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Abstract. Let R be a rational function with a completely invariant (super)attracting Fatou
component. We show that R has a non-accessible critical point in its Julia set, provided that R
has a Cremer fixed point with the small cycles property. This extends Kiwi’s result stating that
the same is true for polynomials with Cremer fixed points.

1. Introduction

Cremer fixed points of rational functions are irrationally indifferent fixed
points in the Julia set. In the case of polynomial maps, the presence of Cre-
mer fixed points forces the Julia set to be not locally connected, while rational
maps with Cremer fixed points may have a locally connected Julia set (see [13]).
When the Julia set fails to be locally connected, it is of interest to determine which
points in the Julia set are accessible from the complement of the Julia set.

Repelling periodic points belong to the Julia set and are always accessible, as
they are the landing points of at least one periodic external ray [9]. Since a Cremer
fixed point belongs to the Julia set, every neighborhood of it contains infinitely
many repelling periodic points, but there is no guarantee that any neighborhood of
the Cremer point contains infinitely many periodic orbits, or even one entire orbit.
When every neighborhood of a Cremer fixed point contains infinitely many cycles,
we say that the Cremer point has the small cycles property, or that is approrimated
by small cycles. According to Yoccoz [16], Cremer points of quadratic polynomials
are always approximated by small cycles. It is not known whether this is true
for polynomials of higher degree, or for arbitrary rational functions. According
to Perez-Marco [12], rational functions with Cremer periodic points always have
some non-accessible points in their Julia sets.

Kiwi [8] has shown that polynomials with a Cremer fixed point having the
small cycles property have a non-accessible critical point in their Julia set. We
show that the same is true in the case of a rational function with a completely
invariant (super)attracting Fatou component. We prove the following results:
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Theorem 4.1. Let R be a rational function of degree at least two with a
completely invariant (super)attracting Fatou component D. Assume that R has
a Cremer fixed point zy. Let C be the connected component of C\ D containing
the Cremer point zy. Then there exists a polynomial-like map (R;Uy,Us) with
C C Uy, whose filled Julia set K (gr,u, v,) coincides with C'.

Theorem 4.2. Let R be a rational function of degree at least two with a
completely invariant (super)attracting Fatou component. Assume that R has a
Cremer fixed point that is approximated by small cycles. Then R has a critical
point which is not accessible from the complement of the Julia set.

The paper is organized as follows. In Section 2 we introduce some definitions
and collect some results from holomorphic dynamics, which will be used in the
sequel. For general background in complex dynamics we refer to [1], [3], [9].

In Section 3 we summarize Kiwi’s results for polynomials [8]. He first proved
that polynomials with a Cremer periodic point and with a connected Julia set
have a non-accessible critical value, provided that the Cremer fixed point has the
small cycles property. For polynomials with disconnected Julia sets, Kiwi’s idea
was to extract a polynomial-like mapping which after straightening according to
Douady and Hubbard [4] becomes a polynomial with a connected Julia set. Then
he applied his first result to obtain a non-accessible critical point [8].

In Section 4 we prove our results for rational functions which have a completely
invariant (super)attracting component of the Fatou set. Following Kiwi’s idea, we
show that we can extract a polynomial-like mapping which after straightening
becomes a polynomial with a connected Julia set, and so it has a non-accessible
critical point in the Julia set.

The author is grateful to Professor Aimo Hinkkanen for helpful comments.

2. Cremer fixed points and accessible points

Consider a rational function R of degree at least 2 with a fixed point zy of
multiplier A. The multiplier is equal to R’(z9) when zq is finite and is equal to
S’(0) where S(z) = 1/R(1/z) when 2y = oo. By definition, a fixed point is either
attracting, repelling or indifferent according as the multiplier satisfies |A| < 1,
IAl > 1 or |A] = 1. If X\ is a root of unity, we call the corresponding fixed point
parabolic or rationally indifferent. For A = €™ with ¢ real and irrational, we
call the fixed point irrationally indifferent. We say that an irrationally indifferent
fixed point is a Cremer point if it belongs to the Julia set, and is a Siegel point
otherwise.

A fixed point zy is said to have the small cycles property [9] if every neigh-
borhood of z; contains infinitely many periodic orbits. According to Yoccoz [16],
Cremer fixed points of quadratic polynomials always have the small cycles prop-
erty. Yoccoz’s theorem raises the question as to whether every Cremer point of a



Non-accessible critical points of rational functions with Cremer points )

holomorphic germ has small cycles. The answer was provided by Perez-Marco [10]
who showed that for ¢ not satisfying a certain diophantine condition, there exists
a germ with multiplier A = 2™ that has a Cremer point but no small cycles.

It is not known whether Cremer fixed points of polynomials of arbitrary degree
always have small cycles. Also, it is not known whether any rational function can
have Cremer points without small cycles. For a detailed discussion of the local
dynamics near an irrationally indifferent fixed point see [11].

A point z in the Julia set is called accessible from a Fatou component V if
there exists a path + contained in V' that ends at z, i.e.

v:[0,1) — V, and ~5(r) — 2z, 71— 1.

When 2z is not accessible from any Fatou component we say that z is a non-
accessible point. We note that accessibility is completely invariant under the dy-
namics: z is accessible from V' if and only if R(z) is accessible from R(V).

Consider a monic polynomial map P: C — C of degree d > 2. The com-
plement of the super-attracting basin of infinity, that is the set of all the points
z € C with bounded forward orbit under P is called the filled Julia set of P and
is denoted by Kp.

Assume that Kp is connected. From Boetcher’s theorem [1], [3], we know
that the complement of the closed unit disk A is conformally isomorphic to the
complement of the filled Julia set Kp. Moreover, there exists a conformal isomor-
phism:

¢: C\A — C\ Kp,

such that
Po¢(z) = ¢(z%),
d(z)=24+0(1), z— .

The question of which points in Jp are accessible from C\ Kp is closely
related to the boundary behavior of ¢.
The set
Ry =¢({re*™ :r € (1,00)})

is called the external ray with angle t € R. Here the angle ¢ is measured in
fractions of a full turn, and not in radians. We say that an external ray R; lands
at z, if

li 2mity ]

lim o(re*") = -

We see that the landing points of external rays are accessible from C\ Kp.
The converse is also true: every point accessible from C\ K p is the landing point
of some external ray (Lindelof [14], [15]).

The ClOﬂI‘G R; of an external ray R; is called a closed ray. If R; lands, then
the closure R; is the union of the external ray and its landing point. Otherwise,
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if R, fails to land, R, is the union of the external ray and a non-trivial connected
subset of the Julia set.

Let P°™ denote the n-fold iterate of P. An external ray R; is called periodic
if P°"(R;) = R; for some integer n. In particular, if P(R;) = R;, we say that R
is a fized ray. Periodic rays always land, and their landing points are parabolic or
repelling periodic points. Conversely, parabolic and repelling periodic points are
the landing points of at least one periodic ray (see [7], [9]).

3. Kiwi’s results for polynomials

For polynomials with connected Julia sets, we know that every point that is
accessible from the complement of the filled Julia set, is the landing point of some
external ray (Lindeldf, [14], [15]). For the same case, Kiwi [8] proved a stronger
result that states the existence of a non-accessible critical value with the property
that, if an external ray accumulates to it, this external ray also accumulates to
the Cremer fixed point.

Theorem 3.1 (Kiwi, [8]). Let P be a polynomial with connected Julia set
Jp and with a Cremer fixed point zy that is approximated by small cycles. Then
there exists a critical value v € Jp which is not accessible from C\ Jp such that:
if v € R, for some external ray R, then also zy € R;.

When the Julia set is disconnected, Kiwi’s idea is to extract a polynomial-like
mapping which after straightening becomes a Cremer polynomial with a connected
Julia set. Before we can explain how this is done, we need some definitions and
results about polynomial-like mappings (see [4]).

Definition. Let U; € C and U, C C be bounded simply connected do-
mains with smooth boundaries such that U; C Uy. We say that (f;U;,Us) is
a polynomial-like map of degree d if f: Uy — U, is a d-fold branched covering,
where d > 2, which is holomorphic in U; .

Definition. The filled Julia set K¢, v,) of (f;U1,Uz) is the set of points
in U; for which the forward iterates of f are well-defined:

K(f§U17U2) = ﬂf_n<l71)~

The Julia set J(y.u, v,) is the boundary of K ;. ,)-

A polynomial-like mapping can be extended to the complex plane in such a
way that it is quasiconformally conjugate to a polynomial of the same degree.

Theorem 3.2 (The straightening theorem, Douady—Hubbard, [4]). If
(f;U1,Us) is a polynomial-like map of degree d, then there exists a quasicon-
formal map ¢: C — C and a polynomial ) of degree d such that ¢o f = Qo ¢
on U,. Moreover, (K (f,0,,0,)) = Kg-
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For polynomials with disconnected Julia sets, Kiwi proved the following re-
sults.

Theorem 3.3 (Kiwi, [8]). Let P be a polynomial of degree at least 2 and
let C' be a connected component of its filled Julia set Kp such that P(C) = C.
If C' is not a singleton consisting of a repelling fixed point, then there exists a
polynomial-like mapping (f; Uy, Us) such that C = K,u,,v,) -

Theorem 3.4 (Kiwi, [8]). Let P be a polynomial with a Cremer fixed point
zo that is approximated by small cycles. Then there exists a critical point of P
in the Julia set which is not accessible from the complement of the Julia set.

4. Our results

We now consider a rational function R of degree two or more with a com-
pletely invariant (super)attracting Fatou component. Recall that a set D is com-
pletely invariant under the map R means that z belongs to D if and only if R(2)
belongs to D.

We extend Kiwi’s Theorem 3.3 as follows.

Theorem 4.1. Let R be a rational function of degree at least two with a
completely invariant (super)attracting Fatou component D. Assume that R has
a Cremer fixed point zy. Let C' be the connected component of C\ D containing
the Cremer point zy. Then there exists a polynomial-like map (R;Uy,Us) with
C C Uy such that C' = KRryu,,u,) -

Proof. Let d be the degree of R and let A = C\ D. We will treat the
attracting and superattracting components in the same way, and simply call them
“attracting”. By replacing R with M ~! o Ro M for a suitable Mdbius transfor-
mation M that may depend on the invariant component D, we may assume that
the attracting fixed point is located at infinity.

We will work with the generalized Green’s function of the attracting com-
ponent D, as introduced in [6]. It is known that the Julia set J has positive
Hausdorff dimension, and thus it has positive logarithmic capacity ([2], [5]). It
follows that 0D = J also has positive logarithmic capacity, and thus D has a
generalized Green’s function ¢(z) = g(z,00) with pole at oco. The function ¢ is
positive and harmonic in D\ {oo}, and can be extended to a non-negative subhar-
monic function in C in the standard way. Hence ¢ is continuous and vanishes in
A = C\ D. Moreover, all the boundary points of D are regular for the Dirichlet’s
problem on D.

Also, we have

g(R(z),oo): Z g9(z,w),

R(w)=00
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where the sum is taken over all w € C with R(w) = oo with due count of
multiplicity. Note that if R(w) = co then w € D, that there are d terms in the
sum, and that w = oo occurs at least once in the sum since R(c0) = oo (see [6]
for the proofs).

Since there are countably many zeros of the gradient of g in D, there exist
only countably many positive numbers ¢ > 0 such that the corresponding level
sets Ly = {z € D : g(z) = t} of g contain zeros of the gradient of g. Also it
follows that there exist only countably many positive numbers ¢ such that the
image R(L;) = {R(z) : z € D, g(z) = t} contains zeros of the gradient of g.
We call ¢t > 0 a regular value for the Green’s function ¢ if neither L; nor R(L;)
contains any zero of the gradient of g¢.

Choose t > 0 such that L; does not contain any zeros of the gradient of g.
Then L; consists of finitely many Jordan curves since there is no branching. In-
deed, L; is closed, since g is continuous on C, and it is bounded, since g(z, c0)
tends to oo as z tends to oco. Also, L;NOD = 0, since g(z) — 0,as z — ( € dD.

If ~ is a component of L;, so a Jordan curve, then, recalling that ¢ is
subharmonic in C, we know that the maximum of g on the closed Jordan domain
enclosed by ~; is attained on 74, so we have g < ¢ inside ~;. For z € v, we have

g(R(Z),OO) = Z g(sz) > 9(27 00)7

R(w)=00

since w = oo occurs at least once in the sum, and the continuous function

Z g(sz) —g(Z, OO)

R(w)=00

has a positive minimum on the compact set ;. Thus, R(L;) lies outside ¢, and
we have g > t outside all the closed curves ~;.

Let us denote by V(t) the connected component of {z € C: g(2) < t} con-
taining the Cremer point zg of R. Recall that C' denotes the connected component
of A= C\ D containing the Cremer point zo. We claim that

C = N V(t).

t>0 regular for g

Clearly, C is contained in each V(t), since ¢ = 0 on A, so also on C. So,
C C N V(t). To prove the equality, let us assume the contrary, that there exists a
point z in V() with z ¢ C. Then g(z) =0 so that z € A= C\ D. Let C; be
the connected component of A containing z. Since z ¢ C', we know that C' and
C; are distinct components of A. Then there exists a Jordan curve v C D that
separates C' and C;. Now on 7 C D, the Green’s function ¢ attains a positive
minimum dg, S0 g > dg > 0 on . Choose t with 0 < ¢t < §p. Then we can find
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two distinct components v; and ;' of the level set L;, situated in the two distinct
components of C\ . So we have C1 NV (t) =0 (for they are separated by ~), in
contradiction with our assumption that z € C; [V (¢). Thus the equality holds.

In particular, if a critical point of R is contained in V(¢) for all regular values
t of g, then it belongs to C. It follows that there exists a regular value tg of g
such that all the critical points of R contained in V' (¢¢) belong to C'. Indeed, let
c1,C2, ..., C, denote the critical points of R. If ¢ ¢ C' for some k, there exists a
regular value t; of g such that ¢, ¢ V(tx). Let ¢y be a regular value of g with
0 <ty <min{t; : ¢; ¢ C}. Now V(ty) C ﬂcﬁc V(t;), and we conclude that all
the critical points of R contained in V' (¢g) belong to C'.

Choose tg as above and such that for any z € D which is a zero of the
gradient of g we have R(z) ¢ Ly, .

Let 72 be the component of L;, whose interior contains the Cremer point
20, and let Us be the Jordan domain inside 75 (so that C' C Uy). We claim that
R(C) = C, and so we may let U; denote the component of R™1(Us) that contains
C', and ~v; denote its boundary. Then v; is mapped by R onto 75 and outside
Y1, for if g(R(2)) = to then g(z) < g(R(2)), so g(z) < to. Thus Uy and U, are
Jordan domains containing C' such that U; C U,.

We still need to verify that R(C) = C. It is easy to see that R(C) C
C'. Indeed, first note that R(C) is connected, since C is connected and R is
continuous. So R(C) is a connected subset of A, C' is the connected component
of A containing the Cremer fixed point 2y, R(z0) = z0, hence R(C) C C. Now
we show that C' C R(C). Recall that

C= N V()

t>0 regular for g

so C' is a compact connected subset of C. Then we know that R~!(C) has at
most d components, and each is mapped by R onto C (see [2]). Say R™}(C) =
CiUCyU---UC() so that R(C;) = C for all j with 1 < j <. We know that
R(C) C O, and so by applying R~ we get

CCcRYR(IC)CR Y C)=CLUCU---UC, C A
Since C' is connected, we get that C' C C, C A, for some k. But C is a

connected component of A, so we must have C' = C}, and hence R(C) = C'.
The proper holomorphic map

R U, — Uy, U 28U, 0U, — 0U,

is a k-fold branched covering. Here k is the degree of R as a covering map of C'
onto C', all other inverse images of C' being excluded.
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Note that R: Uy — U, is not a conformal isomorphism. Assuming R is
a conformal isomorphism of U; onto Uz, the Denjoy—Wolff fixed point theorem
([15]) applied to the holomorphic map S = R~': Uy — U; shows that there
exists a unique Denjoy—Wolff fixed point o € Uy, with S(«a) = a and |S'(«)| < 1.
Then a belongs to U;, and since S maps U; into a smaller domain Us with
Us C Uy, we have o € U;. The Denjoy-Wolff theorem states the uniqueness of
the fixed point « in U;. But R and so S has a Cremer fixed point zg in U;, and
thus we must have o = zg, a contradiction since zg is a Cremer fixed point of R
and « is a repelling fixed point of R. Hence, R is not a conformal isomorphism.

The above remark forces deg(R | Uy) > 2, so (R; Uy, Us) is a polynomial-like
map of degree at least two.

Let

Kru,vp)= N R7"(U1)
n>0

be the filled Julia set of (R;U;,Us).

Note that C' C K(r,y,,u,), since R(C) = C'. As we have remarked before,
the critical points of the polynomial-like map (R;U;,Us) are contained in C,
therefore they never escape from U; (¢ € C', R(C) = C = R"(c) € C C Uy,
for all n > 0). This means that all the critical points of (R;U;,Us) belong to
K(r,u,,u,) - Therefore the set K(g., v,) is connected (by Proposition 2 in [4]). It
follows that

C = K(r,v,,,)

since C' C K(gr,y,,u,) C A and C' is a connected component of A. o

We now extend Kiwi’s Theorem 3.4 to obtain the following result.

Theorem 4.2. Let R be a rational function of degree at least two with a
completely invariant (super)attracting Fatou component. Assume that R has a
Cremer fixed point that is approximated by small cycles. Then R has a critical
point which is not accessible from the complement of the Julia set.

Proof. Just as in the Theorem 4.1, let C' be the connected component of
A = C\ D that contains the Cremer fixed point zy. It follows from the proof
of Theorem 4.1, that R(C') = C, and that we can extract a polynomial-like map
(R; Uy, Us). After straightening (R;Uy,Us) using the Douady—Hubbard theorem,
we obtain a polynomial ) and a homeomorphism ¢ of C such that po R = Qo ¢
on U; and Kg = ¢(C). Then K is connected, hence the Julia set Jo = 0Kg =
¢(0C) is connected.

Every neighborhood U C U; of zy contains infinitely many cycles of R, hence
every neighborhood of ¢(zp) contains infinitely many cycles of Q. Thus, ¢(z¢) is
a Cremer fixed point of () that is approximated by small cycles. By Theorem 3.1
for polynomials with connected Julia sets, we find a critical point ¢ € Jg of
@ that is not accessible from C\ Jg. Since ¢ € Jgo = ¢(9C), it follows that
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¢ () € OC C Jg, so ¢~ 1(c) is a critical point of R that belongs to C C Jr.
Also, paths in C\ Jg correspond under ¢! to paths in C\dC. Thus, the critical
point ¢~1(c) of R is not accessible from C\dC D> C\ Jg. o
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