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Abstract. We show that already the local integrability of the linear dilatation of a homeo-
morphism guarantees that the homeomorphism is absolutely continuous on almost all lines parallel
to the coordinate axes, under the assumption that the linear dilatation be finite outside a set of
σ -finite (n − 1) -measure.

1. Background and statement of results

Let Ω be a domain in Rn , n ≥ 2, and f : Ω → Ω′ ⊂ Rn a homeomorphism.
For x ∈ Ω and 0 < r < dist(x, ∂Ω) we set

Lf (x, r) = max{|f(x)− f(y)| : |x − y| ≤ r},

lf (x, r) = min{|f(x)− f(y)| : |x − y| ≥ r}.

The linear lim sup-dilatation of f at x is defined as

Hf (x) = lim sup
r→0

Hf (x, r)

where Hf (x, r) = Lf (x, r)/lf(x, r). Similarly we can define the linear lim inf -
dilatation hf (x) by replacing lim sup with lim inf .

A well-known result of Gehring [2], [3] says that if a homeomorphism f has its
linear lim sup-dilatation Hf (x) uniformly bounded a.e. in Ω\E , where E has σ -
finite (n− 1)-measure, then f is a quasiconformal mapping. Similarly it has been
showed in [6] that if the linear lim inf -dilatation hf (x) is uniformly bounded a.e. in
Ω \E , then f is still quasiconformal. For earlier results, see [4], [5]. In particular,
in both cases f is ACL in Ω, which means that f is absolutely continuous on
almost every line segment parallel to the coordinate axes in Ω. In [9], Tukia
conjectured that the condition m2

(
{Hf (x) > K}

)
< CK−α , for some α > 3
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and K ≥ K0 , is sufficient for the ACL-property of a plane homeomorphism f .
This was proven in [1] together with a space analogue. Furthermore, it was later
showed in [7] that Hf ∈ Lα

loc(Ω), α > n/(n−1), guarantees the ACL-property. In
the above results, it was also assumed that Hf be finite outside a set of σ -finite
(n − 1)-measure, which seems crucial, see Remark 1.2(b).

In this paper we will show that already Hf ∈ L1
loc(Ω) is sufficient for the ACL-

property. Before stating our results, let us introduce the following dilatations:

Kf (x) = lim sup
r→0

(
diam

(
f
(
B(x, r)

))n

|fB(x, r)|

)1/(n−1)

,

and

kf (x) = lim inf
r→0

(
diam

(
f
(
B(x, r)

))n

|fB(x, r)|

)1/(n−1)

,

where |A| denotes the Lebesgue measure of a set A . We noticed during our studies
that these are more natural (and so more useful) for proving absolute continuity.
At the points of differentiability with l

(
Df(x)

)
= min{|Df(x)e| : |e| = 1} > 0

these dilatations are comparable to Hf and hf , respectively. It is also easy to see
that Kf and kf are Borel functions.

Our main theorem is the following result.

Theorem 1.1. Let f : Ω → Ω′ , where Ω, Ω′ ⊂ Rn are domains, be a homeo-

morphism for which kf (x) < ∞ outside a set S of σ -finite (n − 1) -measure, and

suppose that kf ∈ L1
loc(Ω) . Then f belongs to W 1,1

loc (Ω,Rn) .

The above theorem gives us the ACL-property, since a continuous W 1,1
loc -

mapping is ACL (see Proposition I.1.2 in [8]).

Remarks 1.2. (a) To see that Theorem 1.1 is sharp, consider the mapping
f : ]0, (1/e)[×Rn−1 → f(]0, (1/e)[×Rn−1),

f(x) =
(
1/ log(1/x1), x1 sin(1/x1) + x2, x3, . . . , xn

)
.

This mapping is a non-ACL homeomorphism of Rn which satisfies kf (x) ∈ Ls
loc

for any s < 1.

(b) The condition of σ -finiteness of S is crucial. For example, if g: [0, 1] →
[0, 1] is the Cantor staircase function, then f : ]0, 1[×]0, 1[→]0, 2[×]0, 1[ defined by
f(x, y) =

(
g(x) + x, y

)
is a homeomorphism with kf (z) = 1 almost everywhere,

but f is not ACL.

The following corollary summarizes the conclusions obtained from Theorem 1.1
for various distortion functions.
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Corollary 1.3. Let f : Ω → Ω′ , where Ω, Ω′ ⊂ Rn are domains, be a ho-

meomorphism and suppose that S has σ -finite (n− 1) -measure. Now each of the

conditions below guarantees that f ∈ W 1,1
loc (Ω,Rn) .

(1) Kf (x) < ∞ outside S and Kf ∈ L1
loc(Ω) ,

(2) kf (x) < ∞ outside S and kf ∈ L1
loc(Ω) ,

(3) Hf (x) < ∞ outside S and Hf ∈ L1
loc(Ω) ,

(4) hf (x) < ∞ outside S and hf ∈ L
n/(n−1)
loc (Ω) .

Remarks 1.4. The mapping discussed in the first part of Remarks 1.2 shows
the sharpness of the integrability assumptions in (1), (2), (3). Regarding (4), we do
not know if already hf ∈ L1

loc could be sufficient. This would follow if it were true
that the requirement hf (x) < ∞ outside S and hf ∈ L1

loc(Ω) would guarantee
a.e. differentiability. We do not know if this could be the case. In any case, (4)
already substantially improves on the known results from [6].

2. Proofs

Proof of Theorem 1.1. To prove that f ∈ W 1,1
loc (Ω,Rn) we first show that f

is ACL. After that we show the local integrability of the partial derivatives, whose
existence is guaranteed by the ACL-property.

Pick a closed cube Q b Ω whose sides are parallel to the coordinate axes.
Assume that Q = Q0 × J0 , where Q0 is (n − 1)-interval in Rn−1 , and J0 =
[a, b] ⊂ R . In order to show that f is ACL it suffices to show that f is absolutely
continuous on almost every line segment in Q , parallel to the coordinate axes, and
by symmetry it is sufficient to consider segments parallel to the xn -axis.

Next, for a Borel set A ⊂ Q0 , write

Φ(A) := |f(A× [a − d, b + d])| ≤ |f(Q + d)| < ∞,

where d = 1
10 dist(Q, ∂Ω) and Q + d = {x ∈ Ω : dist(x, Q) ≤ d} . Then Φ is a

finite Borel measure on Q0 , and hence it has a finite derivative Φ′(y) for almost
all y ∈ Q0 . Denote by E0 the set where Φ′ does not exists or is not finite.

Next we consider the set A = {I ⊂ J0 : I is a finite union of closed intervals,
whose interiors are mutually disjoint and whose end points are rational} . This set
is countable: (i) If we take all the intervals whose end points are rational, there
is just a countable number of intervals. (ii) If we take all the pairs of intervals,
whose endpoints are rational, there is just a countable number of pairs. (iii) If we
take all triples of the same type we again have a countable numbers of triples, etc.
Thus A is a countable union of countable sets and so countable.

Now, for almost every y ∈ Q0 , we know by the Fubini theorem that

∫

{y}×[a−d,b+d]

kf (z) dzn < ∞.
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Denote the set where the above fails by E1 . Let us define for every I ⊂ A a
function gI : Q0 → R ,

gI(y) =

∫

{y}×I

kf (z) dzn.

By the Fubini theorem, gI ∈ L1(Q0), and thus for almost every y ∈ Q0

lim
r→0

∫
−

Bn−1(y,r)

gI(z) dz = gI(y).

Denote by EI the set where this is not true. Now E = E0 ∪E1 ∪
(⋃

I∈A
EI

)
has

measure zero, because it is a countable union of sets of measure zero.

Fix y ∈ Q0 \E . We will prove that f is absolutely continuous on the segment
{y} × J0 which will prove the claim.

Let {Ij}
l
j=1 , Ij = [aj , bj] , be a union of closed intervals on J0 , whose interiors

are mutually disjoint, and whose endpoints are rational numbers. Since f is
continuous, for every j = 1, . . . , l there is δj such that

|f(y, aj) − f(x)| <
|f(y, aj) − f(y, bj)|

4
when |(y, aj) − x| < δj

and

|f(y, bj) − f(x)| <
|f(y, aj) − f(y, bj)|

4
when |(y, bj) − x| < δj .

Denote δ = minj{δj} .
Let 0 < r < δ and let ε > 0. For each k = 0, 1, 2, . . ., write

Ak =

{
x ∈ Bn−1(y, r)×

⋃
j

Ij : 2k ≤ kf (x) < 2k+1

}
.

Then Ak is a Borel set,

Bn−1(y, r)×
⋃
j

Ij \ S =
⋃
k

Ak

and for every k there exists open Uk such that Ak ⊂ Uk and

|Uk| ≤ |Ak| +
ε

22k
.

Fix k . Now for every x ∈ Ak there is rx > 0 such that

(i) 0 < rx < 1
10

min{r, d, |aj − bj |} ,

(ii) diam(fBx)n/(n−1) < 2k+1|fBx|
1/(n−1) , and

(iii) Bx ⊂ Uk .
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Here Bx = B(x, rx).

By the Besicovitch covering theorem we find balls B1, B2, . . . from balls
B(x, rx) so that

Bn−1(y, r)×
⋃
j

Ij ⊂
⋃
j

Bj ⊂ Bn−1(y, 2r)× [a − d, b + d]

and
∑

j χBj
(x) ≤ C(n) for every x ∈ Rn .

Let us define

%(x) =

( l∑

j=1

|f(y, aj) − f(y, bj)|

)−1 ∑

i

diam(fBi)

diam(Bi)
χ2Bi

(x).

The function % is a Borel function, because it is a countable sum of (simple) Borel

functions. In the following we denote G =
∑l

j=1 |f(y, aj) − f(y, bj)| .

We wish to estimate the volume integral of % . First of all

∫

Bn−1(y,r)×∪jIj

%(x) dx ≥ G−1

∫

Bn−1(y,r)

∫

∪jIj

∑

Bi∩({z}×∪jIj)6=∅

×
diam(fBi)

diam(Bi)
χ2Bi

(z, xn) dxn dz.

Notice that ∫

∪jIj

χ2Bi
(z, xn) dxn ≥

diam(Bi)

2

for the balls Bi for which Bi ∩
(
{z} ×

⋃
j Ij

)
6= ∅ . Moreover, for almost every

z ∈ Bn−1(y, r), the sets fBi cover the f
(
{z} ×

⋃
j Ij

)
up to a countable set,

because S has σ -finite (n − 1)-measure (see Theorem 30.16 in [10]). Thus, since
r < δ , we have that

(1)
∑

Bi∩({z}×∪jIj)6=∅

diam(fBi) ≥
G

4

for almost every z ∈ Bn−1(y, r).

So ∫

Bn−1(y,r)×∪jIj

%(x) dx ≥ C(n)rn−1.
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Next we establish an upper bound for this integral. Using the monotone
convergence theorem, we obtain the estimate

∫

Bn−1(y,r)×∪jIj

%(x) dx ≤ C(n)G−1
∑

i

diam(fBi)|Bi|
1−(1/n)

≤ C(n)G−1

(∑

i

|fBi|

)1/n

×

(∑

i

(
diam(fBi)

n

|fBi|

)1/(n−1)

|Bi|

)(n−1)/n

.

The last inequality is obtained by Hölder’s inequality.
For the first term we have that

∑

j

|fBj| ≤ C(n)|f(Bn−1(y, 2r)× [a − d, b + d])| = C(n)Φ
(
Bn−1(y, 2r)

)

because the overlapping of the balls was bounded. The approximation of the
second term is a little bit trickier. First notice that |Bi| = (|Bi ∩Ak|+ |Bi \Ak|).
Thus

∑

i

(
diam(fBi)

n

|fBi|

)1/(n−1)

|Bi| ≤ 2
∑

k

∑

xi∈Ak

2k|Bi ∩ Ak| + 2
∑

k

∑

xi∈Ak

2k|Bi \ Ak|

≤

∫

Bn−1(y,r)×∪jIj

kf (x) dx + ε.

Here xi is the center of the ball Bi .
Combining the lower bound and the upper bound and remembering that ε

was arbitrary, we obtain the inequality

l∑

j=1

|f(y, aj) − f(y, bj)| ≤ C(n)

(
Φ

(
Bn−1(y, 2r)

)

(2r)n−1

)1/n

×

(∫
−

Bn−1(y,r)

∫

∪jIj

kf (z, xn) dxn dz

)(n−1)/n

.

Letting finally r tend to zero, we arrive at

l∑

j=1

|f(y, aj) − f(y, bj)| ≤ C(n)
(
Φ′(y)

)1/n
(∫

{y}×∪jIj

kf (x) dxn

)(n−1)/n

.
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This estimate holds for rational ai , bi . By continuity, it then holds for all ai, bi ∈
R . Thus f is absolutely continuous on {y} × J0 .

To see that partial derivatives, which now exists a.e., are locally integrable,
notice that for a.e. x we have

|∂ifj(x)| ≤ lim inf
r→0

diam fB(x, r)

r
,

when i, j ∈ {1, . . . , n} . Since

diam fB(x, r)

r
≤

(
|fB(x, r)|

rn

)1/n
diam fB(x, r)

|fB(x, r)|1/n
,

we conclude that for a.e. x we have

|∂ifj(x)| ≤ µf (x)1/nkf (x)(n−1)/n, i, j ∈ {1, . . . , n},

where µf is the measure derivative of the measure m(A) := |f(A)| . Since the
measure derivative and kf are locally integrable, it follows by Hölder’s inequality
that the partial derivatives are locally integrable.

Remark 2.1. The assumption that S have σ -finite (n − 1)-measure was
only used to guarantee that (1) holds. In fact, this estimate follows even if we only
know that the one-dimensional measure of f(L∩S) is zero for (almost every) line
L parallel to the coordinate axes. Thus, instead of an exceptional set S of σ -finite
(n − 1)-measure, we could allow for any exceptional set S with this property.

Proof of Corollary 1.3. First, Part (2) is the previous theorem.

Next, Part (1) is a trivial corollary of (2).

For (3), we first notice that always, for every x , we have

Kf (x) ≤ C(n)Hf (x)n/(n−1),

and thus Kf is finite outside a set of σ -finite (n − 1)-measure. Secondly, since
Hf is finite almost everywhere, our mapping is differentiable almost everywhere;
for this see for example [7]. Now, in the set where f is differentiable and

min
|e|=1

|Df(x)e| > 0,

it is easy to see that Kf (x) ≤ C(n)Hf (x). Set

S̃ = S ∪ {x ∈ Ω : f differentiable at x with |Df(x)| = 0}.

Then the one-dimensional measure of f(S̃∩L) is zero for each line L . The claim
follows from Theorem 1.1 and Remark 2.1.

Part (4) follows from Theorem 1.1 and the fact that we always have kf ≤

C(n)h
n/(n−1)
f .
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