
Annales Academiæ Scientiarum Fennicæ
Mathematica
Volumen 31, 2006, 61–70

BANACH SPACES WHOSE BOUNDED SETS

ARE BOUNDING IN THE BIDUAL

Humberto Carrión, Pablo Galindo, and Mary Lilian Lourenço

Universidade de São Paulo, Instituto de Matemática e Estat́ıstica
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Abstract. We discuss necessary conditions for a Banach space to satisfy the property that
its bounded sets are bounding in its bidual space. Apart from the classic case of c0 , we prove that,
among others, the direct sum c0(ln2 ) is another example of spaces having such property.

A subset B of a complex Banach space X is said to be bounding if every
entire function defined on X is bounded on B . Such a set is also a limited set
(see below) and, of course, every relatively compact set is bounding. If X is such
that every bounding subset is relatively compact, then X is called a Gelfand–

Phillips space and there is some literature devoted to the topic. Gelfand–Phillips
spaces are characterized also as those whose sequences converging against entire
functions are norm convergent [7]. B. Josefson [12] and T. Schlumprecht [15] found
simultaneously and independently examples of complex Banach spaces containing
limited non-bounding (hence non-relatively compact) sets.

By H(X) we denote the space of entire functions defined on X , that is, func-
tions that are Fréchet differentiable at every point of X . Hb(X) is the subspace
of all f ∈ H(X) such that f is bounded on bounded sets; these are the so-called
entire functions of bounded type.

Bounding sets are related as well to the extension of holomorphic functions to
a larger space in the following way: Let E ⊂ F be complex Banach spaces. Every

bounded subset of E is bounding in F if, and only if, every f ∈ H(E) having a

holomorphic continuation to F is of bounded type. In the particular instance of
F = E∗∗ it is known that every f ∈ Hb(E) has a holomorphic extension to E∗∗ .
Therefore, in this case the only holomorphic functions which may be extended to
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the bidual are those of bounded type if, and only if, every bounded set in E is
bounding in E∗∗ .

As far as we know there is essentially one known case (E = c0 ) where the
above mentioned (equivalent) conditions hold. This was proved among other re-
sults by B. Josefson in his 1978 paper [11]. Clearly, no reflexive infinite-dimensional
Banach space satisfies those conditions and neither the conditions hold in general
for quasi-reflexive Banach spaces, i.e., spaces of finite codimension in its bidual,
the conditions may not hold: Consider, for instance, the Q-reflexive (see [1]) and
quasi-reflexive Tsirelson–James space T ∗

J . Its bidual space is separable and hence
there the bounding sets are relatively compact (see [5, 4.26]). So the bounded sets
in T ∗

J are not bounding in (T ∗
J )∗∗ .

Our aim is to study this situation and to provide further examples of Banach
spaces whose bounded sets are bounding in the bidual. So we consider the class
F of Banach spaces

F = {F : every bounded set B ⊂ F is a bounding set in F ∗∗}.

We show that such a class F is stable under products and quotients, but not
under closed subspaces; however the closed subspaces of c0 do belong to the class.
In the second part of the article we prove that c0(ln2 ) the predual of C. Stegall’s
example of a Schur space whose dual lacks the Dunford–Pettis property [16] is a
Banach space whose bounded sets are bounding in the bidual. Our argument does
not rely on Josefson’s paper and so provides another proof of the fact that c0 is
in the class we are dealing with.

1. Generalities

A subset B of a complex Banach space X is bounding if, and only if,

limm ‖Pm‖
1/m
B = 0 for all entire functions f =

∑

m Pm , where
∑

m Pm repre-
sents the Taylor series of f ∈ H(X) at the origin ([6, Lemma 4.50]). We will use
this characterization in Section 2.

A subset A of a Banach space is called limited if weak* null sequences in the
dual space converge uniformly on A . The unit ball of an infinite-dimensional Ba-
nach space is not a limited set by the Josefson–Nissenzwieg theorem. An operator
T : X → Y is said to be limited if it maps the unit ball of X onto a limited set
in Y . It turns out that T is limited if, and only if, T ∗ is weak*-to-norm sequen-
tially continuous. As we mentioned, each bounding set is a limited one, therefore
if E ∈ F , then the canonical inclusion E → E∗∗ is a limited operator.

Recall that a Banach space X has the property (P ) of Pe lczyński if for every
K ⊂ X∗ that is not weakly relatively compact, there exists a weakly Cauchy series
∑

xn in X such that infn ‖xn‖K > 0. Every C(K) space has the (P ) property
(see [17, III.D.33]).

We refer to [5] for infinite-dimensional holomorphy background.
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Proposition 1.1. If the canonical inclusion E → E∗∗ is a limited operator,

then E∗ is a Schur space. Conversely, if E∗ is a Schur space and (i) E∗∗ is a

Grothendieck space or (ii) E has the (P ) property, then the canonical embedding

of E into E∗∗ is limited.

Proof. If the canonical inclusion E → E∗∗ is a limited operator, then the
natural projection πE∗ : E∗∗∗ → E∗ is weak*-to-norm sequentially continuous.
Therefore the identity on E∗ as a composition of the canonical embedding in
E∗∗∗ and the natural projection is weak-to-norm sequentially continuous, i.e., E∗

is a Schur space. For the converse statement (i), note that πE∗ : E∗∗∗ → E∗ is
weak-weak sequentially continuous, hence weak*-to-norm sequentially continuous
by the assumptions on E∗ and E∗∗ . And for the (ii) case, πE∗ : E∗∗∗ → E∗ is
weak*-to-weak sequentially continuous by [10, Proposition 3.6, p. 131].

Note. If the canonical inclusion E → E∗∗ is a limited operator, then

Hb(E) = Hwu(E) . This is so because then E∗ is a Schur space, hence E has
the Dunford–Pettis property and does not contain copies of l1 .

In the sequel, we aim at studying whether important classes of Banach spaces
belong to the class F .

Firstly, we observe that for no (isomorphic) infinite-dimensional dual space
X∗ , the canonical inclusion X∗ → X∗∗∗ can be limited, since otherwise by com-
posing it with the restriction to X operator, %: X∗∗∗ → X∗ , it would turn out
that the identity on X∗ would be a limited operator. Therefore, no dual space
belongs to F .

When does a C(K)-space belong to F ? The above proposition shows that in
this setting of Banach spaces of continuous functions the condition of E∗ being a
Schur space is equivalent to the bounded sets in E being bounding in the bidual:
Indeed, if C(K)∗ is a Schur space, then C(K) does not contain a copy of l1 ,
hence by [13] its bidual is isomorphic to l∞(I) for some set I . But then C(K)∗∗

is a Grothendieck space, so the bounded sets in C(K) are limited in C(K)∗∗ and
furthermore bounding there because of [11, Theorem 1].

Since c0 ∈ F and it is an M-ideal in l∞ one wonders whether there are any
connections between F and the class of Banach spaces E which are an M-ideal
in E∗∗ . We are to see that there is no a clear connection.

On one hand, for the Lorentz sequence space d(w, 1) ([10, p. 103]), its predual
E = d∗(w, 1) is known to be an M-ideal in its bidual ([10, III 1.4]). However, the
unit basis of d(w, 1) is weakly null, so d(w, 1) is not a Schur space. Hence, it
turns out that the canonical inclusion E → E∗∗ is not a limited operator. Thus,
not every bounded set in E is bounding in E∗∗ . Another (simpler) example is
the following: According to [10, III Examples 1.4(f) and (g)], for 1 < p < ∞ , the
space K(lp) of compact linear operators of lp , is an M-ideal in its bidual. However
K(lp)∗ is not a Schur space since K(lp) does not have the Dunford–Pettis property
since it contains a complemented copy of the reflexive space lp .
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On the other hand, the condition of E being an M-ideal in E∗∗ is not neces-
sary for their bounded sets being bounding in E∗∗ . The Bourgain–Delbaen Banach
space Y —introduced in [2]—is shown there to satisfy Y ∗ ≈ l1 and not to contain
any copy of c0 . Thus Y ∗∗ ≈ l∞ is a Grothendieck space and Proposition 1.1
applies. Further, again by Josefson’s result the limited sets in Y ∗∗ are bounding
sets, so it turns out that the bounded sets in Y are bounding in Y ∗∗ . However,
Y is not an M-ideal in its bidual, since if it were, then it would be isomorphic to
c0 as a consequence of [10, III Theorem 3.11]. We also mention in passing that Y
fails the (P ) property.

Corollary 1.2. If the Banach space E is an M-ideal in its bidual, then the

canonical inclusion E → E∗∗ is a limited operator if, and only if, E∗ is a Schur

space.

Proof. Since any Banach space which is an M-ideal in its bidual has the (P )
property ([10, III Theorem 3.4]), it suffices to apply Proposition 1.1.

Is the class F stable by closed subspaces? The Bourgain–Delbaen space Y
also shows that F is not stable by closed subspaces since, as Haydon [9] proved,
Y contains a subspace isomorphic to some lp , which clearly does not belong to F .

Recall ([10, III Theorem 1.6]) that every subspace M of K(lp) is also an
M-ideal in its bidual and those subspaces which embed into c0 satisfy that M∗

are Schur spaces ([14, p. 415]). Moreover, every closed subspace E of c0 is also an
M-ideal in its bidual, has the Dunford–Pettis property and does not contain any
copy of l1 , hence E has the (P ) property and E∗ is a Schur space. Therefore,
the canonical inclusion E → E∗∗ is a limited operator. So the arising question is:
Does every closed subspace of c0 have its bounded sets bounding in the bidual?
Actually this question has a positive answer which reduces to Josefson’s result
that c0 ∈ F .

Proposition 1.3. The bounded sets in every closed subspace E of c0 are

bounding in E∗∗ .

Proof. To begin with, note that since E has the DP property and does
not contain any copy of l1 , Hb(E) = Hwu(E), the space of entire functions on
E which are weakly uniformly continuous on bounded sets. Moreover E∗ is a
separable space, hence by Corollary 12 in [3], Hwu(E) = Hwsc(E), the space of
weakly sequentially continuous entire functions on E .

Let f be entire on E with extension, f̄ , to E∗∗ . If f /∈ Hb(E), f is
not weakly sequentially continuous, thus there is a sequence (xn) ⊂ E weakly
convergent to a ∈ E such that

(

f(xn)
)

does not converge to f(a). By considering
the function g(x) = f(x + a) we may assume that a = 0. Clearly, (xn) cannot
be a norm null sequence, hence by the Bessaga–Pe lczyński selection principle (see
[4, Chapter V, p. 46]) there is a subsequence of (xn) which is a basic sequence
equivalent to a block basic sequence taken with respect to the unit vector basis
of c0 , and further such subsequence spans a Banach subspace X of E which is
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complemented in c0 along a projection p (see [8, Proposition 249]). There is no
loss of generality assuming that the sequence (xn) is such a subsequence. Now
f̄ |X∗∗ is an extension to X

∗∗

of the function f |X , and therefore, f̄ |X∗∗ ◦p∗∗ is an
extension of f |X ◦ p to l∞ . Further, since c0 ∈ F , it follows that f |X ◦ p belongs
to Hb(c0), so it has to be a weakly sequentially continuous function and this is
prevented by the choice of (xn) ⊂ X .

We end this section with another positive result.

Proposition 1.4. F is stable by products and quotients.

Proof. (a) Let E, F ∈ F . Let f ∈ H(E∗∗×F ∗∗) and consider a bounded set
in E×F which we may suppose to be A×B with A ⊂ E and B ⊂ F both bounded
sets. We check that the collection {f(x, · )}x∈A ⊂ H(F ∗∗) is τ0 bounded: Indeed,
for any compact subset K of F ∗∗ , the collection {f( · , y)}y∈K ⊂

(

H(E∗∗), τ0

)

is
bounded, hence is τδ bounded ([5, 2.44, 2.46]). In addition, since A is bounding
in E∗∗ , ‖f‖A = sup{|f(x)| : x ∈ A} defines a τδ continuous seminorm in H(E∗∗)
by [5, 4.18], so we have

sup
x∈A

sup
y∈K

|f(x, y)| = sup
y∈K

sup
x∈A

|f(x, y)| = sup
y∈K

‖f( · , y)‖A < ∞,

as we wanted. Now, since B is bounding in F ∗∗ , we have that {f(x, · )}x∈A is
bounded for the ‖ · ‖B seminorm, hence {|f(x, y)|}x∈A,y∈B is bounded and so
A × B is shown to be bounding in E∗∗ × F ∗∗ .

(b) If F is a quotient of a Banach space E ∈ F , then F belongs to F as
well: Let q: E → F be the quotient mapping and f ∈ H(F ) with a holomorphic
extension g to F ∗∗ . Then g ◦ qtt is a holomorphic function in E∗∗ which extends
f ◦ q . Therefore, f ◦ q ∈ Hb(E) and since any bounded subset A ⊂ F is contained
in q(B) for some bounded set B , it follows that f is bounded in A .

2. The example c0(ln2 )

In this section we consider X = c0(ln2 ). X∗ enjoys the Schur property, yet
its dual fails the Dunford–Pettis property, and it was the first example of a space
with the Dunford–Pettis property whose dual lacks it, a fact discovered by C.
Stegall [16]. Thus in view of Proposition 1.1 we found it suitable to explore whether
X belongs to F .

We now set some notation. Consider a partition of N by defining for each
n ∈ N the interval

In =

[

n(n − 1)

2
+ 1,

n(n + 1)

2

]

∩ N.

Stegall’s example is

X
∗

:=

{

(xi) ∈ l∞ :

∞
∑

n=1

(

∑

i∈In

|xi|
2

)1/2

< ∞

}

.



66 H. Carrión, P. Galindo, and M.L. Lourenço

The canonical predual of X
∗

is the space

X :=

{

(xi) ∈ l∞ : lim
k→∞

sup
n≥k

(

∑

i∈In

|xi|
2

)1/2

= 0

}

.

Observe that X coincides with the closed linear span in X
∗∗

of the unit
vectors

{

ej = (δnj)n∈N, j ∈ N
}

.

The dual of X
∗

can be represented by

X
∗∗

=

{

(xi) ∈ l∞ : sup
n∈N

(

∑

i∈In

|xi|
2

)1/2

< ∞

}

.

Let S be a subset of N . A sequence of complex numbers x = (xi) is said to
have support in S if xi = 0 for each i /∈ S . If, moreover, x belongs to a sequence
space E , then we write x ∈ ES .

B(E) denotes the closed unit ball of E whatever the normed space E be.
For f : E → C we denote ‖f‖S = supx∈B(ES) |f(x)| .

Let (pi)i∈N be a strictly increasing sequence of natural numbers. For each
i ∈ N , let αpi+1, . . . , αpi+1

be scalars at least one of which is nonzero, and let
ui =

∑pi+1

j=pi+1 αjej be a block sequence taken from (ei)i∈N . The sequence (ui)i∈N

is called totally disjoint with respect to (In)n∈N whenever pi ∈ Ini
, pi+1 ∈ In′

i

and ni 6= n′
i .

We remark that a block sequence (ui)i∈N may be written as ui =
∑

j∈Ui
αjej ,

where Ui =
⋃

j∈Fi
Ij and Fi is a finite subset of N . Further, if pi ∈ Is , pi+1 ∈ Ir

such that Ir ∩ Is = ∅ we can choose the subsets Fi such that max Fi < min Fi+1

and in this case (ui)i∈N is a totally disjoint sequence.
In the sequel we consider a sequence (Un)n∈N of subsets of N such that for

each n

(i) Un =
⋃

j∈Fn
Ij , where Fn is a finite subset of N and

(ii) max Fn < min Fn+1 .

Condition (ii) implies Un ∩ Um = ∅ for each m 6= n .
It is not difficult to show that if the sequence (ui)i∈N , ui =

∑

j∈Ui
αjej ,

is totally disjoint and supi∈N
‖ui‖ ≤ C for some positive constant C , then the

partial sums of the series
∑

θiui are bounded by C · supi |θi| and so the formal
series

∑

θiui defines an element in X
∗∗

.

To prove the next theorem we will make use of the following result which
extends a similar one from Dineen ([6, p. 299]) valid for l∞ .

Lemma 2.1. Let Q be a continuous polynomial in X
∗∗

such that Q(0) = 0 .

Let N ′ ⊂ N be an infinite set. Then for each ε > 0 there is an infinite subset

S ⊂ N ′ such that

‖Q‖∪n∈SUn
< ε.
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Proof. First we consider a homogeneous polynomial P . Suppose that there
is an ε > 0 such that for each infinite subset S ⊂ N ′ we have

‖P‖∪n∈SUn
> ε.

Let (Si)i be a disjoint partition of N ′ into an infinite number of infinite sets.
Then

‖P‖∪n∈Si
Un

> ε for all i ∈ N.

Thus, given i ∈ N there is an xi in X
∗∗

∪n∈Si
Un

with ‖xi‖ ≤ 1 such that |P (xi)| > ε .

Now, by Lemma 1.9 of [6] we have that

sup
|θi|=1

∣

∣

∣

∣

P

( l
∑

i=1

θixi

)
∣

∣

∣

∣

2

≥
l

∑

i=1

|P (xi)|
2 > lε2.

Since the sequence (xi) has pairwise disjoint support, it follows that for |θi| =

1, i = 1, . . . , l and any l ∈ N , the combination
∑l

n=1 θixi ∈ B(X
∗∗

). So, for all
l ∈ N we have

‖P‖2 ≥ sup
|θi|=1

∣

∣

∣

∣

P

( l
∑

i=1

θixi

)
∣

∣

∣

∣

2

≥
l

∑

i=1

|P (xi)|
2 > lε2.

This leads to a contradiction when we let l → ∞ .
Finally, let Q be an arbitrary continuous polynomial with Q(0) = 0. Then

there are homogeneous continuous polynomials Pj such that Q =
∑m

j=0 Pj and, by
the above, we may find inductively infinite subsets Sj ⊂ Sj−1 ⊂ N ′ , j = 1, . . . , m
such that ‖Pj‖∪n∈Sj

Un
< ε/m . Consequently, ‖Q‖∪n∈SmUn

< ε .

Theorem 2.2. Let (ui)i∈N be a totally disjoint sequence in B(X
∗∗

) given

by ui =
∑

j∈Ui
αjej for each i . Then A = {ui : i ∈ N} is a bounding set in X

∗∗

.

Proof. Suppose the set A is not bounding in X
∗∗

. Then there exists an
entire function f =

∑

m Pm ∈ H(X
∗∗

) such that f is not bounded in A . By
Lemma 4.50 in [6] this implies the existence of δ > 0 and strictly increasing
subsequences (mn) ⊂ N , (γn) ⊂ N such that

|Pγn
(umn

)|1/γn > δ for all n ∈ N.

We will show that this inequality cannot hold by using an inductive argument.

Given the polynomial y ∈ X
∗∗

7→ Pγ1
(um1

+y)−Pγ1
(um1

), Lemma 2.1 shows
that there is an infinite subset S1 ⊂ S0 := {mn : n ∈ N} such that

|Pγ1
(um1

+ y) − Pγ1
(um1

)| ≤

(

δ

γ1!

)γ1

for all y ∈ B(X
∗∗

∪n∈S1
Un

).
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Since S1 is an infinite subset of S0 there is mj ∈ S1 with j > 1. Without
loss of generality we may suppose that j = 2. Thus um2

∈ B(X
∗∗

∪n∈S1
Un

). Put

θ1 = 1. Now, by Lemma 1.9(b) in [6], there is θ2 ∈ C with |θ2| = 1 such that

|Pγ2
(θ1um1

+ θ2um2
)|2 ≥ |Pγ2

(θ1um1
)|2 + |Pγ2

(um2
)|2 ≥ δ2γ2 .

The next step is to consider the polynomial y ∈ X
∗∗

7→ Pγ2
(θ1um1

+θ2um2
+y)

−Pγ2
(θ1um1

+ θ2um2
). Again Lemma 2.1 shows that there is an infinite subset

S2 ⊂ S1 , such that

|Pγ2
(θ1um1

+ θ2um2
+ y) − Pγ2

(θ1um1
+ θ2um2

)| ≤

(

δ

γ2!

)γ2

for all y ∈ B(X
∗∗

∪n∈S2
Un

). Hence for all y ∈ B(X
∗∗

∪n∈S2
Un

),

|Pγ2
(θ1um1

+ θ2um2
+ y)| ≥ |Pγ2

(θ1um1
+ θ2um2

)| −

(

δ

γ2!

)γ2

≥ δγ2 −

(

δ

γ2!

)γ2

≥

(

δ

2

)γ2

.

Arguing by induction we obtain a decreasing sequence (Sj) of infinite subsets
of N , and a sequence (θ)i , θ1 = 1, in the unit sphere of C such that

∣

∣

∣

∣

Pγj

( j
∑

k=1

θkumk
+ y

)
∣

∣

∣

∣

≥

(

δ

2

)γj

for all y ∈ B(X
∗∗

∪n∈Sj
Un

).

We set a = (al) ∈ X
∗∗

defined by al = θkαlel if l ∈ Umk
for some k ∈ N ,

and al = 0 otherwise. That is, a is the formal series
∑∞

k=1 θkumk
.

Since the sets Uk are disjoint, the vectors uk have disjoint supports, so a ∈
B(X

∗∗

) and also a−
∑j

k=1 θkumk
∈ B(X

∗∗

∪n∈Sj
Un

). Then from the latter inequality

we conclude

|Pγj
(a)|1/γj =

∣

∣

∣

∣

P
γj

( j
∑

k=1

θkumk
+

(

a −

j
∑

k=1

θkumk

))
∣

∣

∣

∣

1/γj

≥
δ

2
.

Since {a} is a compact set in X
∗∗

, it follows that limj→∞ |Pγj
(a)|1/γj = 0. A

contradiction.

To prove the next theorem we need the following lemma.

Lemma 2.3. Let (ui)i∈N be a totally disjoint bounded sequence given by

ui =
∑pi+1

j=pi+1 αjej for each i ∈ N . Then there exists a projection Q: X →

span[ui] .
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Proof. Let (u′
i)i∈N be a sequence in X∗ such that ‖u′

i‖ = 1, u′
iui = 1 for

each i ∈ N and u′
i(ej) = 0 for j /∈ {pi + 1, . . . , pi+1} .

If we define Q(x) =
∑∞

i=1 u′
i(x)ui for each x = (xj) ∈ X , since u′

i(x) =
u′

i

(
∑pi+1

j=pi+1 xjej

)

, we have that

|u′
i(x)| ≤

∥

∥

∥

∥

pi+1
∑

j=pi+1

xjej

∥

∥

∥

∥

≤ 2Λ

∥

∥

∥

∥

∞
∑

i=1

pi+1
∑

j=pi+1

xjej

∥

∥

∥

∥

≤ 2Λ‖x‖,

where Λ is the basis constant for (en)n∈N . Then
∥

∥

∥

∥

∞
∑

i=1

u′
i(x)ui

∥

∥

∥

∥

=

∥

∥

∥

∥

∞
∑

i=1

u′
i

( pi+1
∑

j=pi+1

xjej

)

ui

∥

∥

∥

∥

≤ sup
i

∣

∣

∣

∣

u′
i

( pi+1
∑

j=pi+1

xjej

)
∣

∣

∣

∣

≤ 2Λ‖x‖.

So Q is a continuous projection.

Theorem 2.4. Every bounded subset of X is bounding in X
∗∗

.

Proof. Notice that X
∗

is separable. So, by a result of [3], it is sufficient to
prove that every weakly compact subset of X is bounding in X

∗∗

. So by Eberlein’s
theorem, it suffices to show that every weakly convergent sequence (xi) ⊂ X is
a bounding set in X

∗∗

. We may assume that (xi) is weakly null since bounding
sets are also bounding after translation.

Suppose that (xi) is not a bounding subset in X
∗∗

. Then, there is an entire
function f =

∑

n∈N
Pn ∈ H(X

∗∗

) which is unbounded on the set {xi : i ∈ N} .
Thus, by Lemma 4.50 in [6] there exist a subsequence of (xi) (which we are going
to denote in the same way), a subsequence (Pγi

), and δ > 0 such that

|Pγi
(xi)|

1/γi > δ.

Since (xi) is a weakly null non null sequence, we find by the Bessaga–
Pe lczynski selection principle, a subsequence (xki

) equivalent to a basic block
sequence taken from (ei). That is, there is a strictly increasing sequence (pi) ⊂ N

such that (xki
) ≈ (ui), where ui =

∑pi+1

j=pi+1 αjej for i ∈ N . Since (pi) is strictly
increasing we may assume, passing to subsequences if necessary, that (ui) is totally
disjoint, and henceforth a bounding set in X

∗∗

.
Since (xki

) is equivalent to (ui), there exists an isomorphism T from [ui, i ∈
N] onto [xki

, i ∈ N] such that T (ui) = xki
for each i ∈ N . Let T ∗∗: [ui, i ∈

N]∗∗ −→ [xki
, i ∈ N]∗∗ be the double transpose of T and let Q∗∗: X

∗∗

−→
[ui, i ∈ N]∗∗ be the double transpose of the projection defined in Lemma 2.3.
Since f ∈ H(X

∗∗

) we have that f ◦ T ∗∗ ◦ Q∗∗ ∈ H(X
∗∗

) and f ◦ T ∗∗ ◦ Q∗∗|[ui]

coincides with f ◦ T ◦ Q .
Finally, since {ui : i ∈ N} is a bounding subset in X∗∗ by Theorem 2.2, we

get that limi |Pγki
◦ T ∗∗ ◦ Q∗∗(ui)|

1/γki = 0 for each i ∈ N , but limi |Pγki
◦

T ∗∗ ◦ Q∗∗(ui)|
1/γki = limi |Pγki

◦ T ◦ Q(ui)|
1/γki = limi |Pγki

(xki
)|1/γki . So,

limi |Pγki
(xki

)|1/γki = 0. This contradicts our assumption and completes the
proof.
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