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Abstract. Maximal estimates are considered for solutions to an initial value problem for the
Schrödinger equation. The initial value function is assumed to be a linear combination of products
of radial functions and spherical harmonics. This generalizes the case of radial functions. We also
replace the solutions to the Schrödinger equation by more general oscillatory integrals.

1. Introduction

Let f belong to the Schwartz space S (Rn) and set

Stf(x) = u(x, t) = (2π)−n

∫

Rn

eix·ξ eit|ξ|a f̂(ξ) dξ, x ∈ Rn, t ∈ R,

where a > 1. Here f̂ denotes the Fourier transform of f , defined by

f̂(ξ) =

∫

Rn

e−iξ·x f(x) dx.

It then follows that u(x, 0) = f(x) and in the case a = 2 the function u is a
solution to the Schrödinger equation i ∂u/∂t = ∆u . We shall here consider the
maximal functions

S∗f(x) = sup
0<t<1

|Stf(x)|, x ∈ Rn,

and
S∗∗f(x) = sup

t>0
|Stf(x)|, x ∈ Rn.

We shall also introduce Sobolev spaces Hs by setting

Hs =
{

f ∈ S
′ : ‖f‖Hs

<∞
}

, s ∈ R,

where

‖f‖Hs
=

(
∫

Rn

(1 + |ξ|2)s|f̂(ξ)|2 dξ

)1/2

.
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We shall also consider homogeneous Sobolev spaces Ḣs defined by

Ḣs =
{

f ∈ S
′ : ‖f‖Ḣs

<∞
}

, s ∈ R,

where

‖f‖Ḣs
=

(
∫

Rn

|ξ|2s
∣

∣f̂(ξ)
∣

∣

2
dξ

)1/2

.

We shall here study the local and global estimates

‖S∗f‖Lq(B) ≤ CB‖f‖Hs
,(1)

‖S∗f‖Lq(Rn) ≤ C‖f‖Hs
,(2)

‖S∗∗f‖Lq(B) ≤ CB‖f‖Hs
,(3)

and

‖S∗∗f‖Lq(Rn) ≤ C‖f‖Ḣs
,(4)

where B denotes an arbitrary ball in Rn . We shall always assume 1 ≤ q ≤ ∞ and
s ∈ R . Estimates of this type have been considered by P. Sjölin [4], [5], [6], [7], [8],
[9], and F. Gülkan [3], and by several other authors. We do not give a complete
list of references but refer to the references in the mentioned papers. The case
when f is assumed to be radial is studied in some of the above papers. We shall
here generalize the case of radial functions. We recall that L2(Rn) =

∑∞
k=0 ⊕Dk ,

where Dk is the space of all linear combinations of functions of the form fP ,
where f ranges over the radial functions and P over the solid spherical harmonics
of degree k , so that fP belongs to L2(Rn) (see Stein and Weiss [10, p. 151]).

Now fix k ≥ 0 and let P1, P2, . . . , Pak
denote an orthonormal basis for the

space of solid spherical harmonics of degree k (where we use the inner product in
L2(Sn−1)). The elements in Dk can be written in the form

(5) f(x) =

ak
∑

j=1

fj(r)Pj(x), (here r = |x|)

and
∫

Rn

|f(x)|2 dx =

ak
∑

1

∫ ∞

0

|fj(r)|
2rn+2k−1 dr.

From now on we shall assume n ≥ 2 and use the convention that if g is a function
on [0,∞) or (0,∞) we shall also use the notation g for the corresponding radial
function in Rn .

We shall now define spaces Hk = Hk(Rn) for k = 0, 1, 2, . . . . We let H0

denote the class of all radial functions in S (Rn). For k ≥ 1 we define Hk as the
space of functions f given by (5) with fj ∈ S (Rn) for j = 1, 2, . . . , ak .
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We shall here study the inequalities

‖S∗f‖Lq(B) ≤ CB‖f‖Hs
, f ∈ Hk,(6)

‖S∗f‖Lq(Rn) ≤ C‖f‖Hs
, f ∈ Hk,(7)

‖S∗∗f‖Lq(B) ≤ CB‖f‖Hs
, f ∈ Hk,(8)

and

‖S∗∗f‖Lq(Rn) ≤ C‖f‖Ḣs
, f ∈ Hk,(9)

where the constants may depend on k .

To formulate our results we introduce a set E = Ek of pairs (s, q) in the
following way (where we only consider q with 1 ≤ q ≤ ∞):

If s < 1
4 then (s, q) ∈ E for no q .

If 1
4 ≤ s < 1

2n then (s, q) ∈ E if and only if q ≤ 2n/(n− 2s).

If s = 1
2
n and k = 0 then (s, q) ∈ E if and only if q <∞ .

If s = 1
2
n and k ≥ 1 then (s, q) ∈ E for all q .

If s > 1
2n then (s, q) ∈ E for all q .

We then have the following four theorems.

Theorem 1. The local estimate (6) holds if and only if (s, q) ∈ E .

Theorem 2. The global estimate (7) holds if (s, q) ∈ E , and q = 4n/(2n−1)
for s = 1

4 , and q > 4(a− 1)n/
(

4s+ a(2n− 1)− 2n
)

for s > 1
4 , and also q ≥ 2 . If

(s, q) /∈ E or if q < 4(a− 1)n/
(

4s+ a(2n− 1) − 2n
)

or if q < 2 , the (7) does not

hold.

Theorem 3. The local estimate (8) holds if and only if (s, q) ∈ E .

Theorem 4. If k = 0 the global estimate (9) holds if and only if 1
4 ≤ s < 1

2n
and q = 2n/(n− 2s) . If k ≥ 1 the estimate (9) holds if and only if 1

4 ≤ s ≤ 1
2n

and q = 2n/(n− 2s) .

Theorems 1, 3 and 4 imply that we have decided for which pairs (s, q) the
estimates (6), (8) and (9) hold. Theorem 2 means that we have decided for which
pairs (s, q) the global estimate (7) holds, except in the case

q = 4(a− 1)n/
(

4s+ a(2n− 1) − 2n
)

and 1/4 < s ≤ a/4.

Remark. During the preparation of this paper we have learnt that some of
the results in the paper have also been obtained by Y. Cho and Y. Shim.
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2. Preliminaries

We let Fn denote the Fourier transformation in Rn . Assume that f ∈ Hk

so that

f(x) =

ak
∑

1

fj(r)Pj(x), r = |x|,

where fj ∈ S (Rn) and (Pj)
ak
1 are as in the introduction. It then follows from

[10, p. 158], that

f̂(x) =

ak
∑

1

Fj(r)Pj(x), r = |x|,

where

Fj(r) = ck r
1−n/2−k

∫ ∞

0

fj(s)Jn/2+k−1(rs) s
n/2+k ds, r > 0,

and Jm denotes Bessel functions.

We then have

∫

Rn

|f̂(ξ)|2(1 + |ξ|2)s dξ =

∫ ∞

0

(
∫

Sn−1

|f̂(rξ′)|2 dθ(ξ′)

)

(1 + r2)srn−1 dr

=

∫ ∞

0

r2k

(

∑

j

|Fj(r)|
2

)

(1 + r2)srn−1 dr

=
∑

j

∫ ∞

0

|Fj(r)|
2(1 + r2)sr2k+n−1 dr,

where θ denotes the area measure on Sn−1 . It follows that

‖f‖Hs
=

(

∑

j

∫ ∞

0

|Fj(r)|
2 (1 + r2)s r2k+n−1 dr

)1/2

and in the same way one obtains

‖f‖Ḣs
=

(

∑

j

∫ ∞

0

|Fj(r)|
2 r2s+2k+n−1 dr

)1/2

.
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3. The three basic results

We first mention that it is proved in [3] that

(10) ‖S∗∗f‖Lq(Rn) ≤ C‖f‖Hs
, q = 2n/(n− 2s), n/4 ≤ s < n/2,

for arbitrary functions f ∈ S (Rn).

We shall in this section prove the three basic results

‖S∗f‖L2(Rn) ≤ C‖f‖Hs
, s > a/4, f ∈ Hk,(11)

‖S∗∗f‖Lq(Rn) ≤ C‖f‖H1/4
, q = 4n/(2n− 1), f ∈ Hk,(12)

and

‖S∗∗f‖L∞(Rn) ≤ C‖f‖Ḣn/2
, f ∈ Hk, k ≥ 1.(13)

The sufficiency part in our theorems will then follow from these results by use of
interpolation. Before proving the basic results we observe that for f ∈ Hk we
have (using the notation in Section 2)

(14)

Stf(x) = (2π)−n

∫

Rn

eix·ξeit|ξ|a
(

∑

j

Fj(|ξ|)Pj(ξ)

)

dξ

=
∑

j

(2π)−n

∫

Rn

eix·ξ
(

eit|ξ|aFj(|ξ|)Pj(ξ)
)

dξ

=
∑

j

cks
1−n/2−k

(
∫ ∞

0

Jn/2+k−1(rs)e
itra

Fj(r)r
n/2+k dr

)

Pj(x),

where s = |x| > 0. Using the fact that Fj = ck Fn+2kfj we obtain

(15) S∗f(x) ≤ C
∑

j

(

S∗
n+2kfj(s)

)

sk, s > 0,

where fj on the right-hand side is considered as a radial function in Rn+2k , and
we write S∗

n+2k to emphasize that the operator acts on functions in Rn+2k .

The first basic result (11) has been proved in [7, pp. 59–61], in the case k = 0,
and we shall use the inequality (15) to obtain (11) for k ≥ 1. The idea is to use a
result for functions in H0(R

n+2k) to obtain a result for functions in Hk(Rn ).
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For k ≥ 1 and f ∈ Hk and invoking (15) one obtains

‖S∗f‖2
L2(Rn) =

∫

Rn

|S∗f |2 dx ≤ C
∑

j

∫

Rn

|S∗
n+2kfj(v)|

2v2k dx

= C
∑

j

∫ ∞

0

|S∗
n+2kfj(v)|

2v2k+n−1 dv

= C
∑

j

∫

Rn+2k

|S∗
n+2kfj(v)|

2 dx ≤ C
∑

j

‖fj‖
2
Hs(Rn+2k)

= C
∑

j

∫

Rn+2k

|Fj |
2(1 + r2)s dξ

= C
∑

j

∫ ∞

0

|Fj |
2(1 + r2)srn+2k−1 dr = C‖f‖2

Hs
,

if s > 1
4a , where we have used the notation v = |x| and r = |ξ| . Hence the first

basic result (11) is proved for all k .
To prove the second basic result (12) we shall again use the idea that a

result for H0(R
n+2k) can be used to obtain a result for Hk(Rn). However,

the situation is now somewhat more complicated since we are no longer dealing
with L2 estimates and since the parameter q in (12) depends on the dimension n .
We first observe that the argument that gave (15) also yields

(16) S∗∗f(x) ≤ C
∑

j

(

S∗∗
n+2kfj(s)

)

sk, s > 0,

for f ∈ Hk , k ≥ 1, where again s = |x| .
It is proved in [6] that

‖S∗f‖Lq(B) ≤ CB‖f‖H1/4
, q = 4n/(2n− 1),

for radial functions. It is also observed in [3] and [9] that the proof in [6] can be
modified to give the second basic result (12) for k = 0.

In [6] one also has the weighted estimate

(
∫

B

|S∗f(x)|q|x|α dx

)1/q

≤ CB‖f‖H1/4
, α = q(2n− 1)/4 − n,

for 2 ≤ q ≤ 4 and f radial. In [3] it is observed that the proof in [6] also gives
the estimate

(17)

(
∫

B

|S∗∗f(x)|q|x|α dx

)1/q

≤ CB‖f‖H1/4
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for the same values of q and α and f radial. We shall prove that B can be
replaced by Rn in this inequality. For f ∈ H0(R

n) we define fN by

f̂N (ξ) = f̂(ξ/N), N ≥ 1.

It is then easy to see that

(18) S∗∗fN (x) = Nn S∗∗f(Nx)

and replacing f by fN in (17) we obtain

(19)

(
∫

B

|S∗∗fN (x)|q|x|α dx

)1/q

≤ CB‖fN‖H1/4
.

Choosing B as the unit ball we conclude that the left-hand side in (19) equals

Nn

(
∫

B

|S∗∗f(Nx)|q|x|α dx

)1/q

= Nn−α/q−n/q

(
∫

|y|≤N

|S∗∗f(y)|q|y|α dy

)1/q

.

On the other hand the right-hand side in (19) is equal to

C

(
∫

Rn

(1 + |ξ|2)1/4|f̂(ξ/N)|2dξ

)1/2

= CNn/2+1/4

(
∫

Rn

(

1

N2
+ |η|2

)1/4

|f̂(η)|2 dη

)1/2

≤ CNn/2+1/4‖f‖H1/4
.

Observing that n− α/q − n/q = n/2 + 1/4 we then obtain

(
∫

|y|≤N

|S∗∗f(y)|q|y|α dy

)1/q

≤ C‖f‖H1/4
.

Letting N → ∞ we conclude that

(20)

(
∫

Rn

|S∗∗f(x)|q|x|α dx

)1/q

≤ C‖f‖H1/4(Rn), α = q(2n− 1)/4 − n,

for 2 ≤ q ≤ 4 and f ∈ H0(R
n). Replacing n by n+ 2k we obtain

(
∫

Rn+2k

|S∗∗
n+2kfj(x)|

2|x|α dx

)1/q

≤ C‖fj‖H1/4(Rn+2k),
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for 2 ≤ q ≤ 4 and α = q
(

2(n+ 2k) − 1
)

/4 − (n+ 2k), where fj is considered as
a radial function in Rn+2k . Assuming f =

∑

j fjPj as usual, we then also get

(
∫ ∞

0

|S∗∗
n+2kfj(s)|

qsαsn+2k−1 ds

)1/q

≤ C

(
∫ ∞

0

|Fj|
2(1 + r2)1/4rn+2k−1 dr

)1/2

≤ C‖f‖H1/4(Rn)(21)

for the same values of q and α .
Now take 2 ≤ q ≤ 4, β = q(2n−1)/4−n , and f ∈ Hk(Rn), k ≥ 1. Invoking

(16) one obtains

(22)

(
∫

Rn

|S∗∗f(x)|q|x|β dx

)1/q

≤ C
∑

j

(
∫

Rn

|S∗∗
n+2kfj(s)|

qskqsβ dx

)1/q

= C
∑

j

(
∫ ∞

0

|S∗∗
n+2kfj(s)|

qskq+β+n−1 ds

)1/q

.

We now choose α so that α+ n+ 2k − 1 = kq + β + n− 1, which gives

α = kq + β − 2k = kq +
q

4
(2n− 1) − n− 2k

=
q

4
(2(n+ 2k) − 1) − (n+ 2k).

It follows that the right-hand side in (22) equals

C
∑

j

(
∫ ∞

0

|S∗∗
n+2kfj(s)|

qsα+n+2k−1 ds

)1/q

and invoking (21) we conclude that this is dominated by C‖f‖H1/4(Rn) .
Hence we have proved that (20) holds for f ∈ Hk(Rn), k ≥ 1 (cf. [11, p. 26]).

Taking q = 4n/(2n− 1) we obtain α = 0 in (20) and the second basic result (12)
follows also for k ≥ 1.

It remains to prove the third basic result (13). We first remark that the
estimate

(23) ‖S∗∗f‖L∞(Rn) ≤ C‖f‖Ḣn/2

does not hold for f ∈ H0 . To see this let χm , m = 5, 6, 7, . . ., denote C∞

functions on [0,∞) such that 0 ≤ χm(r) ≤ 1 for all r and χm(r) = 1 for
3 ≤ r ≤ m − 1, and χm(r) = 0 for 0 ≤ r ≤ 2 and for r ≥ m . Then define
fm ∈ H0(R

n) by setting

f̂m(r) =
1

rn log r
χm(r).
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Then the Fourier inversion formula yields

fm(0) ≥ c

∫ m−1

3

1

rn log r
rn−1 dr = c

∫ m−1

3

1

r log r
dr → ∞

as m → ∞ . On the other hand we also have

‖fm‖2
Ḣn/2

=

∫

Rn

|f̂m(ξ)|2|ξ|n dξ

≤ C

∫ m

2

1

r2n(log r)2
r2n−1 dr

≤ C

∫ ∞

2

1

r(log r)2
dr = C

for all m , and it follows that (23) does not hold for radial functions. We shall
then prove (23) for f ∈ Hk , k ≥ 1. Assuming f =

∑

j fjPj ∈ Hk we have

|Stf(x)| ≤ C
∑

j

s1−n/2

∣

∣

∣

∣

∫ ∞

0

Jn/2+k−1(rs)e
itra

Fj(r)r
n/2+k dr

∣

∣

∣

∣

, s > 0,

according to (14). Hence

S∗∗f(x) ≤ C
∑

j

s1−n/2

∫ ∞

0

|Jn/2+k−1(rs)| |Fj(r)| r
n/2+k dr

= C
∑

j

Aj + C
∑

j

Bj ,

where

Aj = s1−n/2

∫ 1/s

0

|Jn/2+k−1(rs)| |Fj(r)| r
n/2+k dr

and

Bj = s1−n/2

∫ ∞

1/s

|Jn/2+k−1(rs)| |Fj(r)| r
n/2+k dr

for s > 0.
Invoking standard estimates for Bessel functions (see [10, p. 158]) one then

obtains

Aj ≤ Cs1−n/2

∫ 1/s

0

(rs)n/2+k−1rn/2+k |Fj(r)| dr

= Csk

∫ 1/s

0

|Fj(r)|r
n+2k−1 dr
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and

Bj ≤ Cs1−n/2

∫ ∞

1/s

(rs)−1/2rn/2+k |Fj(r)| dr

= Cs1/2−n/2

∫ ∞

1/s

|Fj(r)|r
n/2+k−1/2 dr.

Applying the Schwarz inequality we then get

Aj ≤ Csk

∫ 1/s

0

|Fj(r)|r
n+k−1/2rk−1/2 dr

≤ Csk

(
∫ ∞

0

|Fj(r)|
2r2n+2k−1dr

)1/2(∫ 1/s

0

r2k−1 dr

)1/2

≤ Csk‖f‖Ḣn/2
s−k = C‖f‖Ḣn/2

,

where we have used the fact that k ≥ 1 and also the fact that

‖f‖Ḣn/2
=

(

∑

j

∫ ∞

0

|Fj(r)|
2r2k+2n−1 dr

)1/2

.

Invoking the Schwarz inequality again we also obtain

Bj ≤ Cs1/2−n/2

∫ ∞

1/s

|Fj(r)|r
n+k−1/2r−n/2 dr

≤ Cs1/2−n/2‖f‖Ḣn/2

(
∫ ∞

1/s

r−n dr

)1/2

≤ Cs1/2−n/2‖f‖Ḣn/2
(sn−1)1/2 = C‖f‖Ḣn/2

.

We have proved that
S∗∗f(x) ≤ C‖f‖Ḣn/2

and the third basic result (13) follows.

4. Five counter-examples

To prove the necessity part in the theorems we shall use the following five
statements.

Statement 1. If s < 1
4 then the local estimate (6) holds for no q .

Proof. We shall use the method in [7, pp. 55–58]. From the formula (14) for
Stf(x) we conclude that it is sufficient to prove that there is no inequality

(24)

∫ 1

0

|TF (u)|un−1 du ≤ C

(
∫ ∞

0

|F (r)|2(1 + r2)sr2k+n−1 dr

)1/2
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for s < 1
4 , where

TF (u) = u1−n/2

∫ ∞

0

Jn/2+k−1(ru)e
it(u)ra

F (r)rn/2+k dr, 0 < u ≤ 1.

Here t(u) is a measurable function on (0, 1] taking values in (0, 1).
We let ϕ ∈ C∞

0 (R) with suppϕ ⊂ (−1, 1) and choose F such that

F (r)rk = N−1/2ϕ(−N−1/2r +N1/2) r1/2−n/2, r > 0.

It is proved in [7] that the right-hand side of (24) is less than CN s−1/4 for N
large. The proof in [7] also shows that the left-hand side of (24) is bounded from
below for a suitable choice of the functions ϕ and t(u). It follows that (24) cannot
hold for s < 1

4 .

Statement 2. If 1/4 ≤ s < n/2 then q ≤ 2n/(n−2s) is a necessary condition
for the local estimate (6).

Proof. The statement is proved for k = 0 in [7, pp. 58–59], and we shall
prove that a modification of the method in [7] works also for k ≥ 1. Assume that

f = f1P1 ∈ Hk so that f̂ = F1P1 with F1 = ck Fn+2kf1 . Then let ϕ ∈ C∞
0 (Rn)

be radial and non-negative and assume that suppϕ ⊂ {ξ : 1 < |ξ| < 2} and that
ϕ(ξ) = 1 for 5

4 ≤ |ξ| ≤ 7
4 . Then choose f1 so that F1(ξ) = ϕ(ξ/N). It is then

easy to see that
‖f‖Hs

≤ CNn/2+s+k

for large values of N .
One also has

S0f = f = f1P1 = ck
(

Fn+2k(ϕ(ξ/N))
)

P1

and
S0f(x) = ckN

n+2k(Fn+2kϕ)(Nx)P1(x).

Then choose δ > 0 so small that

|(Fn+2kϕ)(x)| ≥ c

for |x| ≤ δ . It follows that
S∗f(x) ≥ cNn+k

for
δ

2N
≤ |x| ≤

δ

N

and |x′ − x′0| ≤ c1 , if x′0 is suitably chosen (here x′ = x/|x|).
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If (6) holds we obtain
(

∫

δ/(2N)≤|x|≤δ/N, |x′−x′

0
|≤c1

N (n+k)q dx

)1/q

≤ C Nn/2+s+k

and
Nn+k−n/q ≤ CNn/2+s+k.

Hence
Nn−n/q ≤ CNn/2+s

and letting N → ∞ we obtain

n−
n

q
≤
n

2
+ s.

It follows that q ≤ 2n/(n− 2s).

Statement 3. Assume that 1
4 ≤ s ≤ 1

4a and that the global estimate (7)
holds. Then one has

(25) q ≥
4(a− 1)n

4s+ a(2n− 1) − 2n
.

Proof. The statement is proved in [7, pp. 62–65], in the case k = 0. For k ≥ 1
we generalize the method in [7]. First let ϕ ∈ C∞

0 (R) with suppϕ ⊂ (−1, 1) and
choose f ∈ Hk such that

f̂(ξ) = ϕ
(

−Na/2−1r +Na/2
)

r1/2−n/2r−kP1(ξ),

where r = |ξ| . It is then easy to see that

‖f‖Hs
≤ CNs+1/2−a/4.

Using formula (14) for Stf the above mentioned argument in [7] then gives the
inequality (25).

Statement 4. A necessary condition for the global estimate (7) is q ≥ 2.
Proof. This is proved for k = 0 in [7]. To extend this result to the case k ≥ 1

we construct a function f in the following way. Let ψ ∈ C∞(R) and assume that
ψ(t) = 0, t ≤ 2, and ψ(t) = 1, t ≥ 3. Set f(x) = 0, |x| ≤ 2, and

f(x) =
1

rn/2 log r
ψ(r)r−kP1(x), |x| ≥ 2,

where r = |x| . Then f ∈ Hs for every s but f /∈ Lq if q < 2, and f can be used
to prove the statement.

Statement 5. Assume that s ≥ 1
4 and that the global estimate (9) holds.

Then s ≤ 1
2
n and q = 2n/(n− 2s).

Proof. This is proved for k = 0 in [9, pp. 135–136], and the same proof works
in the general case.
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5. Proofs of the theorems

In the proofs of the theorems we shall use interpolation. It follows from results
in Bergh and Löfström [2, pp. 120–121], and Bennett and Sharpley [1, p. 213], that
if the inequality (6) holds for two pairs (s0, q0) and (s1, q1), then it also holds for
all pairs (s, q) with the property that the point (s, 1/q) lies on the line segment
between the points (s0, 1/q0) and (s1, 1/q1) in the plane. The same remark of
course holds if the inequality (6) is replaced by one of the inequalities (7), (8)
and (9).

Proof of Theorem 1. Interpolating between the inequality (10) and the second
basic result (12) we conclude that (6) holds for all (s, q) with 1

4 ≤ s < 1
2n and

q = 2n/(n− 2s).

A trivial estimate also shows that (6) holds for s > 1
2n and q = ∞ .

We also use the observation that if (6) holds for a pair (s, q) then it holds for
all pairs (s1, q1) with s1 ≥ s and q1 ≤ q .

Taking this into consideration and invoking the third basic result and the
above counter-examples, one completes the proof of Theorem 1.

Proof of Theorem 2. Interpolating between the inequality (10) and the second
basic result we first conclude that (7) holds for all (s, q) with 1

4 ≤ s < 1
2n and

q = 2n/(n − 2s). We then interpolate between this result and the first basic
result (11). The rest of the proof is easy if we use the counter-examples in Section 4.
The condition q > 4(a − 1)n/

(

4s + a(2n − 1) − 2n
)

comes from the fact that

q = 4(a− 1)n/
(

4s+ a(2n− 1) − 2n
)

if the point (s, 1/q) lies on the straight line
which connects the pairs (1/4, (2n− 1)/4n) and (a/4, 1/2).

Proof of Theorem 3. The proof is essentially the same as the proof of Theo-
rem 1.

Proof of Theorem 4. We first observe that the proof of Statement 1 also
shows that if s < 1

4
then the global estimate (9) holds for no q . Statement 5 then

implies that 1
4 ≤ s ≤ 1

2n and q = 2n/(n − 2s) is a necessary condition for (9).
The necessity of the conditions in Theorem 4 then follows if we also invoke the
counter-example given before the proof of the third basic result in Section 3. To
prove the sufficiency we first interpolate between (10) and (12) to obtain the global
estimate

‖S∗∗f‖Lq(Rn) ≤ C‖f‖Hs
, f ∈ Hk,

for 1
4 ≤ s < 1

2n and q = 2n/(n− 2s). Using the proof of Theorem 2.6 in [3] we
can then conclude that we also have the homogeneous estimate (9) for the same
values of s and q . To complete the proof of the theorem we then only have to
invoke also the third basic result.
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