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Abstract. We characterize the rearrangement invariant spaces for which there exists a non-
constant fixed point, for the Hardy–Littlewood maximal operator (the case for the spaces Lp(Rn)
was first considered in [7]). The main result that we prove is that the space Ln/(n−2),∞(Rn) ∩
L∞(Rn) is minimal among those having this property.

1. Introduction

The centered Hardy–Littlewood maximal operator M is defined on the Le-
besgue space L1

loc(R
n) by

M f(x) = sup
r>0

1

|Br|

∫

Br

|f(x − y)| dy,

where |Br| denotes the measure of the Euclidean ball Br centered at the origin
of Rn .

In this paper we study the existence of non-constant fixed points of the maxi-
mal operator M (i.e., M f = f ) in the framework of the rearrangement invariant
(r.i.) functions spaces (see Section 2 below). We will use some of the estimates
proved in [7], where the case Lp(Rn) was studied, and show that they can be
sharpened to obtain all the rearrangement invariant norms with this property (in
particular we extend Korry’s result to the end point case p = n/(n−2), where the
weak-type spaces have to considered). The main argument behind this problem is
the existence of a minimal space Ln/(n−2),∞(Rn) ∩ L∞(Rn) contained in all the
r.i. spaces with the fixed point property.
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2. Background on rearrangement invariant spaces

Since we work in the context of rearrangement invariant spaces it will be
convenient to start by reviewing some basic definitions about these spaces.

A rearrangement invariant space X = X(Rn) (r.i. space) is a Banach function
space on Rn endowed with a norm ‖ · ‖X(Rn) such that

‖f‖X(Rn) = ‖g‖X(Rn)

whenever f∗ = g∗ . Here f∗ stands for the non-increasing rearrangement of f , i.e.,
the non-increasing, right-continuous function on [0,∞) equimeasurable with f .

An r.i. space X(Rn) has a representation as a function space on X (0,∞)
such that

‖f‖X(Rn) = ‖f∗‖X (0,∞).

Any r.i. space is characterized by its fundamental function

φX(s) = ‖χE‖X(Rn)

(here E is any subset of Rn with |E| = s) and the fundamental indices

β̄X = inf
s>1

log MX(s)

log s
and β

X
= sup

s<1

log MX(s)

log s
,

where

MX(s) = sup
t>0

φX(ts)

φX(t)
, s > 0.

It is well known that
0 ≤ β

X
≤ β̄X ≤ 1.

(We refer the reader to [2] for further information about r.i. spaces.)

3. Main result

Before formulating our main result, it will be convenient to start with the
following remarks (see [7]):

Remark 3.1. By Lebesgue’s differentiation theorem one easily obtains that

|f(x)| ≤ M f(x) a.e. x ∈ Rn;

thus f is a fixed point of M , if and only if f is positive and

1

|B(x, r)|

∫

B(x,r)

f(y) dy ≤ f(x) a.e. x ∈ Rn,

or equivalently f is a positive super-harmonic function (i.e. 4f ≤ 0, where 4 is
the Laplacian operator).
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Remark 3.2. If f is a non-constant fixed point of M , and ϕ ≥ 0 belongs
to the Schwartz class S (Rn), with

∫

Rn ϕ(x) dx = 1, then the function ft(x) =
(f ∗ϕt)(x), with ϕt(x) = t−nϕ(x/t) is also a non-constant fixed point of M which
belongs to C ∞(Rn) (notice that using the Lebesgue differentiation theorem, there
exists some t > 0 such that ft is non-constant, since f is non-constant). In
particular if X(Rn) is an r.i. space and f ∈ X(Rn) is a non-constant fixed point
of M , since S (Rn) ⊂ L1(Rn) ∩ L∞(Rn) we get that ft ∈ X(Rn) ∩ C ∞(Rn) is
a non-constant fixed point of M .

Remark 3.3. Using the theory of weighted inequalities for M (see [5]), if
M f = f , in particular f ∈ A1 (the Muckenhoupt weight class), and hence f(x) dx
defines a doubling measure. Hence, f /∈ L1(Rn). Also, using the previous remark
we see that if f ∈ Lp(Rn) is a fixed point, then f ∈ Lq(Rn), for all p ≤ q ≤ ∞ .

Definition 3.4. Given an r.i. space X(Rn), we define

DI2

(

X(Rn)
)

=
{

f ∈ L0(Rn) : ‖I2f‖X(Rn) < ∞
}

,

where I2 is the Riesz potential,

(I2f)(x) =

∫

Rn

|x − y|2−nf(y) dy.

It is not hard to see that the space DI2

(

X(Rn)
)

is either trivial or is the
largest r.i. space which is mapped by I2 into X(Rn), and is also related with
the theory of the optimal Sobolev embeddings (see [4] and the references quoted
therein).

Theorem 3.5. Let X(Rn) be an r.i. space. The following statements are

equivalent:

(1) There is a non-constant fixed point f ∈ X(Rn) of M .

(2) n ≥ 3 and |x|2−nχ{x:|x|>1}(x) ∈ X(Rn) .

(3) n ≥ 3 and χ[0,1](t) + t2/n−1χ[1,∞)(t) ∈ X (0,∞) .

(4) n ≥ 3 and
(

Ln/(n−2),∞(Rn) ∩ L∞(Rn)
)

⊂ X(Rn) .

(5) n ≥ 3 and DI2

(

X(Rn)
)

6= {0} .

Proof. (1) ⇒ (2) Since if n = 1 or n = 2, the only positive super-harmonic
functions are the constant functions (see [8, Remark 1, p. 210]), necessarily n ≥ 3.
Moreover, it is proved in [7] that, if f ∈ C ∞(Rn) is a non-constant fixed point
of M , then

f(x) ≥ c|x|2−nχ{x:|x|>1}(x).

Since f ∈ X(Rn), then |x|2−nχ{x:|x|>1}(x) ∈ X(Rn).

(2) ⇒ (3) Since if |x|2−nχ{x:|x|>1}(x) ∈ X(Rn), then

F (x) = χ{x:|x|≤1}(x) + |x|2−nχ{x:|x|>1}(x) ∈ X(Rn).
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An easy computation shows that

F ∗(t) ' χ[0,1](t) + t2/n−1χ[1,∞)(t).

(3) ⇒ (4) Since f ∈
(

Ln/(n−2),∞(Rn) ∩ L∞(Rn)
)

if and only if

sup
t>0

f∗(t)W (t) < ∞,

where W (t) = max(1, t1−2/n), we have that

f∗(t) ≤ ‖f‖Ln/(n−2),∞(Rn)∩L∞(Rn)W
−1(t)

and since W−1(t) = χ[0,1](t) + t2/n−1χ[1,∞) ∈ X (0,∞) we have that

‖f‖X(Rn) = ‖f∗‖X (0,∞) ≤ c‖f‖Ln/(n−2),∞(Rn)∩L∞(Rn)

with c = ‖W−1‖X (0,∞) .

(4) ⇒ (5) Since (see [9] and [1])

(I2f)∗(t) ≤ c1

(

t2/n−1

∫ t

0

f∗(s) ds +

∫ ∞

t

f∗(s)s2/n−1 ds

)

≤ c2(I2f
0)∗(t)

where f0(x) = f∗(cn|x|
n), cn = measure of the unit ball in Rn . (Observe that

(f0)∗ = f∗). Rewriting the middle term in the above inequalities, using Fubini’s
theorem, we get

(I2f)∗(t) ≤ d1

(

n

n − 2

∫ ∞

t

f∗∗(s)s2/n−1 ds

)

≤ d2(I2f
0)∗(t),

where f∗∗(t) = t−1
∫ t

0
f∗(s) ds . Thus, f ∈ DI2

(

X(Rn)
)

if and only if

(1)

∥

∥

∥

∥

∫ ∞

t

f∗∗(s)s2/n−1 ds

∥

∥

∥

∥

X (0,∞)

< ∞.

Since

F (t) =

∫ ∞

t

χ∗∗
[0,1](s)s

2/n−1 ds = c
(

χ[0,1](t) + t2/n−1χ[1,∞)(t)
)

is a decreasing function, and

F 0(x) = F (cn|x|
n)

'
(

χ{x:|x|≤1}(x) + |x|2−nχ{x:|x|>1}(x)
)

∈ Ln/(n−2),∞(Rn) ∩ L∞(Rn)

we get that χ◦
[0,1] ∈ DI2

(

X(Rn)
)

.
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Another argument to prove this part is the following:
Since, if n ≥ 3 (see [2, Theorem 4.18, p. 228])

I2: L1(Rn) → Ln/(n−2),∞(Rn) and I2: Ln/2,1(Rn) → L∞(Rn)

is bounded, we have that

I2:
(

L1(Rn) ∩ Ln/2,1(Rn)
)

→
(

Ln/(n−2),∞(Rn) ∩ L∞(Rn)
)

⊂ X(Rn)

is bounded, and hence L1(Rn) ∩ Ln/2,1(Rn) ⊂ DI2

(

X(Rn)
)

.

(5) ⇒ (1) Since n ≥ 3, we can use the classical formula of potential theory
(see [10, p. 126])

−h = 4(I2h)

to conclude that there is a positive function f = I2χ
◦
[0,1] ∈ X(Rn). Then 0 ≤

ft = I2(χ
◦
[0,1] ∗ ϕt) ∈ X(Rn) ∩ C ∞(Rn) and 4ft ≤ 0.

We now consider particular examples, like the Lorentz spaces:

Corollary 3.6. Let 1 ≤ p < ∞ , and assume Λp(Rn, w) is a Banach space

(i.e., w ∈ Bp if 1 < p < ∞ or p ∈ B1,∞ if p = 1 , see [3]). Then, there exists a

non-constant function f ∈ Λp(Rn, w) such that M (f) = f if and only if n ≥ 3
and

∫ ∞

1

w(t)

tp(1−2/n)
dt < ∞.

In particular, this condition always holds, for p > 1 and n large enough.

Proof. The integrability condition follows by using the previous theorem.
Now, if w ∈ Bp , then there exists an ε > 0 such that w ∈ Bp−ε , and hence it
suffices to take n > 2/ε . Observe that if w = 1 and p = 1, then Λ1(Rn, w) =
L1(Rn), which does not have the fixed point property for any dimension n .

Corollary 3.7. Let 1 ≤ p, q ≤ ∞ (if p = 1 we only consider q = 1). Then,

there exists a non-constant function f ∈ Lp,q(Rn) such that M (f) = f if and

only if n ≥ 3 and
{

n/(n − 2) < p ≤ ∞ or

p = n/(n − 2) and q = ∞.

Corollary 3.8. (See [7]) Let 1 ≤ p ≤ ∞ . There exists a non-constant

function f ∈ Lp(Rn) such that M (f) = f if and only if n ≥ 3 and n/(n − 2) <
p ≤ ∞ .

It is interesting to know when given an r.i. space X(Rn), the space DI2

(

X(Rn)
)

is not trivial, or equivalently

(2) DI2

(

X(Rn)
)

:=

{

f ∈ L0([0,∞)) :

∥

∥

∥

∥

∫ ∞

t

f∗∗(s)s2/n−1 ds

∥

∥

∥

∥

X (0,∞)

< ∞

}

is not trivial. This will be done in terms of the fundamental indices of X . We
start by computing the fundamental function of DI2

(

X(Rn)
)

.
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Lemma 3.9. Let X be an r.i. space on Rn , n ≥ 3 . Let Y be given by (2) .
Then

φY (s) ' sn/2‖P1−2/nχ[0,s]‖X

where P1−2/nf(t) = t2/n−1
∫ t

0
f(s)s−2/n ds .

Proof.

sn/2P1−2/nχ[0,s](t) ' sn/2

(

χ[0,s](t) +

(

s

t

)1−2/n

χ[s,∞)(t)

)

'

∫ ∞

t

χ∗∗
[0,s](r)r

2/n−1 dr.

Theorem 3.10. Let X be an r.i. space on Rn , n ≥ 3 . Let Y be given

by (2) . Then

(1) If β̄X < 1 − 2/n , then Y 6= {0} .

(2) If Y 6= {0} then β
X

≤ 1 − 2/n .

Proof. (1) Let χr = χ[0,r] . Then

P1−2/nχr(t) =

∫ 1

0

χr(ξt)
dξ

ξn/2
≤ c

∞
∑

k=0

2−k(1−n/2)χ2kr(t).

Thus

‖P1−2/nχr‖X ≤ c
∞
∑

k=0

2−k(1−n/2)φX(2kr) ≤ cφX(r)
∞
∑

k=0

2−k(1−n/2)MX(2k).

Let ε > 0 be such that β̄X + ε < 1− 2/n . Then by the definition of β̄X it follows
readily that there is a constant c > 0 such that

MX(2k) ≤ c2k(β̄X+ε),

and hence
∞
∑

k=0

2−k(1−n/2)MX(2k) ≤

∞
∑

k=0

2−k(1−n/2−β̄X−ε) < ∞,

which implies that χr ∈ Y .
(2) Since Y 6= {0} if and only if ‖P1−2/nχ[0,1]‖X < ∞ and

(3) sup
t>0

(P1−2/nχ[0,1])
∗∗(t)φX(t) ≤ ‖P1−2/nχ[0,1]‖X < ∞,
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and easy computations show that (3) implies that

(4) 1 ≤ sup
t≥1

φX(t)

t1−2/n
= c < ∞,

then, by (4)

MX(a) = max

(

sup
t≥1/a

φX(ta)

φX(t)
, sup
t<1/a

φX(ta)

φX(t)

)

= max

(

sup
t≥1/a

φX (ta)

(at)1−2/n

(at)1−2/n

φX(t)
, sup
t<1/a

φX(ta)

φX(t)

)

' max

(

a1−2/n sup
t≥1/a

t1−2/n

φX(t)
, sup
t<1/a

φX(ta)

φX(t)

)

.

Thus, if a < 1, using again (4) we get

MX(a) ≥ a1−2/n sup
t≥1/a

t1−2/n

φX (t)
≥ a1−2/n

which implies that
β
X

≤ 1 − 2/n.

Let us see that the converse in the previous theorem is not true.

Proposition 3.11. There are rearrangement invariant spaces X such that

(1) Y 6= {0} and β̄X ≥ 1 − 2/n .

(2) Y = {0} and β
X

< 1 − 2/n .

Proof. Let ϕ(t) = taχ[0,1](t) + tbχ[1,∞)(t), with 0 ≤ a, b ≤ 1. Let

X =
{

f ∈ L0
(

[0,∞)
)

: sup
t>0

f∗∗(t)ϕ(t) < ∞
}

.

Since ϕ is a quasi-concave function, we have that

ϕ(t) = φX(t)

and
β
X

= min(a, b), β̄X = max(a, b).

On the other hand, the space Y defined by (2) is not trivial if and only if

b ≤ 1 − 2/n.

Now, to prove (1) take b ≤ 1 − 2/n and a ≥ 1 − 2/n . And to see (2) take
b > 1 − 2/n and a ≤ 1 − 2/n .
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Remark 3.12. If we consider

X0 =
{

f ∈ L0
(

[0,∞)
)

: sup
t>0

f∗∗(t)t1−2/n(1 + log+ t) < ∞
}

and

X1 =
{

f ∈ L0
(

[0,∞)
)

: sup
t>0

f∗∗(t)
t1−2/n

(1 + log+ t)
< ∞

}

then β
Xi

= β̄Xi
= 1 − 2/n , Y0 = {0} and Y1 6= {0} .

Remark 3.13. It was proved in [7] that if we consider the strong maximal
function (i.e., the maximal operator associated to centered intervals in Rn ), then
there were no fixed points in any Lp(Rn) space, regardless of the dimension. The
same argument works to show that Lp(Rn) cannot be replaced by any different r.i.
space. Also, if we study this question for other kind of sets, like, e.g., Buseman–
Feller differentiation bases (see [6]), then the only possible fixed points are the
constant functions. This observation applies to any non-centered maximal operator
(with respect to balls, cubes, etc.).
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