

C−2
1

|(fn)′(x)|

|(fn)′(q)|

∣

∣(gn)′
(

h(q)
)
∣

∣

∣

∣(gn)′
(

h(y)
)
∣

∣

|h(Z)|

|Z|
≤

|h(I)|

|I|
≤ C2

1

|(fn)′(x)|

|(fn)′(q)|

∣

∣(gn)′
(

h(q)
)
∣

∣

∣

∣(gn)′
(

h(y)
)
∣

∣

|h(Z)|

|Z|
.

Now Lemma 3 implies that there is a constant C2 > 0 such that

C−1
2 ≤

|(fn)′(x)|

|(fn)′(q)|
≤ C2 and C−1

2 ≤

∣

∣(gn)′
(

h(q)
)
∣

∣

∣

∣(gn)′
(

h(y)
)
∣

∣

≤ C2.

So we have a constant C3 > 0 such that

C−1
3 ≤

|h(I)|

|I|
≤ C3.
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Now we are going to prove that h | Z is bi-Lipschitz. Suppose x < y are in Z .
Let Ψ1(x, y) be the set of intervals of f−1(Z) contained in [x, y] . Inductively, let
Ψn(x, y) be the set of intervals of f−n(Z) contained in [x, y] \

(
⋃

I∈Ψn
I
)

. Then

∞
⋃

n=1

⋃

I∈Ψn(x,y)

I

is the union of pairwise disjoint intervals and its closure is [x, y] . Let

A = [x, y] \

(

∞
⋃

n=1

⋃

I∈Ψn(x,y)

I

)

.

Since every point z 6= x, y in A is not self-recurrent, now Proposition 1 implies
that Leb(A) = 0. Hence

Leb

(

∞
⋃

n=1

⋃

I∈Ψn(x,y)

I

)

=

∞
∑

n=1

∑

I∈Ψn(x,y)

|I| = [x, y].

Similarly,

m

(

∞
⋃

n=1

⋃

I∈Ψn(x,y)

h(I)

)

=
∞
∑

n=1

∑

I∈Ψn(x,y)

|h(I)| = h([x, y]).

The additive formula implies that

C−1
3 ≤

|h(x) − h(y)|

|x − y|
≤ C3.

Therefore, h | Z is bi-Lipschitz.
Since h | Z is bi-Lipschitz, h′ exists a.e. in Z and is integrable (refer to [Br],

[E]). Since (h | Z)′(x) is measurable, h | Z is a homeomorphism, and Leb(Λ) = 0,
we can find a point p0 in Z \ Λ and a subset E0 containing p0 such that (refer
to [Br], [E])

(1) h | Z is differentiable at every point in E0 ;
(2) p0 is a density point of E0 ;
(3) h′(p0) 6= 0; and
(4) the derivative h′ | E0 is continuous at p0 .

From the beginning of this section, we know that there is a subsequence
{fnk(p0)}

∞
k=1 ⊆ M \ W converging to a point q0 in M \ W . Let I0 = (a, b) be

an open interval about q0 such that C4 = d(I0, PSO) > 0. There is a sequence
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of intervals {Ik}
∞
k=1 such that p0 ∈ Ik ⊆ Z and fnk : Ik → I0 is a C1+α diffeo-

morphism. Without loss of generality, we may assume that {Il,k = f l(Ik)}nk

l=0 is
a regulated chain for every k ≥ 1. From Definition 2, Leb(Ik) goes to zero as k
tends to infinity. By Lemma 3, there is a constant C5 > 0, such that

∣

∣

∣

∣

log

(

|(fnk)′(w)|

|(fnk)′(z)|

)
∣

∣

∣

∣

≤ C5

for any w and z in Ik and all k ≥ 1.
For any positive integer s , there is an integer Ns > 0 such that

Leb(E0 ∩ Ik)

Leb(Ik)
≥ 1 −

1

s

for all k > Ns . Let Ek = fnk(E0 ∩ Ik). Then h is differentiable at every point in
Ek and there is a constant C6 > 0 such that

Leb(Ek ∩ I0)

Leb(I0)
≥ 1 −

C6

s

for all k > Ns because {fnk | Ik}
∞
k=1 have uniformly bounded distortion. Let

E =
⋂∞

s=1

⋃

k>Ns
Ek . Then E has full measure in I0 and h is differentiable at

every point in E with non-zero derivative.
Next, we are going to prove that h′ | E is uniformly continuous. For any x

and y in E , let zk and wk be the preimages of x and y under the diffeomorphism
fnk : Ik → I0 . Then zk and wk are in E0 . From h ◦ f = g ◦ h , we have that

h′(x) =
(gnk)′

(

h(zk)
)

(fnk)′(zk)
h′(zk)

and

h′(y) =
(gnk)′

(

h(wk)
)

(fnk)′(wk)
h′(wk).

So

∣

∣

∣

∣

log

(

h′(x)

h′(y)

)
∣

∣

∣

∣

≤

∣

∣

∣

∣

log

∣

∣

∣

∣

(gnk)′
(

h(zk)
)

(gnk)′
(

h(wk)
)

∣

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

log

∣

∣

∣

∣

(fnk)′(wk)

(fnk)′(zk)

∣

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

log

(

h′(zk)

h′(wk)

)
∣

∣

∣

∣

.

Applying Lemma 3 to both f and g , we can find a constant C7 > 0 such
that

∣

∣

∣

∣

log

∣

∣

∣

∣

(fnk)′(wk)

(fnk)′(zk)

∣

∣

∣

∣

∣

∣

∣

∣

≤ C7|x − y|α
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and
∣

∣

∣

∣

log

∣

∣

∣

∣

(gnk)′
(

h(zk)
)

(gnk)′
(

h(wk)
)

∣

∣

∣

∣

∣

∣

∣

∣

≤ C7|h(x) − h(y)|α

for all k ≥ 1. Therefore,

∣

∣

∣

∣

log

(

h′(x)

h′(y)

)
∣

∣

∣

∣

≤ C7

(

|x − y|α + |h(x) − h(y)|α
)

+

∣

∣

∣

∣

log

(

h′(zk)

h′(wk)

)
∣

∣

∣

∣

for all k ≥ 1. Since h′ | E0 is continuous at p0 , the last term in the last inequality
tends to zero as k goes to infinity. Hence

∣

∣

∣

∣

log

(

h′(x)

h′(y)

)
∣

∣

∣

∣

≤ C7

(

|x − y|α + |h(x) − h(y)|α
)

.

This means that h′ | E is uniformly continuous. So it can be extended to a
continuous function φ on I0 . Because h | I0 is absolutely continuous and E has
full measure,

h(x) = h(a) +

∫ x

a

h′(x) dx = h(a) +

∫ x

a

φ(x) dx

on I0 . This implies that h | I0 is actually C1 .
Now for any x ∈ M0 , let J ⊂ M0 be an open interval about x . By the

mixing condition, there are an integer n > 0 and an open interval J0 ⊂ I0 such
that fn: J0 → J is a C1 diffeomorphism. By the equation h ◦ f = g ◦ h , we have
that h | J is C1 . Therefore, h | M0 is C1 .

Consider the conjugacy h(x) = (2/π) arcsin(x) between f(x) = 1 − 2x2 and
g(x) = 1 − 2|x| on [−1, 1]. The maps h and h−1 are both C1 on (−1, 1). But
h′ is not uniformly continuous because the exponents of f and g at 0 are differ-
ent. Note that the exponent at a singular point is invariant under C1 conjugacy.
Furthermore, we have the following result to enhance Theorem 1.

Theorem 2. Suppose f and g and h are the same as those in Theorem 1 .

If h is differentiable at one point in M0 with uniform bound and all the exponents

of f and g at the corresponding singular points are the same, then h restricted to

the closure of every interval of M0 is a C1+β diffeomorphism for some 0 < β ≤ 1 .

We prove this theorem by two lemmas. Let f and g be the maps and h be
the conjugacy in Theorem 2. Suppose f and g are both C1+α . Let U = U(τ)
and V = V (τ) be the sets satisfied by both f and g . Let I0 and q0 be the
interval and the point found in the proof of Theorem 1. Denote CP = {c1, . . . , cd}
as the set of critical points and Γ = {γ1, . . . , γd} as the corresponding exponents.
Let γ = max{γi | 1 ≤ i ≤ d} . Let Ui(τ) = [ci − τ, ci + τ ] for ci ∈ CP.
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Remark 4. Under the above assumption, β = α/γ in Theorem 2.

Lemma 4. The map h | Ui(τ) is C1+α .

Proof. We use the same notation as in the proof of Theorem 1. Denote
J = Ui(τ) = [d, e] . Since f has mixing condition and J ∩ PSO = ∅ , there is
a preimage Jk ⊂ I0 of J under fnk such that Jk tends to q0 as k → ∞ and
such that fnk : Jk → J is a C1 diffeomorphism where {nk}

∞
k=1 is a subset of

the positive integers. Let Fk be the inverse of fnk : Jk → J . From the equation
h ◦ f = g ◦ h , we have that h | J = gnk ◦ h ◦ Fk . So h | J is C1 and

h′(x) =
(gnk)′

(

h(zk)
)

(fnk)′(zk)
h′(zk) 6= 0

for any x in J where zk = Fk(x).
Without loss of generality, we assume that {Ji,k = fnk−i(Jk)}nk

i=0 are all
regulated chains for all k > 0. For any x and y in J , let zk and wk be the
preimage of x and y under the diffeomorphism fnk : Jk → J . Since

h′(x)

h′(y)
=

(gnk)′
(

h(zk)
)

(fnk)′(zk)
·

(fnk)′(wk)

(gnk)′
(

h(wk)
) ·

h′(zk)

h′(wk)
,

from Lemma 3, there is a constant C > 0 such that

∣

∣

∣

∣

log

(

h′(x)

h′(y)

)
∣

∣

∣

∣

≤

∣

∣

∣

∣

log

∣

∣

∣

∣

(gnk)′
(

h(zk)
)

(gnk)′
(

h(wk)
)

∣

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

log

∣

∣

∣

∣

(fnk)′(wk)

(fnk)′(zk)

∣

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

log

(

h′(zk)

h′(wk)

)
∣

∣

∣

∣

≤ C
(

|x − y|α + |h(x) − h(y)|α
)

+

∣

∣

∣

∣

log

(

h′(zk)

h′(wk)

)
∣

∣

∣

∣

.

Because h′(zk), h′(wk) → h′(q0) as k → ∞ , we have

∣

∣

∣

∣

log

(

h′(x)

h′(y)

)
∣

∣

∣

∣

≤ C
(

|x − y|α + |h(x) − h(y)|α
)

.

This implies that h | J is actually C1+α .

Lemma 5. The restriction of h to the closure of every interval J of V \PSO
is C1+(α/γ) .

Proof. We always use C to denote a positive constant (although it may
be different in different formulas). Since f has mixing condition, we can find a
subsequence {nk}

∞
k=1 of the positive integers and intervals Jk ⊂ I0 such that Jk

tends to q0 as k → ∞ and such that fnk : Jk → J is a C1 diffeomorphism. Let
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Fk be the inverse of fnk : Jk → J . From the equation h ◦ f = g ◦ h , we have that
h | J = gnk ◦ h ◦ Fk . So h | J is C1 and

h′(x) =
(gnk)′

(

h(zk)
)

(fnk)′(zk)
h′(zk) 6= 0

for any x in J where zk = Fk(x).
Let Ji,k = fnk−i(Jk) for 0 ≤ i ≤ nk . Without loss of generality, we assume

that {Ji,k}
nk

i=0 are regulated chains for all k > 0. For any x and y in J , let
zk and wk be the preimage of x and y under the diffeomorphism fnk : Jk → J .
From the equation h ◦ f = g ◦ h , we have

h′(x)

h′(y)
=

(gnk)′
(

h(zk)
)

(fnk)′(wk)
·

(fnk)′(wk)

(gnk)′
(

h(wk)
) ·

h′(zk)

h′(wk)
.

Thus,
∣

∣

∣

∣

log

(

h′(x)

h′(y)

)
∣

∣

∣

∣

≤

∣

∣

∣

∣

log

(

|(gnk)′
(

h(zk)
)

|
∣

∣(gnk)′
(

h(wk)
)
∣

∣

)
∣

∣

∣

∣

+

∣

∣

∣

∣

log

(

|(fnk)′(wk)|

|(fnk)′(zk)|

)
∣

∣

∣

∣

+

∣

∣

∣

∣

log

(

h′(zk)

h′(wk)

)
∣

∣

∣

∣

.

Let n = nk and let m = m(nk) > 0 be the smallest integer such that
Jm,k ⊆ Uj(τ) ⊆ U for some 1 ≤ j ≤ d . Let xi = fnk−i(zk) and yi = fnk−i(wk)
for all 0 ≤ i ≤ nk . Then

∣

∣

∣

∣

log

(

h′(x)

h′(y)

)
∣

∣

∣

∣

≤

∣

∣

∣

∣

m−1
∑

i=1

(

log |f ′(yi)| − log |f ′(xi)|
)

∣

∣

∣

∣

+

∣

∣

∣

∣

m−1
∑

i=1

(

log
∣

∣g′
(

h(xi)
)
∣

∣ − log
∣

∣g′
(

h(yi)
)
∣

∣

)

∣

∣

∣

∣

+

∣

∣

∣

∣

log

(

∣

∣g′
(

h(xm)
)
∣

∣

|f ′(xm)|
·

|f ′(ym)|
∣

∣g′
(

h(ym)
)
∣

∣

)
∣

∣

∣

∣

+

∣

∣

∣

∣

n
∑

i=m+1

(

log |f ′(yi)| − log |f ′(xi)|
)

∣

∣

∣

∣

+

∣

∣

∣

∣

n
∑

i=m+1

(

log
∣

∣g′
(

h(xi)
)
∣

∣ − log
∣

∣g′
(

h(yi)
)
∣

∣

)

∣

∣

∣

∣

+

∣

∣

∣

∣

log

(

h′(zk)

h′(wk)

)
∣

∣

∣

∣

.

The last term tends to zero as k goes to infinity. We estimate the first five terms.
From Lemma 1, there is a constant C > 0 such that

∣

∣

∣

∣

m−1
∑

i=1

(

log |f ′(yi)| − log |f ′(xi)|
)

∣

∣

∣

∣

≤ C|x − y|α
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and
∣

∣

∣

∣

m−1
∑

i=1

(

log
∣

∣g′
(

h(xi)
)
∣

∣ − log
∣

∣g′
(

h(yi)
)
∣

∣

)

∣

∣

∣

∣

≤ C|h(x) − h(y)|α.

From Lemma 3, there are constants C > 0 such that
∣

∣

∣

∣

n
∑

i=m+1

(

log |f ′(yi)| − log |f ′(xi)|
)

∣

∣

∣

∣

≤ C|xm − ym|α

≤ C|xm−1 − ym−1|
α/γj ≤ C|x − y|α/γj .

Similarly,
∣

∣

∣

∣

n
∑

i=m+1

(

log
∣

∣g′
(

h(xi)
)
∣

∣ − log
∣

∣g′
(

h(yi)
)
∣

∣

)

∣

∣

∣

∣

≤ C|h(x) − h(y)|α/γj .

Now we consider

S =

∣

∣g′
(

h(xm)
)
∣

∣

|f ′(xm)|
·

|f ′(ym)|
∣

∣g′
(

h(ym)
)
∣

∣

.

Define
S = S1 · S2 · S3

where

S1 =

∣

∣g′
(

h(xm)
)
∣

∣

|h(xm) − h(cj)|γj−1
·
|h(ym) − h(cj)|

γj−1

∣

∣g′
(

h(ym)
)
∣

∣

,

S2 =
|xm − cj |

γj−1

|f ′(xm)|
·

|f ′(ym)|

|ym − cj |γj−1
,

and

S3 =

(

|h(xm) − h(cj)|

|xm − cj |

)γj−1

·

(

|ym − cj |

|h(ym) − h(cj)|

)γj−1

.

Now Lemma 4 implies that

|log S3| ≤ C|xm − ym|α ≤ C|xm−1 − ym−1|
α/γj ≤ C|x − y|α/γj .

From Definition 1,

|log S2| ≤ C|xm − ym|α ≤ C|xm−1 − ym−1|
α/γj ≤ C|x − y|α/γj

and

|log S1| ≤ C|h(xm) − h(ym)|α ≤ C|h(xm−1) − h(ym−1)|
α/γj ≤ C|h(x) − h(y)|α/γj .

Thus, as k goes to infinity, we have that
∣

∣

∣

∣

log

(

h′(x)

h′(y)

)
∣

∣

∣

∣

≤ C(|x − y|α/γ + |h(x) − h(y)|α/γ).

This implies that h′ | J is actually Cα/γ . So is h′ | J̄ . We have that h | J̄ is
C1+α/γ .
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Proof of Theorem 2. Both Lemmas 4 and 5 for h and h−1 complete the
proof.

We can use eigenvalues of f and g at corresponding periodic points to verify
the condition, differentiable at one point with uniform bound, in Theorems 1 and 2.

Lemma 6. Suppose f and g and h are those in Theorem 1. If h is differen-

tiable at a point p in M0 with non-zero derivative and if there is an open interval

Y about p such that the absolute values of the eigenvalues of f and g at periodic

points in Y and at corresponding periodic points in h(Y ) are the same, then h is

differentiable at p with uniform bound.

Proof. Let BO(p) be the backward orbit of p . Assume that C1 = d(Y , PSO) >
0. From Definition 2, there is an integer N ≥ 0 and an open interval Z about p
such that every component of f−n(Y ) which intersects with Z is contained in Y
for n > N .

For any q ∈ BO(p) ∩ Z , we have fn(q) = p for some n ≥ 0. Since there

are only a finite number of points in
⋃N

i=0 f−i(p), we need only consider n > N .
There is an open interval q ∈ Jq such that fn: Jq → Y is a C1 -diffeomorphism
where Jq ⊆ Y . Therefore, there is a fixed point r of fn in Jq . By the assumption,
we have that

|(fn)′(r)| =
∣

∣(gn)′
(

h(r)
)
∣

∣.

From the equation h ◦ f = g ◦ h , we also have that

h′(q) =
(fn)′(q)

(gn)′
(

h(q)
)h′(p).

These imply that

|h′(q)| =
|(fn)′(q)|

|(fn)′(r)|

∣

∣(gn)′
(

h(r)
)
∣

∣

∣

∣(gn)′
(

h(q)
)
∣

∣

|h′(p)|.

Without loss of generality, we assume that {f k(Jq)}
n
k=0 is a regulated chain.

Now applying Lemma 3, there is a constant C2 > 0 such that

C−1
2 ≤

|(fn)′(q)|

|(fn)′(r)|
≤ C2

and

C−1
2 ≤

∣

∣(gn)′
(

h(r)
)
∣

∣

∣

∣(gn)′
(

h(q)
)
∣

∣

≤ C2.

But h′(p) 6= 0. We get a constant C3 > 0 such that

C−1
3 ≤ |h′(q)| ≤ C3

for all q ∈ BO(p) ∩ Z .
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The above lemma combined with Theorems 1 and 2 gives us the following
result.

Corollary 1. Suppose f and g and h are those in Theorem 1. If h is

differentiable at one point p in M0 with non-zero derivative and if the absolute

values of the eigenvalues of f and g at periodic points in a small neighborhood

Y of p and at corresponding periodic points in h(Y ) are the same, then h | M0

is C1 . Furthermore, if all the exponents of f and g at the corresponding singular

points are also the same, then h restricted on the closure of every interval of M0

is a C1+β diffeomorphism for some fixed 0 < β ≤ 1 .

The following rigidity result can now be obtained from Theorems 1, 2, and
Corollary 1.

Corollary 2. Suppose f and g and h are those in Theorem 1. If there is

a small interval Y of M such that h | Y is absolutely continuous, then h | M0

is C1 . Furthermore, if all the exponents of f and g at the corresponding singular

points are also the same, then h restricted on the closure of every interval of M0

is C1+β for some fixed 0 < β ≤ 1 .

Proof. Since h | Y is absolutely continuous, it is differentiable a.e. on Y .
Moreover, since h is a homeomorphism, there is a positive measure set in Z such
that h is differentiable with non-zero derivatives. An absolutely continuous map
preserves the absolute values of all the eigenvalues of f and g at periodic points
in Y ∩ M0 and at corresponding periodic points in h(Y ∩ M0). Therefore, the
corollary follows from Corollary 1.
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