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Akademia Podlaska, Institute of Mathematics

PL-08-110 Siedlce, Poland; tomaszweiss@go2.pl

Abstract. We study the sharpness of the Stolz approach for the a.e. convergence of functions
in the Hardy spaces in the unit disc, first settled in the rotation invariant case by J. E. Littlewood
in 1927 and later examined, under less stringent, quantitative hypothesis, by H. Aikawa in 1991.
We introduce a new regularity condition, of a qualitative type, under which we prove a version
of Littlewood’s theorem for tangential approach whose shape may vary from point to point. Our
regularity condition can be extended in those contexts where no group is involved, such as NTA
domains in Rn . We show exactly in what sense our regularity condition is sharp.

1. Overview of our results

Let H∞ be the space of bounded holomorphic functions in the unit disc D

in C . How sharp is the Stolz (nontangential) approach

(1.1) Γα(eiθ) =
{

z ∈ D : |z − eiθ| < (1 + α)(1 − |z|)
}

for the a.e. boundary convergence of H∞ functions? A family γ = {γ(θ)}θ∈[0,2π)

of subsets of D , called an approach, may have the following properties:

(c) each γ(θ) is a curve in D ending at eiθ ;
(tg) each γ(θ) ends tangentially at eiθ ;
(aecv) each h ∈ H∞ converges a.e. along γ(θ) to its Stolz boundary values.

The Strong Sharpness Statement is the following claim.
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(SSS) There is no approach γ satisfying (c) & (tg) & (aecv).
This claim is coherent with a principle— implicit in [10]—whose first rendi-

tion is found in [15], who showed that there is no rotation invariant approach γ
satisfying (c) & (tg) & (aecv). Another rendition of this principle (with stronger
conclusions) has been given by [2], who proved that, if (u) is the condition:

(u) the curves {γ(θ)}θ are uniformly bi-Lipschitz equivalent;

then there is no approach γ satisfying (u) and (c) & (tg) & (aecv).
See also [1].
Our first result1 is a theorem of Littlewood type where the tangential curve

is allowed to vary its shape, and we do not require uniformity in the order of
tangency. Moreover, we show that, in a precise sense, Theorem 1.1 is sharp.

Theorem 1.1 (A sharp Littlewood type theorem). Let γ: [0, 2π) → 2D such

that

(c?) for each θ ∈ [0, 2π) , the set {eiθ} ∪ γ(θ) is connected;
(tg) for each α > 0 and θ ∈ [0, 2π) there exists δ > 0 such that if z ∈
γ(θ) ∩ Γα(eiθ) then |z − eiθ| > δ ;
(reg) for each open subset O of D the set

{θ ∈ [0, 2π) : γ(θ) ∩ O 6= ∅}

is a measurable subset of [0, 2π) .

Then there exists h ∈ H∞ with the property that, for almost every θ ∈ [0, 2π) ,

the limit of h(z) as z → eiθ and z ∈ γ(θ) does not exist.

– Condition (c?) is strictly weaker than (c) but it cannot be relaxed to the
minimal condition one may ask for:

(apprch) eiθ belongs to the closure of γ(θ) for all θ

since Nagel and Stein [18] showed that there is a rotation invariant approach γ
satisfying (apprch) and (tg) & (aecv). This discovery disproved a conjecture of
Rudin [19], prompted by his construction of a highly oscillating inner function in
D . See also [20]. Thus, (c?) identifies the property of curves relevant to a theorem
of Littlewood type.

– It is not easy to see (reg) fail. The images of radii by an inner function
satisfy (reg): this example prompted Rudin [19] to ask about the truth value
of (SSS). Observe that (reg) is a qualitative condition, while (u) is quantitative.
The former is perhaps more commonly met than the latter. They are independent
of each other.

– Since our hypotheses do not impose any smoothness, neither on γ(θ) nor
on the domain, a version of our theorem can be formulated, and proved as well,
for domains with rough boundary, such as NTA domains in Rn ; see Theorem 1.3.

1 A preliminary version of this result was announced in [8].
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– Is it possible to prove Theorem 1.1 without assuming (reg)? Several theo-
rems in analysis do fail if we omit some regularity conditions, while others (typi-
cally those involving null sets) remain valid without ‘regularity’ hypothesis 2 . This
question brings us back to the truth value of (SSS), and we prove the following
result.

Theorem 1.2. It is neither possible to prove the Strong Sharpness Statement,

nor to disprove it.

The proof uses a combination of methods of modern logic (developed after
1929) and harmonic analysis, based upon an insight about the location of the
link that makes the combination possible. See Theorem 2.2, Theorem 2.3 and
Theorem 2.4.

Let h∞ be the space of bounded harmonic functions on a bounded domain
D ⊂ Rn . Assume that D is NTA—as defined by [13]. How sharp is the so-called
corkscrew approach

(1.2) Γα(w)
def
= {z ∈ D : |z − w| < (1 + α) dist (z, ∂D)}

for the boundary convergence for h∞ functions, a.e. relative to harmonic measure?
Observe that D may be twisting a.e. relative to harmonic measure. In this

case, the ‘corkscrew’ approach (1.2) does not look like a sectorial angle at all.
Theorem 1.1 lends itself to the task of formulating 3 the appropriate sharpness

statement for NTA domains, without any further restrictions on the domain.

Theorem 1.3. If D is an NTA domain in Rn and γ = {γ(w)}w∈∂D is a

family of subsets of D such that

(c?) for each w ∈ ∂D , γ(w) ∪ {w} is connected;
(tg) for each α > 0 and w ∈ ∂D there exists δ > 0 such that if z ∈
γ(w) ∩ Γα(w) then |z − w| > δ ;
(reg) for each open subset O of D the set

{w ∈ ∂D : γ(w) ∩ O 6= ∅}

is a measurable subset of ∂D (i.e. its characteristic function is resolutive);

then there exists h ∈ h∞ such that for almost every w ∈ ∂D , with respect to

harmonic measure, the limit of h(z) as z → w and z ∈ γ(w) does not exist.

2 A regularity hypothesis in a theorem is one which is not (formally) necessary to give meaning
to the conclusion of the theorem. A priori it is not clear which theorems belong to which group.
Egorov’s theorem on pointwise convergence belongs to the first; see [5, p. 198]. One example in

the second group can be found in [21, p. 251].
3 In formulating (and proving) our Theorem 1.3 we also had this goal in mind. The proof of

Theorem 1.3, due to F. Di Biase and O. Svensson, will appear elsewhere.
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– A condition such as rotation invariance, in place of (reg), would have no
meaning, since in this context there is no group suitably acting, not even locally.

– Observe that (c?) cannot be relaxed to the condition

(1.3) w belongs to the closure of γ(w)

(the minimal one needed to take boundary values). Indeed, the first-named author
showed the existence, for NTA domains in Rn , of an approach γ , satisfying (1.3)
and (tg), along which all h∞ functions converge to their boundary values taken
along (1.2), a.e. relative to harmonic measure4 .

2. Notation and other results

The core of the problem belongs to harmonic analysis, so we restrict ourselves,
without loss of generality, to the space h∞ of bounded harmonic functions on D .

The boundary of D , denoted by ∂D , is naturally identified to the quotient
group R/2πZ , from which it inherits the Lebesgue measure m ; thus, m(∂D) = 2π .

If h ∈ h∞ , the Fatou set of h , denoted by F (h) ⊂ ∂D , is the set of points
w ∈ ∂D , such that the limit of h(z) as z → w and z ∈ Γα(w) exists for all α > 0;
this limit is denoted h[(w). Now, m(F (h)) = 2π and h[ ∈ L∞(∂D); see [10].

The Poisson extension P : L∞(∂D) → h∞ recaptures h from h[ , since h =
P [h[] .

If γ is a subset of D × ∂D and w ∈ ∂D , the shape of γ at w is the set

γ(w)
def
= {z ∈ D : (z, w) ∈ γ} ⊂ D.

An approach is a subset γ of D×∂D such that (apprch) holds for all θ . One
may think of γ as a family {γ(θ)}θ∈[0,2π) of subsets of D . If h ∈ h∞ and γ is an
approach, then define the following two subsets of ∂D :

C(h, γ)
def
=

{

w ∈ F (h) ; h(z) converges to h[(w) as z → w and z ∈ γ(w)
}

,

D(h, γ)
def
=

{

w ∈ ∂D ; h(z) does not have any limit as z → w and z ∈ γ(w)
}

.

If γ is an approach and u: D → R a function on D , the function on ∂D

given by

γ?(u)(w)
def
= sup{|u(z)| : z ∈ γ(w)}

is called the maximal function of u along γ at w ∈ ∂D .

4 In [7], the existence is showed by reducing the problem to the discrete setting of a (not-

necessarily-homogeneous) tree, rather than on the action of a group on the space. In general, in

this context, there is no group suitably acting on the space.
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Lemma 2.1. The following properties of an approach γ are equivalent:

(a) γ? maps all continuous functions (on D ) to measurable functions (on ∂D);
(b) for every open Z ⊂ D , the boundary subset

γ↓(Z)
def
= {w ∈ ∂D : Z ∩ γ(w) 6= ∅} ⊂ ∂D

is a measurable subset of ∂D .

The subset in (b) is called the shadow projected by Z along γ . The proof of
Lemma 2.1 is left to the reader5 . The approach γ is called: regular if it satisfies
(a) or (b) in Lemma 2.1; rotation invariant if (z, w) ∈ γ implies (eiθz, eiθw) ∈ γ
for all θ , z , w . A rotation invariant approach is regular. If h: D → D is an inner
function, then the set

{

(z, w) ∈ D × ∂D ; z = f(ru) for some u ∈ F (h), h[(u) = w, 0 ≤ r < 1
}

is a (not necessarily rotation invariant) regular approach whose shape, given by
the images of radii by h , may be empty over a null set only; see [19].

2.1. The independence theorem. Modern logic gives us tools that show
that some statements can be neither proved nor disproved. The basic idea is
familiar: if different models (or ‘concrete’ representations) of some axioms exhibit
different properties, then these properties do not follow from those axioms. For
example, the existence of a single, ‘concrete’ non commutative group shows that
commutativity cannot be derived from the group axioms, and the existence of
different models of geometry shows that Euclid’s Fifth Postulate does not follow
from the others. Since the currently adopted system of axioms for Mathematics is
ZFC6 , to prove a theorem amounts to deducing the statement from ZFC. A model

of ZFC stands to ZFC as, say, a ‘concrete’ group stands to the axioms of groups.
If ZFC is consistent, then it has several, different models. K. Gödel showed, in his
completeness theorem, that a statement can be deduced from ZFC if and only if it
holds in every model of ZFC; in particular, if it holds in some models but not in
others, then it follows that it can be neither proved nor disproved. The tangential
boundary behaviour of h∞ functions is radically different in different models of
ZFC7 .

Theorem 2.2. There is a model of ZFC in which there exists an approach γ
satisfying (c) and (tg) and such that C(h, γ) has measure equal to 2π for every

h ∈ h∞ .

5 This circle of ideas is based on the work of E. M. Stein. Cf. [11].
6 Acronym for Zermelo, Fraenkel and the Axiom of Choice. See [6], [9], [12], [14].
7 Since an approach is a fairly arbitrary subset of D × ∂D , in retrospect this result can be

rationalized, but other examples in analysis show that this rationalization is not a priori infallible.
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Theorem 2.3. There is a model of ZFC in which for every approach satisfying

(c?) and (tg) there exists h ∈ h∞ such that D(h, γ) has outer measure equal

to 2π .

The following result shows that Theorem 2.3 cannot be improved 8 .

Theorem 2.4 (A theorem in ZFC). There exists an approach γ satisfying

(c) and (tg) such that for each h ∈ h∞ , the set C(h, γ) has outer measure equal

to 2π .

3. Proofs in ZFC

Observe that h∞ has the same cardinality as ∂D .

Lemma 3.1 ([17]). There is a collection {Gu}u∈(0,1) of mutually disjoint

subsets of ∂D , such that (a) for each u ∈ (0, 1) , the set Gu has outer measure

equal to 2π ; (b) ∂D =
⋃

u∈(0,1) Gu .

The following (qualitative) consequence of the theorem of Fatou can also be
derived from Theorem 3.4. The proof is omitted.

Lemma 3.2. For each h ∈ h∞(D) there exists an approach γh satisfying

(c) and (tg) and such that C(h, γh) = F (h); therefore, m
(

C(h, γh)
)

= 2π .

If h ∈ h∞ , s ∈ R , θ > 0 and v ∈ R we define

h∗(s, θ; v)
def
= sup

0<|t|≤θ

∣

∣

∣

∣

1

t

∫ s+t

s

(

h[(e
iu) − v

)

du

∣

∣

∣

∣

.

The limit of
1

t

∫ s+t

s

h[(e
iu) du

as t → 0 exists and is equal to v if and only if

lim
θ↓0

h∗(s, θ; v) = 0.

Observe that h∗(s, θ; v) is an increasing function of θ .

Proposition 3.3 ([10] and [16]). Let h ∈ h∞ and s ∈ R . Then the following

conditions are equivalent.

(i) eis ∈ F (h) and h[(e
is) = v;

(ii) limθ↓0 h∗(s, θ; v) = 0 .

8 Theorem 2.4 in itself does not say whether (SSS) can be proved or not.
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Let c be a continuous function c: [0,∞) → D ending at eis and assume that
c can written in the form c(τ) = |c(τ)|eiseiθ(τ) where θ = θ(τ) > 0 is a continuous
function of τ such that limτ→∞ θ(τ) = 0 and

lim
τ→∞

θ(τ)

1 − |c(τ)|
= +∞.

Then c is called an upper tangential curve ending at eis . The function θ = θ(τ)
(uniquely determined by c) is called the angle of c with respect to eis .

Theorem 3.4 ([4]). Let h ∈ h∞ , eis ∈ F (h) and v = h[(e
is) . Let c be

an upper tangential curve ending at eis and let θ be the angle of c with respect

to eis . If

(3.1) lim
τ→∞

θ(τ)

1 − |c(τ)|
h∗(s, 2θ(τ); v) = 0

then

lim
τ→∞

h
(

c(τ)
)

= h[(e
is).

Thus, h converges to h[(e
is) along c as long as c is not too tangential. If

B ⊂ ∂D , let 1B: ∂D → {0, 1} be the function equal to 1 on B and 0 on ∂D\B .

Lemma 3.5. Assume that B ⊂ ∂D is open and that m(∂D \ B) > 0 . Let

γ be an approach satisfying (c?). Then

(3.2) lim inf
z∈γ(w)

z→w

P [1B](z) = 0 for a.e. w ∈ ∂D \ B.

Proof. (Cf. [23]). Fatou’s theorem implies that

(3.3) lim
r↑1

P [1B ](rw) = 0 for a.e. w ∈ ∂D \ B.

An application of Egorov’s theorem shows that for each ε > 0 there is a perfect
subset A of ∂D\B such that the limit in (3.3) is uniform for w ∈ A and m(A) >
2π − m(B) − ε . We may assume that each w ∈ A is a limit point of a sequence
weiθn ∈ A where θn → 0 and θn > 0 for n even, θn < 0 for n odd. It follows that
(3.2) holds at each point w ∈ A , since {w} ∪ γ(w) is connected, and, therefore,
γ(w) intersects the radii ending at weiθn for an appropriate subsequence of n ’s,
close enough to the boundary. The conclusion follows because ε is arbitrary.

The subset of ∂D given by {eis : θ− r < s < θ + r} is called the arc of center

eiθ and radius r > 0. Fix the value of α at α = 1/10. If J is an arc in ∂D ,
define

4(J)
def
=

{

z ∈ D : (Γα)
↓
({z}) ⊂ J

}

.

Lemma 3.6. There is a number c1 > 0 such that P [1J ](z) ≥ c1 for each arc

J ⊂ ∂D and each z ∈ 4(J) .
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Proof. Since P [1J ](z) ≥ P
[

1(Γα)↓({z})

]

(z) for each z ∈ 4(J), it suffices to
show that

(3.4) inf
z∈D

P
[

1Γ↓({z})

]

(z) > 0.

The proof of (3.4) is left to the reader.

If B ⊂ ∂D is open and γ is an approach, we define Zγ(B) as follows9 :
w ∈ Zγ(B) if and only if w ∈ ∂D \ {B} and there is a sequence {Jk}k∈N

of arcs
contained in B such that for all k ∈ N , γ(w)∩4(Jk) 6= ∅ and, moreover, for each
ε > 0 there is nε such that the set Jk is within ε distance from w for all k ≥ nε .
Let us see why we shall construct B of small measure and such that Zγ(B) is
appropriately large.

Lemma 3.7. If γ is an approach and B ⊂ ∂D is open then, for all w ∈
Zγ(B) , lim sup z→w

z∈γ(w)
P [1B ](z) ≥ c1 .

Proof. It follows from Lemma 3.6, since if J ⊂ B then P [1J ] ≤ P [1B] .

3.1. Proof of Theorem 1.1. Define τ : ∂D× D → (0, 1] by

τ(w, z)
def
=

1 − |z|

|w − z|
.

Consider the sequence of everywhere defined functions fn: ∂D → (0,∞) gauging
the order of tangency at the various points:

(3.5) fn(w)
def
= sup

{

τ(w, z) : z ∈ γ(w), |z − w| < 2π/n
}

.

Observe that 1 ≥ fn(w) ≥ fn+1(w) and that limn→∞ fn(w) = 0 for each w ∈ ∂D ,
since γ is tangential. Since γ is regular, the functions fn are measurable. If
N ∈ N then there is a set CN ⊂ ∂D whose Lebesgue measure is greater than
2π − 1/2N and such that the sequence {fn} converges uniformly to 0 on CN .
We may and will assume that CN ⊂ CN+1 for all N ∈ N . Thus, there is an
element φN ∈ NN such that if l ∈ N and n ≥ φN (l) then supw∈CN

fn(w) < 2−l .
Define a strictly increasing sequence φ ∈ NN dominating each φN , as follows.
Let φ(1) ≥ φ1(1), φ(2) ≥ max{φ1(2), φ2(2)} , φ(3) ≥ max{φ1(3), φ2(3), φ3(3)} ,
and so on. Then φ(i) ≥ φN (i) for all i ≥ N . It follows that

c(k)
def
= sup

w∈Ck

fφ(k)(w) < 2−k.

9 Cf. [23].
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If J ⊂ ∂D is the arc {eis : θ − r < s < θ + r} of center eiθ and radius r >

and 0 < c ≤ 1, we denote cJ
def
= {eis : θ − cr < s < θ + cr} the arc of center eiθ

and radius cr . Thus, m(cJ) = cm(J). For n, p ∈ N and 1 ≤ p ≤ n define

J(n, p)
def
=

{

eis : (p − 1)
2π

n
< s < p

2π

n

}

⊂ ∂D.

Define

Ik
def
=

φ(k)
⋃

p=1
c(k)J

(

φ(k), p
)

.

Then m(Ik) ≤ 2π c(k) < 2π 2−k . Define B(l)
def
=

⋃∞
k=l Ik . Let D

def
=

⋃∞
1 CN .

Then the measure of D is equal to 2π .

Claim. If l0 ∈ N then D \ B(l0) ⊂ Zγ(B(l0)) .

If h ∈ h∞ and w ∈ ∂D , we define

osc(h; w)
def
= lim sup

z→w

z∈γ(w)

h(z) − lim inf
z→w

z∈γ(w)

h(z).

Consider 1B(l) ∈ L∞(∂D) and its Poisson integral P [1B(l)] ∈ h∞ . Lem-
mas 3.5, 3.7 and the Claim imply that there is a set N(l) of Lebesgue measure
zero such that if w ∈

(

D \ B(l)
)

\ N(l) then osc
(

P [1B(l)]; w
)

≥ c1 . For q > 1

to be determined later, we define, following [23], g
def
=

∑∞
l=1 q−l

1B(l) . It follows

that P [g] =
∑∞

l=1 q−lP [1B(l)] . Define N
def
=

⋃∞
1 N(l). Then m(N) = 0. Define

B
def
=

⋂∞
1 B(l). Then m(B) = 0. We now show that if w ∈ (D \ B) \ N then

osc(P [g]; w) > 0. Indeed, let l be the smallest integer n such that w /∈ B(n).
Then w belongs to the open set

(3.6)
l−1
⋂

k=1

B(k).

For k = 1, 2, . . . , l− 1, the function 1B(k) is equal to 1 on the set (3.6); since this

set is open, it follows that osc
(

P [1B(k)]; w
)

= 0 for each k = 1, 2, . . . , l − 1. On

the other hand, osc
(

q−lP [1B(l)]; w
)

≥ q−lc1 and

osc

(

∑

k=l+1

q−kP [1B(k)]; w

)

≤
∞
∑

k=l+1

q−k ≤ q−l 1

q − 1
.

It follows that

osc(P [g]; w) ≥ q−lc1 − q−l 1

q − 1
> 0

if q is chosen greater than (1 + c1)/c1 . Since the set (D \ B) \ N has measure
equal to 2π , the proof is completed.
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Proof of the Claim. Assume that w0 ∈ D \ B(l0). The set γ(w0) contains
a branch ending tangentially at w0 from one side. Assume it ends at w0 , say,
from the right. Let N0 ∈ N be such that w0 ∈ CN0

. Let %0 > 0 be such that if
z ∈ γ(w0) and |z − w0| < %0 then τ(w0, z) < 2−10 . Choose z0 ∈ γ(w0) such that
|z0 − w0| < %0 . The role of z0 will be to make sure that our final choice is not
empty, exploting the fact that each approach region in the approach is connected.
Indeed, it may happen that each different approach region in the approach starts
from a different distance from the boundary. Choose l1 ∈ N such that l1 ≥ l0 ,
l1 ≥ N0 and

2π

φ(l1)
< 2−10|w0 − z0|.

Let l ≥ l1 . Then w0 /∈ B(l). Let k ≥ l . Then w0 /∈ Ik . Let p ∈ {1, 2, . . . , φ(k)}

be such that the arc Jk
def
= c(k)J

(

φ(k), p
)

is closer to w from the right. We know
that w0 ∈ Ck , since k ≥ N0 . Thus,

sup

{

τ(w0, z) : z ∈ γ(w0), |z − w0| <
2π

φ(k)

}

≤ c(k).

Let w1 be the center of the arc Jk . Then there is a point z1 ∈ γ(w0) such that
|z1 − w0| = |w1 − w0| and z1 is located on the same side as γ(w0). Observe that
|w1 − w0| < 2π/φ(k). It follows that τ(w0, z1) ≤ c(k). Thus, z1 ∈ 4(Jk).

3.2. Proof of Theorem 2.4. A decomposition ∂D =
⋃

h∈h∞(D) G(h),

where each set G(h) has full outer measure and sets indexed by different functions
are disjoint, exists by Lemma 3.1. Let γh be the approach associated to h in

Lemma 3.2. For w ∈ G(h) ∩ F (h) define γ(w)
def
= γh(w). For w ∈ G(h) \ F (h)

define γ(w) any tangential way you like. Then, for each h ∈ h∞ the set C(h, γ)
has outer measure equal to 2π . Indeed, it suffices to observe that C(h, γ) contains
G(h) ∩ F (h).

4. Model dependent statements

4.1. A new model dependent property. We were led to formulate 10 the
Generalized Egorov Property as we gained insight on its role in the truth value
of (SSS).

(GEP) For each ε > 0, every sequence of not-necessarily-measurable real
valued functions on [0, 1], converging pointwise to zero, has a subsequence
converging uniformly on a subset of [0, 1] whose outer measure is greater
than 1 − ε .

10 We could not find GEP in the literature. I. Rec lav (private communication) has noticed that,
to show that GEP holds in some models of ZFC, the following property, holding in the iterated
Laver real model, can be used; see [3]: the cardinality of the smallest subset of [0, 1] of full outer
measure is smaller that the cardinality of the smallest unbounded family in the Baire space. The

original proof given in [22] is different.
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Theorem 4.1 ([22]). GEP is independent of ZFC.

4.1.1. Known model dependent properties. A set has small cardinality if its
cardinality is stricly less than the cardinality of the continuum. The Baire space

NN is the collection of all sequences of natural numbers. The dominating order

≤∗ in the Baire space is an order relation defined as follows: f ≤∗ g if and only
if there exists an integer m such that f(n) ≤ g(n) for each n ≥ m . A model of
ZFC has Property D if and only if for each S ⊂ NN of small cardinality there
is a g ∈ NN such that f ≤∗ g for every f ∈ S . A model of ZFC has Property

Unif (N ) = c if and only if every subset of ∂D of small cardinality has Lebesgue
measure zero. If ZFC is consistent, then there are models of ZFC where both these
properties hold but the Continuum Hypothesis does not. Cf. [3].

4.2. Proof of Theorem 2.2. Assume that ZFC is consistent and choose a
model of ZFC where Properties D and Unif (N ) = c hold. We claim that in this
model, the conclusion of Theorem 2.2 holds. Let I be a set having the cardinality
of the continuum and let ≺ be a well-ordering of I such that all its initial segments
have small cardinality. Let {hα}α∈I be a list of all bounded harmonic functions
in D and let {wβ}β∈I

be a list of all points in ∂D . If β ∈ I then the set

T (β)
def
=

{

α ∈ I : α ≺ β and wβ ∈ F (hα)
}

has small cardinality. We claim that Theorem 3.4, and Property D imply that
there exists a continuous curve cβ : [0,∞) → D in D ending tangentially at wβ

and such that if α ∈ T (β) then

(4.1) lim
s→∞

hα

(

cβ(s)
)

= (hα)[(wβ)

holds. Indeed, write wβ = eis , and, for each α ∈ T (β), let vα = (hα)[(wβ) and
define fα ∈ NN by letting fα(n) be the smallest integer k such that

(hα)
∗
(s, 2e−l; vα) ≤

1

2n+n

for all l ≥ k . Then the family {fα}α∈T (β) ⊂ NN has small cardinality. Property D

implies that there is an element f ∈ NN such that fα ≤∗ f for each α ∈ T (β).
We may always assume that f is strictly increasing. The upper tangential curve
c = cβ ending at wβ with angle θ(τ) = e−τ and such that θ(τ)/

(

1 − |c(τ)|
)

interpolates linearly between 2n and 2n+1 when τ is between f(n) and f(n + 1)
has the required property, by Theorem 3.4. Indeed, if α ∈ T (β) then there is a k
such that if n ≥ k then fα(n) ≤ f(n). Thus, if n ≥ k and f(n) ≤ τ < f(n + 1)
then

θ(τ)

1 − |c(τ)|
(hα)

∗
(s, 2e−τ ; vα) ≤

2

2n
.
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Define γ(wβ)
def
= cβ(0,∞). We claim that for each α ∈ I the set C(hα, γ) is mea-

surable and it has measure equal to 2π . Indeed, consider the subset S(α)
def
=

{

wβ :

α ≺ β and wβ ∈ F (hα)
}

of F (hα), obtained by removing a certain set of small
cardinality (thus a null set, in our model). Thus, S(α) is measurable and it has
measure 2π . We claim that S(α) ⊂ C(hα, γ). Indeed, if w ∈ S(α) then w = wβ

for some β ∈ I such that α ≺ β and wβ ∈ F (hα). Thus, α ∈ T (β) and therefore
(4.1) holds, i.e. w = wβ ∈ C(hα, γ).

4.3. Proof of Theorem 2.3. Choose a model of ZFC where GEP holds.
We claim that in this model, the conclusion of Theorem 2.3 holds. Indeed, it
suffices to repeat the proof of Theorem 1.1 replacing every occurence of ‘measure’
by ‘outer measure’.
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