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Abstract. We prove a generalization of a theorem of Iwaniec, Sbordone and Lewis on higher
integrability of very weak solutions of the A -harmonic equation onto a case of subelliptic operators
defined by a family of vector fields satisfying the Hörmander condition. The main tool is a form of
the Gehring Lemma formulated and proved in an arbitrary metric space with a doubling measure.
This result might be of special interest, as the Gehring Lemma is a vital tool in many applications.

1. Introduction

Our aim is to study properties of the so-called very weak solutions to nonlinear
subelliptic equations in the form

(1.1) X∗A(x, u, Xu) + B(x, u, Xu) = 0.

Here x belongs to a bounded region Ω ⊂ Rn and X = (X1, . . . , Xk) is a family
of smooth vector fields in Rn defined on a neighborhood of Ω, satisfying the
Hörmander condition, and X∗ = (X∗

1 , . . . , X∗
k) is a family of operators formal

adjoint to Xi in L2 . We will call the equation a subelliptic A -harmonic equation.
In the classical situation

X = ∇ =

(
∂

∂x1
,

∂

∂x2
, . . . ,

∂

∂xn

)

we obtain the familiar A -harmonic equation. The vector fields Xi also satisfy
some additional assumptions which are described in Section 2. A and B are both
Carathéodory functions and satisfy standard growth conditions, i.e. A( · , · , ξ) ≈
|ξ|p−2ξ . The precise statement of the conditions is given in Section 4.

We say that u is a weak solution of the equation (1.1) if for every φ ∈ C∞
0 (Ω)

(1.2)

∫

Ω

A(x, u, Xu) · Xφ(x) dx +

∫

Ω

B(x, u, Xu)φ(x) dx = 0

and the function u belongs to the Sobolev space W 1,p . The last assumption
comes from the variational formulation of the problem. If the function A satisfies
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standard growth conditions, i.e. |A(x, s, ξ)| ≈ |ξ|p−1 , then the Lp -integrability
condition on u and its derivatives allows us to take as a test function an appropriate
power of u multiplied by a smooth cut-off function (or another local construction
of a test function based on u). In such a way we can obtain better properties of
solutions (e.g. Hölder continuity).

On the other hand, the integrals in (1.2) are well defined for |Xu|p−1 ∈ L1 .
It is natural to ask, if one can work with weaker regularity assumptions for weak
solutions. In the classical situation where X = ∇ , T. Iwaniec and C. Sbordone
[15] proved that if u satisfies (1.2) but its derivatives are à priori integrable with
some exponent strictly lower than the natural exponent p , then in fact they are
integrable with the exponent p and therefore u belongs to Sobolev space W 1,p .

Definition 1.1. A function u is called a very weak solution of (1.1) if u
satisfies (1.2) but belongs to the Sobolev space W 1,r , where the exponent r is
strictly lower than the natural exponent p .

Assume that functions A and B satisfy conditions (4.23) and the set Ω ⊂ Rn

is open and bounded. Let X1, . . . , Xk be vector fields on a neighborhood of Ω,
with real, C∞ smooth and globally Lipschitz coefficients satisfying the Hörmander
condition.

Theorem 1.2. There exists δ > 0 , such that if u is a very weak solution

of (1.1), u ∈ W 1,p−δ
X,loc (Ω) , then u ∈ W 1,p+δ̃

X,loc (Ω) for some δ̃ > 0 , and hence it is a

classical weak solution of (1.1).

Recently, a similar theorem on very weak solutions for parabolic equations (in
case X = ∇) was proved by J. Lewis and J. Kinnunen [18], [19].

The idea of Iwaniec and Sbordone was to use the Hodge decomposition in
construction of a test function. Later J. Lewis [17] showed another proof, where
a construction of a test function was based on a Hardy–Littlewood maximal func-
tion. We follow the idea of Lewis. We also follow the way of Iwaniec, Sbordone
and Lewis to show the higher integrability of the gradient by application of the
Gehring Lemma. We use it in a version formulated by Giaquinta [10, Chapter V,
Proposition 1.1], introducing changes that are necessary to adapt it to arbitrary
metric spaces with a doubling measure. To the best of the author’s knowledge,
this lemma is not available in the mathematical literature in such generality. We
need a metric version of the theorem (see Theorem 3.3 in Section 3) because of the
change of a metric in Rn . This is a result of working with a differential operator
X instead of a classical gradient. The idea of the proof is analogous to that in the
euclidean case. We cannot, however, use tools which are strictly connected with
the euclidean geometry: decomposition into dyadic cubes, the classical Calderon–
Zygmund Theorem etc. In general metric spaces one then has to use different
arguments, see e.g. Lemma 3.1 which replaces the classical Calderon–Zygmund
decomposition.
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The Gehring Lemma is widely used in the theory of quasi-regular mappings
and nonlinear p.d.e.’s (see [14], [11], [20]). For the proof in the euclidean case see
for instance [1], [10], [23].

In Section 2 we present basic information on Carnot–Carathéodory spaces.
Section 3 contains the proof of the metric version of Gehring’s Lemma. Section 4
contains a precise statement of the assumptions on the operator and the proof of
Theorem 1.2. As an application of the theorem we have the following compactness
theorem in Section 5:

Theorem 1.3. Let F be a compact subset of Ω and δ be a constant defined

by Theorem 1.2. Let {ui}i∈N be a family of very weak solutions of (1.1) such

that ui ∈ W 1,r
X (Ω) for some p − δ < r < p . If the family is bounded in W 1,r

X (Ω) ,

then it is compact in W 1,p
X (F ) .

2. Carnot–Carathéodory spaces

Let X1, . . . , Xk be a family of vector fields in Rn with real, C∞ coefficients.
The family satisfies the Hörmander condition if there exists an integer m such that
a family of commutators of the vector fields up to the length m , i.e. the family of
vector fields

X1, . . . , Xk, [Xi1, Xi2 ], . . . ,
[
Xi1 ,

[
Xi2 , [. . . , Xim

]
]
. . .

]
, ij = 1, 2, . . . , k,

spans the tangent space TxR
n at every point x ∈ Rn .

For u ∈ Lip(Rn) we define Xju by

Xju(x) = 〈Xj(x),∇u(x)〉, j = 1, 2, . . . , k,

and set Xu = (X1u, . . . , Xku). Its length is given by

|Xu(x)| =

( k∑

j=1

|Xju(x)|2
)1/2

,

where X∗
j is a formal adjoint to Xj in L2 , i.e.

∫

Rn

(X∗
j u)v dx = −

∫

Rn

uXjv dx for functions u, v ∈ C∞
0 (Rn) .

Given Rn with the family of vector fields, we define a distance function % .
We say that an absolutely continuous curve γ: [a, b] → Rn is admissible, if there
exist functions cj : [a, b] → R , j = 1, . . . , k , such that

γ̇(t) =
k∑

j=1

cj(t)Xj

(
γ(t)

)
and

k∑

j=1

cj(t)
2 ≤ 1.
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Functions cj do not need to be unique, because vector fields Xj do not need to be
linearly independent. The distance %(x, y) between points x and y is defined as
the infimum of those T > 0 for which there exists an admissible curve γ: [0, T ] →
Rn such that γ(0) = x and γ(T ) = y . If such a curve does not exist, we set
%(x, y) = ∞ . The function % is called the Carnot–Carathéodory distance. In
general it does not need to be a metric. When the family X1, . . . , Xk satisfies the
Hörmander condition, then % is a metric and we say that (Rn, %) is a Carnot–
Carathéodory space. For more information about such spaces and their geometry
see for instance [26], [22], [12].

Here and subsequently all the distances will be with respect to the metric % .
In particular all the balls B are balls with respect to the C.-C. metric. If σ > 0
and B = B(x, r) then σB will denote a ball centered in x of radius σ · r . By
diam Ω we will denote the diameter of the set Ω.

The metric % is locally Hölder continuous with respect to the euclidean metric.
Thus the space (Rn, %) is homeomorphic with the euclidean space Rn , and every
set which is bounded in euclidean metric is also bounded in the metric % . The
reverse implication is not true. However, if X1, . . . , Xk have globally Lipschitz
coefficients, then Garofalo and Nhieu [8] have shown that every bounded set with
respect to % is also bounded in euclidean metric.

We will consider the Lebesgue measure in the Carnot–Carathéodory space.
As we change the metric, the measure of B(x, r) is no longer equal to the fa-
miliar ωnrn . However, the important fact is that the Lebesgue measure in the
Carnot–Carathéodory space satisfies the so-called doubling condition (although
only locally—see [22]):

Theorem 2.1. Let Ω be an open, bounded subset of Rn . There exists a

constant Cd ≥ 1 such that

(2.3) |B(x0, 2r)| ≤ Cd|B(x0, r)|

provided x0 ∈ Ω and r < 5 diamΩ .

The best constant Cd is known as the doubling constant and we call a measure
satisfying the above condition a doubling measure. Iterating (2.3) we obtain a
lower bound on µ

(
B(x, r)

)
.

Lemma 2.2. Let µ be a Borel measure in a metric space Y , finite on bounded

sets. Assume that µ satisfies the doubling condition on an open, bounded set

Ω ⊂ Y . Then for every ball B = B(x, r) such that x ∈ Ω and r < diamΩ the

following inequality holds:

µ(B) ≥
µ(Ω)rs

(2 diamΩ)s

where s = log2 Cd .
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We say that Q is of homogeneous dimension relative to Ω, if there exists a
constant C > 0 such that for every ball B0 with a center in Ω and with a radius
r0 < diamΩ we have

µ(B)

µ(B0)
≥ C

(
r

r0

)Q

where B = B(x, r) is any ball such that x ∈ B0 and r ≤ r0 . If Ω ⊂ Rn is
open and bounded and a family of vector fields on Ω satisfies the Hörmander
condition, then the Carnot–Carathéodory space (Ω, %) with a Lebesgue measure
has the homogeneous dimension Q = s = log2 Cd .

Given a first-order differential operator X = (X1, . . . , Xk), we define the
Sobolev space W 1,p

X in the following way:

W 1,p
X (Ω) = {u ∈ Lp(Ω) : Xju ∈ Lp(Ω), j = 1, 2, . . . , k},

where Xju is distributional derivative. The W 1,p
X norm is defined by

‖u‖1,p = ‖u‖p + ‖Xu‖p.

Smooth functions are dense in W 1,p
X (Ω) ([6], [7]). The existence of smooth

cut-off functions in C.-C. spaces was shown in [4] and [8]. We have Sobolev and
Poincaré type inequalities ([8], [12], [16]):

Theorem 2.3. Let Q be a homogeneous dimension relative to Ω . There

exist constants C1, C2 > 0 , such that for every metric ball B = B(x, r) , where

x ∈ Ω and r ≤ diam Ω , the following inequalities hold:

(∫

B

|u − uB|
s∗

dx

)1/s∗

≤ C1r

(∫

B

|Xu|s dx

)1/s

for 1 ≤ s < Q,

where s∗ = Qs/(Q − s) and

∫

B

|u − uB |s dx ≤ C2r
s

∫

B

|Xu|s dx for 1 ≤ s < ∞ .

We will consider the following maximal functions:

MΩf(x) := sup
r>0

1

|B(x, r)|

∫

Ω∩B(x,r)

|f | dy

and

MΩ,Rf(x) := sup
R≥r>0

1

|B(x, r)|

∫

Ω∩B(x,r)

|f | dy.

Our setting requires the use of the theory of maximal functions and Mucken-
houpt weights in metric spaces equipped with a doubling measure. We refer to
[12], [23] and [25] for more details.
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Theorem 2.4 (Hardy–Littlewood). Assume Y is a metric space and µ is a

doubling measure on an open set Ω ⊂ Y . Let u ∈ L1
loc(Ω) . Then

|{x ∈ Ω : MΩu(x) > t}| ≤
C

t

∫

Ω

|u| dµ

for t > 0 , where the constant C depends only on the doubling constant (Cd) and

‖MΩu‖Lp(Ω,µ) ≤ C‖u‖Lp(Ω,µ)

for 1 < p ≤ ∞ , where C = C(Cd, p) .

We will use the above theorem on a bounded and open set Ω in Carnot–
Carathéodory space and also on balls σB , such that B ⊂ Ω and σ > 1. Such
balls are contained in Ω′ = {x : %(x, ∂Ω) < σ diamΩ} which is open and bounded.
Therefore the doubling constant may change and so may the constants in the
Hardy–Littlewood Theorem, but this does not affect the final result.

Theorem 2.5. Assume Ω is an open and bounded subset of Rn with Carnot–

Carathéodory metric and u ∈ L1
loc(Ω) , s ≥ 1 . Then for almost all x, y ∈ Ω we

have

|u(x) − u(y)| ≤ C%(x, y)
[
(MΩ,2%|Xu|s(x))1/s + (MΩ,2%|Xu|s(y))1/s

]
,

and for any metric ball B ⊂ Ω with radius r and for almost every x ∈ B we have

|u(x) − uB | ≤ Cr
(
MΩ|Xu|s(x)

)1/s
.

We say that a nonnegative, locally integrable function w belongs to the space
Ap for p > 1, if

sup
B⊂Rn

(∫

B

w dx

)(∫

B

w1/(1−p) dx

)p−1

< ∞.

A function w belongs to the space A1 if there exists a constant c ≥ 1 such that
for every ball B ⊂ Rn ∫

B

w dx ≤ c ess inf
B

w.

Functions in Ap are called Muckenhoupt weights.

Theorem 2.6 (Muckenhoupt Theorem). Assume v ∈ L1
loc(R

n) is nonnega-

tive and 1 < p < ∞ . Then v ∈ Ap if and only if there exists a constant C > 0
such that ∫

Rn

|Mf |pv dx ≤ C

∫

Rn

|f |pv dx for all f ∈ Lp(Rn, v);

i.e., M is a bounded operator from Lp(Rn, v) into Lp(Rn, v) .

A metric version of this theorem, with some additional assumptions (in fact—
unnecessary and easy to remove (1) ) can be found in [25].

(1) The author would like to thank J. Kinnunen for pointing this out.
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3. Gehring’s Lemma for metric spaces

In this section we assume (Y, %, µ) to be an arbitrary metric space with a
doubling (Borel regular) measure µ , i.e. there exists a constant Cd , such that

µ
(
B(x, 2r)

)
≤ Cdµ

(
B(x, r)

)
.

The doubling condition implies the inequality

(3.4)
µ(B)

µ(B0)
≥

1

4Q

(
r

r0

)Q

,

where Q = log2 Cd and B0 has the radius r0 , and B = B(x, r) is any ball such
that x ∈ B0 and r ≤ r0 .

Fix σ > 1. Given a ball B0 = B0(x0, R) ⊂ Y define a decomposition of a
ball σB0 into sets Ck , k = 0, 1, 2, . . ., defined by

C0 = B0,

Ck =

{
x ∈ σB0 :

(σ − 1)R

2k−1
≥ dist

(
x, ∂(σB0)

)
>

(σ − 1)R

2k

}
for k ≥ 1.

The following lemma is a version of the Calderon–Zygmund decomposition for
metric spaces:

Lemma 3.1. Assume a function u ∈ L1(σB0, µ) is nonnegative. Let α be

such that ∫

σB0

u(x) dµ < α.

Then, for every k = 0, 1, 2, . . ., there exists a countable family of pairwise disjoint

balls F k = {Bk
j } centered in Ck such that

(3.5) u(x) ≤ α2kQ for almost all x ∈ Ck\
⋃
j

5Bk
j

and

(3.6) α2kQ <

∫

5Bk
j

u(x) dµ ≤ α2kQK,

where the constant

K = max

{
Cd, 8

Q

(
σ2

σ − 1

)Q}
.
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Proof. Define G k
0 := ∅ and Sk

0 := Ck . Define a family of balls

B
k
1 =

{
B(x, r)x ∈ Sk

0 ; r =
(σ − 1)R

5 · 2k+1σ

}
.

Let B̃k
1 be a subfamily of Bk

1 defined by

B̃
k
1 =

{
B ∈ B

k
1 : α2kβ <

∫

5B

u(x) dµ

}
.

The Vitali covering lemma implies that we can choose from B̃k
1 a countable sub-

family F k
1 of pairwise disjoint balls such that

⋃
B∈Fk

1

5B ⊃
⋃

B∈B̃k
1

B.

Then we put

G
k
1 = F

k
1 , Sk

1 = Ck\
⋃

B∈G k
1

5B.

Iteration of this procedure gives in the ith step

B
k
i =

{
B(x, r) : x ∈ Sk

i−1; r =
(σ − 1)R

5 · 2k+iσ

}
,

B̃
k
i =

{
B ∈ B

k
i : α2kQ <

∫

5B

u(x) dµ

}
,

F k
i being a countable subfamily of pairwise disjoint balls such that

⋃
B∈Fk

i

5B ⊃
⋃

B∈B̃k
i

B.

We also have

G
k
i = G

k
i−1 ∪ F

k
i , and Sk

i = Ck\
⋃

B∈G k
i

5B.

Define F k = {Bk
j } =

⋃
i G k

i =
⋃

i F k
i . For every ball belonging to that family we

have

α2kQ <

∫

5Bk
j

u(x) dµ,

which gives us the lower estimation of (3.6). We proceed to show the upper
estimation of (3.6).
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Assume B ∈ F k
1 has radius r . Thus we have

r =
(σ − 1)R

5 · 2k+1σ

and applying (3.4) we obtain

∫

5B

u(x) dµ ≤
µ(B0)

µ(5B)

∫

B0

u(x) dµ < α2kQ8Q

(
σ2

σ − 1

)Q

.

If B = B(x, r) ∈ F k
i for i > 1, then

x ∈ Sk
i−1 ⊂ Sk

i−2 and r =
(σ − 1)R

5 · 2k+iσ
.

For the ball 2B = B(x, 2R) we have x ∈ Sk
i−2 and

2r =
(σ − 1)R

5 · 2k+i−1σ
;

thus 2B ∈ Bk
i−1 . By construction, 2B does not belong to B̃k

i−1 , because

x ∈ Sk
i−1 = Ck\

⋃
B∈G k

i−1

5B ⊂ Ck\
⋃

B∈Fk
i−1

5B ⊂ Ck\
⋃

B∈B̃k
i−1

B.

Therefore ∫

5·2B

u(x) dµ ≤ α2kQ.

The doubling condition leads to
∫

5B

u(x) dµ < α2kQCd.

To obtain (3.5) assume x ∈ Ck\
⋃

B∈Fk 5B and let {Bi} be a sequence of
balls centered in x with

ri =
(σ − 1)R

5 · 2k+iσ
.

For every i = 1, 2, . . ., we have x ∈ Sk
i . Therefore Bi does not belong to B̃k

i .
Thus ∫

5Bi

u(x) dµ ≤ α2kQ for i = 1, 2, . . . .

The Lebesgue Theorem implies

u(x) ≤ α2kQ

for almost all x ∈ Ck\
⋃

j 5Bk
j . The proof is complete.
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The lemma below is standard (see e.g. [9]).

Lemma 3.2. Fix a ball B ⊂ Y . Assume that functions F , G are nonnegative

and belong to the space Lq(B, µ) for some q > 1 . If there exists a constant a > 1
such that for every t ≥ 1 we have

∫

E(G,t)

Gq dµ ≤ a

[
tq−1

∫

E(G,t)

G dµ +

∫

E(F,t)

F q dµ

]
,

where E(G, t) = {x ∈ B : G(x) > t} and E(F, t) = {x ∈ B : F (x) > t} . Then the

following inequality holds:

∫

B

Gp dµ ≤ µp

(∫

B

Gq dµ + a

∫

B

F p dµ

)

for p ∈ [q, q + ε) , where ε = (q − 1)/(a − 1) and µp = (p − 1)/
(
p − 1 − a(p − q)

)
.

The following theorem is a version of the Gehring Lemma for metric spaces
with a doubling measure (see e.g. [9], [10]).

Theorem 3.3. Let q ∈ [q0, 2Q] , where q0 > 1 is fixed. Assume the functions

f , g to be nonnegative and such that g ∈ Lq
loc(Y, µ) , f ∈ Lr0

loc(Y, µ) for some

r0 > q . Assume that there exist constants b > 1 and θ such that for every ball

B ⊂ σB ⊂ Y the following inequality holds

∫

B

gq dµ ≤ b

[(∫

σB

g dµ

)q

+

∫

σB

fq dµ

]
+ θ

∫

σB

gq dµ.

Then there exist nonnegative constants θ0 and ε0 , θ0 = θ0(q0, Q, Cd, σ) and

ε0 = ε0(b, q0, Q, Cd, σ) such that if 0 < θ < θ0 then g ∈ Lp
loc(Y, µ) for p ∈ [q, q+ε0)

and moreover

(∫

B

gp dµ

)1/p

≤ C

[(∫

σB

gq dµ

)1/q

+

(∫

σB

fp dµ

)1/p]

for C = C(b, q0, Q, Cd, σ) .

Remark. For the definitions of the constants θ0 , ε0 see (3.19), (3.20)
and (3.22).

Proof. Fix a ball B ⊂ σB ⊂ Ω. Let u be given by

u(x) =
gq(x)∫

σB
gq dx

.
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Take s > t ≥ 1 (their precise values shall be fixed later). Let α = sq > 1. By
Lemma 3.1 we obtain a decomposition of σB into sets Ck , k = 1, 2, . . ., and for
every k a family of pairwise disjoint balls {Bk

j }j=1,2... ⊂ Ck such that

u(x) ≤ α2kQ for a.e. x ∈ Ck \
⋃
j

5Bk
j

and

α2kQ <

∫

5Bk
j

u(x) dx ≤ α2kQK,

where

K = max

{
Cd, 8

Q

(
σ2

σ − 1

)Q}
.

Assume x ∈ Ck . Define functions

(3.7) F (x) :=
f(x)

2kQ/q

(∫

σB

gq dµ

)1/q

and

(3.8) G(x) :=
g(x)

2kQ/q

(∫

σB

gq dµ

)1/q
.

By the assumptions of the theorem

∫

5Bk
j

gq dµ ≤ b

[(∫

σ5Bk
j

g dµ

)q

+

∫

σ5Bk
j

fq dµ

]
+ θ

∫

σ5Bk
j

gq dµ.

Consider a ball 5σBk
j . It is centered in Ck with radius r ≤ (σ − 1)R/2k+1σ ;

hence 5σBk
j ⊂

⋃k+1
i=(k−1)+ Ci . Therefore for any x ∈ 5σBk

j we have

f(x) ≤ F (x)

(
2(k+1)q

∫

σB

gq dµ

)1/q

and

g(x) ≤ G(x)

(
2(k+1)q

∫

σB

gq dµ

)1/q

.

It follows that

(3.9)

∫

5Bk
j

Gq dµ ≤ b · 2q

[(∫

σ5Bk
j

G dµ

)q

+

∫

σ5Bk
j

F q dµ

]
+ θ · 2q

∫

σ5Bk
j

Gq dµ.
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By the definition of G , for every ball Bk
j we have

(3.10) sq <

∫

5Bk
j

Gq dµ ≤ sqK.

Let us now set

(3.11) s := 2Q/q b1/(q−1) 2q

q − 1
t > t.

Combining (3.9) with (3.10) and applying (3.11) we obtain, after simple compu-
tations,

(3.12)

2q

q − 1
tµ(σ5Bk

j ) ≤

∫

σ5Bk
j

G dµ +
(
µ(σ5Bk

j )
)1−(1/q)

(∫

σ5Bk
j

F q dµ

)1/q

+

(
θ

b

)1/q(
µ(σ5Bk

j )
)1−(1/q)

(∫

σ5Bk
j

Gq dµ

)1/q

.

Let E(G, s) = {x ∈ σB : G(x) > s} . Since

G(x) =

(
u(x)

2kQ

)1/q

for almost all x ∈ B \
⋃

j 5Bk
j , we have G ≤ s . Thus

µ
(
E(G, s)

)
= µ

(
E(G, s) ∩

(⋃
j,k

5Bk
j

))

and ∫

E(G,s)

Gq dµ =

∫

E(G,s)∩{∪j,k5Bk
j
}

Gq dµ ≤
∑

j,k

∫

5Bk
j

Gq dµ.

Combining this with (3.10) and (3.11) and applying the doubling condition we
obtain

(3.13)

∫

E(G,s)

Gq dµ ≤ sqK
∑

j,k

µ(5Bk
j ) ≤ b 2Q K C3

d tq
(

2q

q − 1

)q ∑

j,k

µ(Bk
j ).

By the definitions of E(F, t) and E(G, t) we have

∫

σ5Bk
j

F dµ ≤

∫

σ5Bk
j
∩E(F,t)

F dµ + tµ(σ5Bk
j )
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and ∫

σ5Bk
j

G dµ ≤

∫

σ5Bk
j
∩E(G,t)

G dµ + tµ(σ5Bk
j ).

Applying Young’s inequality we obtain

(
tq−1µ(B′)1−(1/q)

)(∫

B′

F q dµ

)1/q

≤
q − 1

q

(
tq−1µ(B′)(q−1)/q

)q/(q−1)
+

1

q

∫

B′

F q dµ

≤
q − 1

q
tqµ(B′) +

1

q

∫

B′

F q dµ

≤

∫

B′∩E(F,t)

F q dµ + tqµ(B′).

Hence

(
µ(σ5Bk

j )
)1−(1/q)

(∫

σ5Bk
j

F q dµ

)1/q

≤ t1−q

∫

σ5Bk
j
∩E(F,t)

F q dµ + tµ(σ5Bk
j ).

In the same manner we check that

(
θ

b

)1/q(
µ(σ5Bk

j )
)1−(1/q)

(∫

σ5Bk
j

Gq dµ

)1/q

≤
θt1−q

b

∫

σ5Bk
j
∩E(G,t)

Gq dµ + tµ(σ5Bk
j ).

Substituting the last two inequalities into (3.12) yields

2q

q − 1
µ(σ5Bk

j ) ≤ t−1

∫

σ5Bk
j
∩E(G,t)

G dµ + t−q

∫

σ5Bk
j
∩E(F,t)

F q dµ

+
θ

b
t−q

∫

σ5Bk
j
∩E(G,t)

Gq dµ + 2µ(σ5Bk
j ),

and therefore

(3.14)

µ(σ5Bk
j ) ≤

q − 1

2tq

[
tq−1

∫

σ5Bk
j
∩E(G,t)

G dµ

+

∫

σ5Bk
j
∩E(F,t)

F q dµ +
θ

b

∫

σ5Bk
j
∩E(G,t)

Gq dµ

]
.

Let Dk =
⋃

j σ5Bk
j . There exists a countable subfamily of pairwise disjoint

balls
(
σ5Bk

j(h)

)
j(1),j(2),...

such that Dk ⊂
⋃

h σ25Bk
j(h) . Hence

µ(Dk) ≤ C3
d

∑

h

µ(σ5Bk
j(h)).
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From (3.14) it follows that

µ(Dk) ≤
C3

d(q − 1)

2tq

∑

h

[
tq−1

∫

σ5Bk
j(h)

∩E(G,t)

G dµ

+

∫

σ5Bk
j(h)

∩E(F,t)

F q dµ +
θ

b

∫

σ5Bk
j(h)

∩E(G,t)

Gq dµ

]
.

The balls σ5Bk
j(h) are pairwise disjoint and contained in

⋃k+1
i=(k−1)+ Ci . Thus

µ(Dk) ≤
C3

d(q − 1)

2tq

k+1∑

i=(k−1)+

[
tq−1

∫

Ci∩E(G,t)

G dµ

+

∫

Ci∩E(F,t)

F q dµ +
θ

b

∫

Ci∩E(G,t)

Gq dµ

]
.

By summing over k = 1, 2, . . . we obtain (note that each Ck can appear at most
3 times)

∑

k

µ(Dk) ≤
3 · C3

d(q − 1)

2tq

∑

k

[
tq−1

∫

Ck∩E(G,t)

G dµ

+

∫

Ck∩E(F,t)

F q dµ +
θ

b

∫

Ck∩E(G,t)

Gq dµ

]
.

Therefore we have
(3.15)
∑

k

µ(Dk) ≤
3 · C3

d(q − 1)

2tq

[
tq−1

∫

E(G,t)

G dµ +

∫

E(F,t)

F q dµ +
θ

b

∫

E(G,t)

Gq dµ

]
.

By the definition of Dk we also have

(3.16)
∑

j,k

µ(Bk
j ) ≤

∑

k

µ(Dk).

Combining (3.13) with (3.15) and (3.16) we obtain

(3.17)

∫

E(G,s)

Gq dµ ≤
3 K 2Q C6

d (2q)q

2(q − 1)q−1

[
tq−1b

∫

E(G,t)

G dµ

+ b

∫

E(F,t)

F q dµ + θ

∫

E(G,t)

Gq dµ

]
.
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We also have

(3.18)

∫

E(G,t)\E(G,s)

Gq dµ ≤ sq−1

∫

E(G,t)

G dµ

≤ 2Q(q−1)/q

(
2q

q − 1

)q−1

tq−1b

∫

E(G,t)

G dµ.

Adding both sides of (3.17) and (3.18) we conclude that

∫

E(G,t)

Gq dµ ≤ (a1 + a2) · t
q−1b

∫

E(G,t)

G dµ

+ a1

[
b

∫

E(F,t)

F q dµ + θ

∫

E(G,t)

Gq dµ

]
,

where the constants

a1 =
3 · 2Q K C6

d (2q)q

2(q − 1)q−1
, a2 =

2Q(1−(1/q)) (2q)q

2q(q − 1)q−1
.

Assume q ∈ [q0, 2Q] . Then a1 , a2 < a0 , where

(3.19) a0 = 2 K C6
d 32Q Q2Q for K = max

{
Cd; 8

Q

(
σ2

σ − 1

)Q}
.

Define

(3.20) θ0 :=
1

2a0
.

Then for θ < θ0 we have a1θ < 1
2 and therefore

∫

E(G,t)

Gq dµ ≤ 4a0b

[
tq−1

∫

E(G,t)

G dµ +

∫

E(F,t)

F q dµ

]
.

Since t ≥ 1 was arbitrary and the constants a1 , a2 do not depend on t , by
Lemma 3.2 we obtain

(3.21)

∫

B

Gp dµ ≤ µp

(∫

B

Gq dµ + 4a0b

∫

B

F p dµ

)
,

where

µp =
p − 1

p − 1 − 4a0b(p − q)
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and p ∈ [q, q + ε0) for

(3.22) ε0 =
q0 − 1

4a0b
.

By inequality (3.21) and definitions of F and G we get

∑

k

∫

Ck

gp dµ

2kQp/q

(∫

σB

gq dµ

)p/q
≤ µp

∑

k

∫

Ck

gq dµ

2kQ

(∫

σB

gq dµ

)

+ 4µpa0b
∑

k

∫

Ck

fp dµ

2kQp/q

(∫

σB

gq dµ

)p/q
.

Since C0 = B we obtain after simple computations
∫

B

gp dµ ≤ µp2
Q

(∫

σB

gq dµ

)p/q

+ 4µpa0b2
Q

∫

σB

fp dµ.

Taking C = (4µpa0b2
Q)1/p completes the proof.

4. Proof of the main theorem

Throughout this section we assume that Ω ⊂ Rn is open and bounded and
that vector fields X1, . . . , Xk , defined on a neighborhood of Ω, have smooth (C∞ ),
globally Lipschitz coefficients and satisfy the Hörmander condition.

The functions A = (A1, . . . , Ak): Rn×R×Rk → Rk and B: Rn×R×Rk →
R are both Carathéodory functions, i.e. they are measurable in x and continuous
in v , ξ . Moreover, there exist constants α, β > 0 such that

(4.23)

|A(x, v, ξ)| ≤ α(|v|p−1 + |ξ|p−1),

|B(x, v, ξ)| ≤ α(|v|p−1 + |ξ|p−1),

〈A(x, v, ξ)|ξ〉 ≥ β|ξ|p

for some p ≥ 2.
We consider the following equation in Ω:

(1.1) X∗A(x, u, Xu) + B(x, u, Xu) = 0.

Theorem (1.2). There exists δ > 0 , such that if a function u is a very weak

solution of (1.1), i.e. u ∈ W 1,p−δ
X,loc (Ω) and it satisfies the equation

∫

Ω

〈A(x, u, Xu)|Xφ(x)〉 dx +

∫

Ω

B(x, u, Xu)φ(x) dx = 0

for every function φ ∈ C∞
0 (Ω) , then u ∈ W 1,p+δ

X,loc (Ω) , and hence it is a weak

solution of (1.1).
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Assume the function u ∈ W 1,p−δ
loc (Ω) is a very weak solution of the equa-

tion (1.1). We can assume also that δ < 1
2
. Let B ⊂ Ω be a ball with a radius r .

Define

s :=
(p − δ)Q

Q + 1
< p − δ.

Let φ be a smooth cut-off function, i.e. φ ∈ C∞
0 (2B) such that 0 ≤ φ ≤ 1,

φ = 1 on B and |Xφ| ≤ c/r . Define

ũ = (u − u2B)φ

and
Eλ = {(MΩ|Xũ|s)1/s ≤ λ} for λ > 0 .

Then the function ũ is a Lipschitz function on Eλ with the Lipschitz constant
cλ (see Theorem 2.5). By the Kirszbraun theorem we can prolong ũ to the
Lipschitz function vλ defined on the whole Rn with the same Lipschitz constant
(see e.g. [5]). Moreover, there exists λ0 such that for every λ ≥ λ0 the function
vλ has a compact support. Indeed, if x ∈ Rn \ 3B , then

(MΩ|Xũ(x)|s)1/s = sup
B′3x, B′∩2B 6=∅

(∫

B′

|Xũ|s dx

)1/s

≤

(
Cd

∫

2B

|Xũ|s dx

)1/s

because |B′| ≥ |B| . Define λ0 :=
(
Cd

∫
2B

|Xũ|s dx
)1/s

. Then we have

(4.24) (MΩ|Xũ(x)|s)1/s < λ for λ ≥ λ0 ,

and that implies vλ(x) = ũ(x) = 0. We will take the function vλ as a test function
in equation (1.2).

Lemma 4.1. Let ũ be defined as above. Then the function (MΩ|Xũ|s)−δ/s

belongs to the space Ar , where r = p/s .

Proof. Fix a ball B ⊂ Rn . Define w(x) = (MΩ|Xũ(x)|s)−δ/s . Then we have
∫

B

w dx ≤
(
inf
B

MΩ|Xũ|s
)−δ/s

and (∫

B

w1/(1−r) dx

)r−1

=

(∫

B

(MΩ|Xũ|s)δ/(p−s) dx

)r−1

.

Since δ < p − s it follows that (MΩ|Xũ|s)δ/(p−s) ∈ A1 . Hence
(∫

B

w1/(1−r) dx

)r−1

≤
(
c inf

B
(MΩ|Xũ|s)δ/(p−s)

)(p−s)/s

= c
(
inf
B

MΩ|Xũ|s
)δ/s

.

It follows immediately that
(∫

B

w dx

)(∫

B

w1/(1−r) dx

)r−1

≤ C,

and the proof is complete.
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Lemma 4.2. Let B ⊂ Ω be a metric ball with radius r , and let 0 < σ ≤ 5 .

The following inequality holds:

∫

σB

|u|p−1(MσB|Xu|s)(1−δ)/s ≤ c1

∫

σB

|u|p−δ dx

+ c2|σB|

(∫

σB

|Xu|(p−δ)Q/(Q+1) dx

)(Q+1)/Q

,

where the constants c1 = c1(p) and c2 = c2(p, r) .

Proof. By Hölder’s inequality we have

∫

σB

|u|p−1(MσB|Xu|s)(1−δ)/s ≤

(∫

σB

|u|(p−1)s1dx

)1/s1

×

(∫

σB

(MσB|Xu|s)(1−δ)s2/s dx

)1/s2

,

where

s1 =
(p − δ)Q

(p − 1)Q − (1 − δ)
, s2 =

(p − δ)Q

(1 − δ)(Q + 1)
.

To the right-hand side of the above inequality we apply first the Hardy–Littlewood
Theorem (for the maximal function MσBf ; all the balls σB , where B ⊂ Ω, are
contained in some open and bounded set). Then by Young inequality with the
exponents (p − δ)/(p − 1) and (p − δ)/(1 − δ) we obtain

∫

σB

|u|p−1(MσB|Xu|s)(1−δ)/s dx ≤ c

(∫

σB

|u|(p−1)s1 dx

)1/s1

×

(∫

σB

|Xu|(1−δ)s2 dx

)1/s2

≤ c

(∫

σB

|u|(p−1)s1 dx

)(p−δ)/(s1(p−1))

(4.25)

+ c

(∫

σB

|Xu|(p−δ)Q/(Q+1) dx

)(Q+1)/Q

.

For the first integral on the right-hand side we have

(∫

σB

|u|(p−1)s1 dx

)1/s1(p−1)

≤

(∫

σB

|u − uσB|
(p−1)s1 dx

)1/s1(p−1)

+ |uσB|.
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Applying Hölder’s inequality and then Sobolev’s inequality we obtain

c

(∫

σB

|u|(p−1)s1 dx

)(p−δ)/s1(p−1)

≤ crp−δ2p

(∫

σB

|Xu|(p−δ)Q/(Q+1)(p−1) dx

)(p−1)(Q+1)/Q

+ 2p

∫

σB

|u|p−δ dx(4.26)

Then (4.25), (4.26) and Hölder’s inequality (as p ≥ 2) imply part (i) of the
lemma.

Corollary 4.3. We have from Poincaré’s inequality that

∫

σB

|u|p−1(MσB|Xũ|s)(1−δ)/s ≤ c1

∫

σB

|u|p−δ dx

+ c2|σB|

(∫

σB

|Xu|(p−δ)Q/(Q+1) dx

)(Q+1)/Q

.

Proof of Theorem 1.2. We first show that |Xu| ∈ Lp+δ̃
loc for some δ̃ > 0. Let

λ ≥ λ0 . Take vλ as a test function in (1.2):

∫

3B

A(x, u, Xu) · Xvλ dx +

∫

3B

B(x, u, Xu) · vλ dx = 0.

We will show that the assumptions of Theorem 3.3 are satisfied.
By definitions of Eλ , vλ and by the growth conditions on A and B we have
∫

2B∩Eλ

A(x, u, Xu) · Xũdx +

∫

2B∩Eλ

B(x, u, Xu) · ũdx

≤

∫

3B\Eλ

|A(x, u, Xu)| · |Xvλ| dx +

∫

3B\Eλ

|B(x, u, Xu)| · |vλ| dx

≤ c

∫

3B\Eλ

λ|Xu|p−1 dx + c

∫

3B\Eλ

λ|u|p−1 dx.

The last inequality holds because vector fields Xj are Lipschitz continuous and
there exists a constant c such that |Xvλ| ≤ cλ and |vλ| ≤ crλ , where r is the
radius of B .

Multiplying both sides of the last inequality by λ−(1+δ) and integrating over
(λ0, +∞) we obtain

(4.27)

L =

∫ ∞

λ0

∫

2B∩Eλ

λ−(1+δ)
(
A(x, u, Xu) · Xũ + B(x, u, Xu)ũ

)
dx dλ

≤ c

∫ ∞

λ0

∫

3B\Eλ

λ−δ(|u|p−1 + |Xu|p−1) dx dλ = P.
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Estimation of P . Changing the order of integration and using (4.24) we
obtain

P ≤
c

1 − δ

∫

3B\Eλ0

(MΩ|Xũ|s)1−δ/s(|u|p−1 + |Xu|p−1) dx

≤ c

∫

3B

(MΩ|Xũ|s)1−δ/s|u|p−1 dx + c

∫

3B

(MΩ|Xũ|s)1−δ/s|Xu|p−1 dx.

To estimate the first component of the right-hand side we apply Lemma 4.2. To es-
timate the second component we apply the Hölder inequality and then the Hardy–
Littlewood theorem. It follows that
(4.28)

P ≤ c

∫

3B

|u|p−δ dx + c

(∫

3B

|Xu|(p−δ)Q/(Q+1) dx

)(Q+1)/Q

+ c

∫

3B

|Xu|p−δ dx

Estimation of L . By changing the order of integration we obtain

L =
1

δ

∫

2B\Eλ0

(
A(x, u, Xu) · Xũ + B(x, u, Xu)ũ

)
(MΩ|Xũ|s)−δ/s dx

+
1

δ

∫

2B∩Eλ0

(
A(x, u, Xu) · Xũ + B(x, u, Xu)ũ

)
λ−δ

0 dx.

Since 2B \ Eλ0
= 2B \ (2B ∩ Eλ0

), the growth conditions on A and B imply

(4.29)

L ≥
1

δ

∫

2B

(
A(x, u, Xu) · Xũ

)
(MΩ|Xũ|s)−δ/s dx

−
2α

δ

∫

2B∩Eλ0

(
|u|p−1 + |Xu|p−1

)
|Xũ|(MΩ|Xũ|s)−δ/s dx

−
3α

δ

∫

2B

(
|u|p−1 + |Xu|p−1

)
|ũ|(MΩ|Xũ|s)−δ/s dx

=
1

δ
(I1 − 2αI2 − 3αI3),

where

I1 =

∫

2B

(
A(x, u, Xu) · Xũ

)
(MΩ|Xũ|s)−δ/s dx,

I2 =

∫

2B∩Eλ0

(
|u|p−1 + |Xu|p−1

)
|Xũ|(MΩ|Xũ|s)−δ/s dx,

I3 =

∫

2B

(
|u|p−1 + |Xu|p−1

)
|ũ|(MΩ|Xũ|s)−δ/s dx.

Estimation of I1 . Define sets

D1 =
{
x ∈ 2B\B : (MΩ|Xũ|s)1/s ≤ δ(M2B|Xu|s)1/s

}
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and

D2 =
{
x ∈ 2B\B : (MΩ|Xũ|s)1/s > δ(M2B|Xu|s)1/s

}
.

Hence

I1 ≥

∫

B∪D2

A(x, u, Xu) · Xu(MΩ|Xũ|s)−δ/s dx

+

∫

D2

A(x, u, Xu)(u− u2B)Xφ(MΩ|Xũ|s)−δ/s dx

− α

∫

D1

(|u|p−1 + |Xu|p−1)|Xũ|(MΩ|Xũ|s)−δ/s dx

≥ β

∫

B

|Xu|p(MΩ|Xũ|s)−δ/s dx

−
cα

r

∫

D2

(|u|p−1 + |Xu|p−1)|u − u2B|(MΩ|Xũ|s)−δ/s dx

− α

∫

D1

(|u|p−1 + |Xu|p−1)|Xũ|(MΩ|Xũ|s)−δ/s dx.

Lemma 4.1 yields

I1 ≥ cβ

∫

B

(MB|Xu|s)p/s(MΩ|Xũ|s)−δ/s dx

−
cα

r

∫

D2

(|u|p−1 + |Xu|p−1)|u − u2B |(MΩ|Xũ|s)−δ/s dx

− α

∫

D1

(|u|p−1 + |Xu|p−1)|Xũ|(MΩ|Xũ|s)−δ/s dx =: I1,1 − I1,2 − I1,3.

We will estimate each integral I1,k , for k = 1, 2, 3.

If x ∈ 1
2
B then we have

(MΩ|Xũ|s)1/s(x) ≤ sup
B′3x, B′⊂B

(∫

B′

|Xũ|s
)1/s

+ sup
B′3x, B′∩∂B 6=∅

(∫

B′

|Xũ|s
)1/s

≤ (MB|Xu|s)1/s + c

(∫

2B

|Xu|s dx

)1/s

+
c

r

(∫

2B

|u − u2B|
s dx

)1/s

≤ (MB|Xu|s)1/s + c

(∫

2B

|Xu|s dx

)1/s

.
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The second inequality comes from the doubling condition and the last one from
Poincaré’s inequality. Let G ⊂ 1

2
B be such that if x ∈ G then

(MB|Xu|s)1/s ≥ c

(∫

2B

|Xu|s dx

)1/s

.

Then we have

I1,1 ≥ cβ

∫

G

(MB|Xu|s)p/s(MB|Xu|s)−δ/s dx

= c

∫

B/2

(MB|Xu|s)(p−δ)/s dx − c

(∫

2B

|Xu|s dx

)(p−δ)/s ∫

B/2\G

dx.

Hence

(4.30) I1,1 ≥ c

∫

B/2

|Xu|p−δ dx − c|B|

(∫

2B

|Xu|s dx

)(p−δ)/s

.

By the definition of D2 , Theorem 2.5 and the properties of maximal function
we have

I1,2 ≤
cαδ−δ

r

∫

2B

(|u|p−1 + |Xu|p−1)|u − u2B|(M2B|Xu|s)−δ/s dx

≤ cαδ−δ

[∫

2B

|u|p−1(M2B|Xu|s)(1−δ)/s dx

+
1

r

∫

2B

|u − u2B |(M2B|Xu|s)(p−1−δ)/s dx

]
.

The first component of the right-hand side is estimated, by Lemma 4.2,

c

∫

2B

|u|p−δ dx + c

(∫

2B

|Xu|(p−δ)Q/(Q+1) dx

)(Q+1)/Q

.

To the second component of the right-hand side we apply Hölder’s inequality with
exponents

(p − δ)Q

Q + 1
and

p − δ

p − 1 − δ

Q

Q + 1
.

Next, by Poincaré’s inequality and the Hardy–Littlewood Theorem, we have

1

r

∫

2B

|u − u2B|(M2B|Xu|s)(p−1−δ)/s dx

≤
|2B|

r

(∫

2B

|u − u2B|
(p−δ)Q/(Q+1) dx

)(Q+1)/(p−δ)Q

×

(∫

2B

(M2B|Xu|s)(p−δ)Q/s(Q+1) dx

)(p−1−δ)(Q+1)/(p−δ)Q

≤ |2B|

(∫

2B

|Xu|(p−δ)Q/(Q+1)

)(Q+1)/Q

.
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Thus

(4.31) I1,2 ≤ cαδ−δ

[∫

2B

|u|p−δ dx + |2B|

(∫

2B

|Xu|(p−δ)Q/(Q+1)

)(Q+1)/Q]
.

For the integral I1,3 we have

I1,3 ≤ α

∫

D1

(|u|p−1 + |Xu|p−1)(MΩ|Xũ|s)(1−δ)/s dx,

and, using the definition of D1 ,

I1,3 ≤ αδ1−δ

∫

2B

(|u|p−1 + |Xu|p−1)(M2B|Xu|s)(1−δ)/s dx

≤ αδ1−δ

∫

2B

|u|p−1(M2B|Xu|s)(1−δ)/s dx

+ αδ1−δ

∫

2B

(M2B|Xu|s)(p−δ)/s dx.

To the first component of the right-hand side we apply Lemma 4.2. Because of
the coefficient δ · δ−δ it will be consumed in the inequality (4.31). The second
component, by the Hardy–Littlewood Theorem, is estimated by

cαδ1−δ

∫

2B

|Xu|p−δ dx.

Combining (4.30) and (4.31) with the estimation of I1,3 , we obtain finally

(4.32)

I1 ≥ c

∫

B/2

|Xu|p−δ dx − c

∫

2B

|u|p−δ dx − cδ

∫

2B

|Xu|p−δ dx

− c|2B|

(∫

2B

|Xu|(p−δ)Q/(Q+1)

)(Q+1)/Q

.

Estimation of I2 . We have
(4.33)

I2 ≤

∫

2B

|u|p−1(MΩ|Xũ|s)1−δ/s dx +

∫

2B∩Eλ0

|Xu|p−1|Xũ|(MΩ|Xũ|s)−δ/s dx.

Estimation of the first component follows from Lemma 4.2. We will work with the
second one. Fix a constant γ > 0. Assume that y ∈ 2B∩Eλ0

. If |Xu(y)| ≥ λ0/γ ,
we have

∫

2B∩Eλ0

|Xu|p−1|Xũ|(MΩ|Xũ|s)−δ/s dx ≤ λ1−δ
0

∫

2B

|Xu|p−1 dx

≤ γ1−δ

∫

2B

|Xu|p−δ dx.
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If |Xu(y)| ≤ λ0/γ then, since

λ0 := c

(∫

2B

|Xũ|s dx

)1/s

and λ0 ≤ inf
2B

(
MΩ|Xũ|s

)1/s
,

we obtain
∫

2B∩Eλ0

|Xu|p−1|Xũ|(MΩ|Xũ|s)−δ/s dx ≤ λp−1
0 γ1−pλ−δ

0

∫

2B

|Xũ| dx

≤ cγ1−p|2B|

(∫

2B

|Xũ|sdx

)p−1−δ/s∫

2B

|Xũ| dx

≤ cγ1−p|2B|

(∫

2B

|Xu|s dx

)p−δ/s

,

where the last inequality follows from Poincaré’s inequality. Thus the second
component of the right-hand side in (4.33) is estimated by

γ1−δ

∫

2B

|Xu|p−δ dx + cγ1−p|2B|

(∫

2B

|Xu|s dx

)p−δ/s

.

Since s = (p − δ)Q/(Q + 1), the integral I2 satisfies

(4.34)
I2 ≤ c

∫

2B

|u|p−δ dx + (c + γ1−p)|2B|

(∫

2B

|Xu|(p−δ)Q/(Q+1)

)(Q+1)/Q

+ γ1−δ

∫

2B

|Xu|p−δ dx.

Estimation of I3 . For the integral I3 we have

I3 ≤

∫

2B

|u|p−1|ũ|(MΩ|Xũ|s)−δ/s dx +

∫

2B

|Xu|p−1|ũ|(MΩ|Xũ|s)−δ/s dx.

By Corollary 4.3 the first component on the right-hand side gives the parts which
were considered earlier in the integral I1,2 . We might estimate the second com-
ponent

(4.35)

∫

2B

|Xu|p−1|ũ|(MΩ|Xũ|s)−δ/s dx ≤

∫

2B

|Xu|p−1|ũ| |Xũ|−δ dx

≤

∫

2B

|Xu|p−1−δ|u − u2B | dx

+ crδ

∫

2B

|Xu|p−1|u − u2B |1−δdx,
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because |Xũ| ≤ |Xu|+(c/r)|u−u2B | . To the last two integrals we apply Hölder’s
inequality choosing for the first integral

s1 =
Q(p − δ)

(Q + 1)(p − 1 − δ)
, s2 =

Q(p − δ)

(Q + 1) − (p − δ)

and for the second integral

t1 =
(p − δ)Q

(p − 1)(Q + 1)
, t2 =

(p − δ)Q

Q(1 − δ) − (p − 1)
.

Then, by the Sobolev inequality, the right-hand side of (4.35) does not exceed

c|2B|

(∫

2B

|Xu|Q(p−δ)/(Q+1) dx

)(Q+1)/Q

.

Thus the integral I3 can be estimated by the same expression as I1,2 , i.e.

(4.36) I3 ≤ c

∫

2B

|u|p−δ dx + c|2B|

(∫

2B

|Xu|(p−δ)Q/(Q+1)

)(Q+1)/Q

.

Combining (4.28), (4.29) with (4.32), (4.34) and (4.36) we obtain

1

δ

[
c

∫

B/2

|Xu|p−δ dx − c

∫

2B

|u|p−δ dx − (cδ + γ1−δ)

∫

2B

|Xu|p−δ dx

− (c + γ1−p)|2B|

(∫

2B

|Xu|(p−δ)Q/(Q+1)

)(Q+1)/Q]

≤ c

∫

3B

|Xu|p−δ dx.

Therefore u satisfies a reverse Hölder inequality:

∫

B/2

|Xu|p−δ dx ≤ cγ1−p

[(∫

3B

|Xu|(p−δ)Q/(Q+1)

)(Q+1)/Q

+

∫

3B

|u|p−δ dx

]

+ c(γ1−δ + δ)

∫

3B

|Xu|p−δ dx.(4.37)

We can apply Theorem 3.3 with

g = |Xu|(p−δ)Q/(Q+1), f = |u|(p−δ)Q/(Q+1),

and

θ = c(γ1−δ + δ), b = cγ1−p, q =
Q + 1

Q
.

By Sobolev’s inequality the function f is in Lr0 , where r0 = (Q + 1)/(Q − p + δ) >
q . The constants γ and δ can be chosen sufficiently small such that θ < θ0 . Then
we obtain
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Lemma 4.4. If the function u is a very weak solution of (1.1) and |Xu| ∈
Lp−δ , where δ ∈ (−δ0, δ0) for some δ0 > 0 , then there exists ε0 > 0 such that

|Xu| ∈ Lp−δ+ε0 .

By iteration of the procedure we prove that |Xu| ∈ Lp+δ̃ , for some δ̃ > 0,
say δ̃ = 1

2ε0 , where ε0 is given by Theorem 3.3. It is important to control the
constant b and thus the constant ε0 . They both depend on α , β , Cd , constants in
Poincaré’s and Sobolev’s inequalities and in the Hardy–Littlewood Theorem. The
last one depends formally on the exponent p−δ , but by the Riesz–Thorin Theorem
(Riesz Convexity Theorem, see e.g. [24]), if p ∈ [2, p0] , then the Hardy–Littlewood
constant may be chosen independently of p .

Now we show that u ∈ Lp+δ̃
loc . Assume that Ω′ is a compact subset of Ω. Let

φ ∈ C∞
0 (Ω) be a cut-off function, such that φ = 1 onto Ω′ . Let v = u · φ . Then

v ∈ W 1,p−δ(Rn) and |Xv| ∈ Lp+δ̃(Rn). By Poincaré’s inequality

(∫

B

|v − vB |p+δ̃ dx

)1/p+δ̃

≤ cr

(∫

B

|Xv|p+δ̃ dx

)1/p+δ̃

.

Define

Eλ =
{
x :

(
MΩ|Xv|p+δ̃(x)

)1/p+δ̃
≤ λ

}
.

Then

|Rn \ Eλ| ≤ cλ−p

∫

Rn

|Xv|p+δ̃ dx.

For every λ > 0 there exists a Lipschitz function vλ on Rn such that v = vλ for
a.e. x ∈ Eλ . Then

∫

Rn

|Xvλ|
p+δ̃ dx ≤

∫

Eλ

|Xv|p+δ̃ dx + cλp+δ̃|Rn \ Eλ| ≤

∫

Rn

|Xv|p+δ̃ dx,

and this implies that |Xvλ| are uniformly bounded. It follows from the same
argument as previously that there exists λ0 such that for λ > λ0 we have

supp vλ = B ⊃ Ω′ . Thus the set {vλ : λ > λ0} is bounded in W 1,p+δ̃
0 (B).

Since vλ → v for λ → ∞ we have v ∈ Lp+δ̃(B) and u ∈ W 1,p+δ̃(B).

5. Compactness

In this section we additionally assume that for all v, w ∈ R the following
inequalities hold:

|A(x, v, ξ)− A(x, w, ζ)| ≤ α|ξ − ζ|(|ξ|+ |ζ|)p−2

and
〈A(x, v, ξ)− A(x, w, ζ)|ξ − ζ〉 ≥ β|ξ − ζ|2(|ξ| + |ζ|)p−2.
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Theorem 5.3 below is a classical compactness theorem for weak solutions. It
follows from Caccioppoli type estimates with the natural exponent p . Together
with Theorem 1.2 they imply Theorem 5.4; i.e., the compactness result where it is
enough to assume that very weak solutions are bounded in W 1,r

X for some r < p .
In this way, for the nonlinear elliptic case, Theorem 5.4 was proved by Iwaniec
and Sbordone [15]. The alternative approach to prove the result is to use the
Caccioppoli type inequalities below the natural exponent.

Theorem 5.1. Let {ui}i∈N , ui ∈ W 1,p
X,loc(Ω) , be a family of weak local

solutions of the equation (1.1). Then for j , k ∈ N we have

‖φX(uj − uk)‖p
p ≤ c‖(uj − uk)Xφ‖2

p ·
(
‖φXuj‖

p−2
p + ‖φXuk‖

p−2
p

)

+ c sup
i∈N

‖ui‖
p−1

W 1,p

X

· ‖φ(uj − uk)‖p

for every function φ ∈ C∞
0 (Ω) , where the constant c depends only on p , α , β .

Proof. Assume φ ∈ C∞
0 (Ω) and let η = φp(uj − uk) be a test function in the

equation (1.1). By conditions on A and B we obtain

(5.38) β

∫

Ω

|φ|p|Xuj − Xuk|
2(|Xuj| + |Xuk|)

p−2 dx ≤ I1 + I2,

where

I1 := pα

∫

Ω

|Xφ| |φ|p−1|uj − uk| |Xuj − Xuk|(|Xuj| + |Xuk|)
p−2 dx

and

I2 := α

∫

Ω

|φ|p|uj − uk|
(
|uj |

p−1 + |uk|
p−1 + |Xuj|

p−1 + |Xuk|
p−1

)
dx.

Applying to I1 Young’s inequality with exponents 2, 2 we can estimate the
integral by sum of expressions:

(5.39) pαθ2

∫

Ω

|φ|p|Xuj − Xuk|
2(|Xuj| + |Xuk|)

p−2 dx

and

(5.40)
pαc

θ2
‖(uj − uk)Xφ‖2

p

(
‖φXuj‖

p−2
p + ‖φXuk‖

p−2
p

)
,

where the constant c depends only on p (to obtain the second component we used
Hölder’s inequality with exponents 1

2p and p/(p − 2)). We put the expression
(5.39) on the left-hand side of (5.38). The constant θ > 0 is such that β−pαθ2 > 0.
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To estimate the integral I2 we apply Hölder’s inequality with exponents
p, p/(p − 1). We obtain the estimation of I2 by

(5.41) α‖φ(uj − uk)‖p · sup
i∈N

‖φui‖
p−1

W 1,p

loc

.

Combining (5.38)–(5.41) we obtain an inequality

‖φX(uj − uk)‖p
p ≤

pαc

θ2(β − pαθ2)
‖(uj − uk)Xφ‖2

p ·
(
‖φXuj‖

p−2
p + ‖φXuk‖

p−2
p

)

+
α

β − pαθ2
sup
i∈N

‖ui‖
p−1

W 1,p

X

· ‖φ(uj − uk)‖p,

and the proof is complete.

Theorem 5.2. If a function u ∈ W 1,p
X,loc(Ω) is a weak local solution of the

equation (1.1), then it satisfies a Caccioppoli type inequality

‖φXu‖p ≤ c‖uXφ‖p + c‖uφ‖p

for every function φ ∈ C∞
0 (Ω) , where the constant c depends only on constants

p , α and β .

Proof. The procedure is similar to the previous one. As a test function we
take η = φpu , where φ ∈ C∞

0 . By the conditions on A and B we obtain an
inequality

β‖φXu‖p
p ≤

(
pα‖uXφ‖p + α‖uφ‖p

)
· ‖uφ‖p−1

p

+
(
pα‖uXφ‖p + α‖uφ‖p

)
· ‖φXu‖p−1

p ,

which implies the theorem.

The above theorems imply

Theorem 5.3. If a family of weak solutions {ui} ⊂ W 1,p
X,loc(Ω) of the equation

(1.1) is bounded in Lp(Ω) , then it is compact in W 1,p
X (Ω) .

Combining the theorem on the higher integrability of very weak solutions and
the above compactness theorem we obtain the following result:

Theorem 5.4. Let F be any compact subset of Ω and let δ be the constant

from Theorem 1.2. Then if a family {ui}i∈N of very weak solutions of the equation

(1.1), ui ∈ W 1,r
X (Ω) , is bounded in W 1,r

X (Ω) , where p−δ < r < p , then this family

compact in W 1,p
X (F ) .
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