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Abstract. We construct a quasiregular map of R4 onto the connected sum of S2 × S2

with itself. The proof is based on a symmetric splitting of T 4 to two pieces together with some
technique from Piergallini’s article [9].

1. Introduction

An oriented and connected Riemannian n -manifold N is (K)-quasiregularly
elliptic if there exists a nonconstant (K)-quasiregular map of Rn into N . This
terminology was introduced by Bonk and Heinonen in [1] and was suggested from
the discussion by Gromov in [4, pp. 63–67]. In this paper we prove the following
result.

Theorem 1. The connected sum S2 ×S2#S2 ×S2 is quasiregularly elliptic.

Theorem 1 gives the first example of a nontrivial simply connected closed
quasiregularly elliptic 4-manifold and it solves one question posed by Gromov [3,
p. 200], [4, 2.41] and the author [12, p. 183].

In the other direction, a break-through was recently obtained by Bonk and
Heinonen [1], namely, if N is a connected, closed, and K -quasiregularly elliptic
n -manifold, then the dimension of the de Rham cohomology ring H∗(N) of N
has an upper bound depending only on n and K . Earlier results on the closed
case were essentially based on the behavior of the first homotopy group and are
contained in [5], [8], and [18]. For example, from [18, pp. 146–147] it follows, as
observed in [1, Corollary 1.6] that dimH1(N) ≤ n . This gives for n = 2 and n = 3
the bound 2n for dimH∗(N). This is optimal as is seen from dimH∗(Tn) = 2n

for the n -torus Tn , which equality is true for every n ≥ 2. It is an interesting
question whether one has a bound for dimH∗(N) independent of K also for n ≥ 4.
Furthermore, if this is the case, is the bound again 2n ? We refer to [1] for a more
detailed discussion on the question of quasiregular ellipticity. For the theory of
quasiregular mappings, see [13].

The proof of Theorem 1 is reduced to showing the existence of a branched
covering T 4 → S2 ×S2#S2 ×S2 and composing it with the projection R4 → T 4 .
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An outline of the various steps is as follows. We use a 2-fold branched covering
T 2 → S2 to perform the product map F : T 2 × T 2 → S2 × S2 . With the help
of a handle decomposition of T 4 we split T 4 in a symmetric way into two pieces
V and W such that F takes V onto S2 × S2 with a 4-ball deleted and such
that boundary goes to boundary. By a preliminary shifting of coordinates in T 4

we get similarly a map G which takes W to another copy of S2 × S2 with a
4-ball deleted. On the common boundary M of V and W we then get two 4-fold
branched coverings onto 3-spheres. The task is reduced to the construction of a
branched covering M × [0, 1] → S3 × [0, 1] which coincides with given maps on
M × 0 and M × 1 respectively. Here we make use of the symmetry property of F
and G and apply Section 2 from Piergallini’s paper [9]. Piergallini later used [9]
in [10] to show that each closed oriented PL 4-manifold is a 4-fold covering of S4 .

Acknowledgements. I thank Juha Heinonen for inspiring discussions connected to
the subject and to the proof of Theorem 1.

2. Maps F and G

We let Tn be [−1, 1]n with opposite sides identified. We define a handle de-
composition of T 4 consisting of one 0-handle H0 , four 1-handles H1

i , i = 1, . . . , 4,
six 2-handles H2

ij , 1 ≤ i < j ≤ 4, four 3-handles H3

i , 1, . . . , 4, and one 4-

handle H4 . These are fixed as follows:

H0 =
{
x ∈ T 4 : |xk| ≤ 1/3, k = 1, . . . , 4

}
,

H1

i =
{
x ∈ T 4 : 1/3 ≤ |xi| and |xk| ≤ 1/3 for k 6= i

}
,

H2

ij =
{
x ∈ T 4 : 1/3 ≤ |xi|, |xj| and |xk| ≤ 1/3 for k 6= i, j

}
,

H3

i =
{
x ∈ T 4 : |xi| ≤ 1/3 and 1/3 ≤ |xk| for k 6= i

}
,

H4 =
{
x ∈ T 4 : 1/3 ≤ |xk|, k = 1, . . . , 4

}
.

We work throughout with PL maps. Therefore our constructed map in the end
will be quasiregular. First we define a 2-to-1 branched cover f : T 2 → S2 such that
the square [0, 1]2 is mapped onto the upper half sphere S2

+
of S2 and such that

the extension to the rest of T 2 satisfies f(x1, x2) = f(−x1,−x2) = r ◦f(−x1, x2),
where r is the reflection in the equator of S2 . The map f is shown in Figure 1,
where points ai and bi = f(ai), i = 1, . . . , 4, are indicated. Then set

(2.1) F = f × f : T 2 × T 2 → S2 × S2.

Let λ: T 4 → T 4 be the map (x1, x2, x3, x4) 7→ (x1, x3, x4, x2) and define

(2.2) G: T 4 → S2 × S2
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Figure 1.

to be F ◦ λ followed by the identity to another copy of S2 × S2 . The degree of F
and G is clearly four.

Next let
X = H0 ∪H1

1
∪ · · · ∪H1

4
∪H2

12
∪H2

34
,

Y = H4 ∪H3

1 ∪ · · · ∪H3

4 ∪H2

13 ∪H
2

24,

V = X ∪H2

23,

W = Y ∪H2

14
.

We first study F |X and F |V . For this we write

E = {x ∈ T 2 : |x1|, |x2| ≤ 1/3}

and observe that fE is a disk with f∂E = ∂fE . We have

X = (T 2 × E) ∪ (E × T 2),

T 4 \X = (T 2 \E) × (T 2 \E),

FX = S2 × S2 \ U,

where U is the open 4-ball (S2 \ fE)× (S2 \ fE) = F (T 4 \X). The boundary of
X is the 3-manifold

∂X =
(
(T 2 \ intE) × ∂E) ∪ (∂E × (T 2 \ intE)

)

and

(2.3) F∂X =
(
(S2 \ int fE)× ∂fE) ∪ (∂fE × (S2 \ int fE)

)
= ∂U.
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Hence F∂X = ∂FX , which means that F |X is a closed map. Moreover,
F | ∂X: ∂X → ∂U is a branched cover.

In (2.3) we see the 3-sphere ∂U splitted into two solid tori. The image of
the branch set of F | ∂X (notice the difference of terminology in literature) is the
union of the following six circles:

si = bi × ∂fE, Si = ∂fE × bi, i = 1, 2, 4.

We write H2

23
= A2 × A1 , where

A1 = {x ∈ T 2 : |x2| ≤ 1/3 ≤ |x1|},

A2 = {x ∈ T 2 : |x1| ≤ 1/3 ≤ |x2|}.

Clearly ∂FH2

23
= F∂H2

23
, so F |H2

23
is closed. Moreover, FH2

23
is a 4-ball con-

tained in U . The common boundary of X and H2
23 is

(2.4) X ∩H2

23
=

(
A2 × (E ∩A1)

)
∪

(
(E ∩A2) ×A1

)
,

which is a solid torus. The map F takes this onto the 3-ball V1 ∪ V2 ⊂ ∂U where
V1 and V2 are the following closed 3-balls:

V1 = fA2 × f(E ∩A1),

V2 = f(E ∩A2) × fA1.

These have disjoint interior and

V1 ∩ V2 = f(E ∩A2) × f(E ∩A1)

is a disk. The circle s2 has the arc l1
2

= b2 × f(E ∩ A1) in V1 and the circle S4

the arc L2

4 = f(E ∩ A2) × b4 in V2 .
We have

Y = (C2 × C2) ∪ (C1 × C1),

where
Ci = {x ∈ T 2 : 1/3 ≤ |xi|}, i = 1, 2.

The common boundary of Y and H2

23
is the solid torus

(2.5) Y ∩H2

23 =
(
A2 × (C2 ∩A1)

)
∪

(
(C1 ∩ A2) × A1

)
.

The map F takes this onto the 3-ball V3 ∪ V4 ⊂ U , where

V3 = fA2 × f(C2 ∩A1),

V4 = f(C1 ∩ A2) × fA1.
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The intersection is now the disk

V3 ∩ V4 = f(C1 ∩A2) × f(C2 ∩A1).

The boundary ∂H2

23
' S3 is the union of the solid tori given in (2.4) and (2.5)

with a common 2-torus. The map F takes this 2-torus onto the common 2-sphere
of V1 ∪ V2 and V3 ∪ V4 .

We get F | ∂V by replacing in F | ∂X the part F |X ∩H2

23
by F |Y ∩H2

23
.

In particular, F (X ∩H2

23
) = V1 ∪ V2 will be replaced by F (Y ∩H2

23
) = V3 ∪ V4 .

We observe that F |V is a closed map and that F | ∂V is a branched cover onto
a 3-sphere.

To get a picture of the link diagram of the image of the branch set of F | ∂V
we observe the following. The image F (H2

23) gives a cobordism between (V1 ∪
V2, l

1

2
∪ L2

4
) and (V3 ∪ V4, l

3

2
∪ L4

4
). This affects the link diagram for F | ∂X by

changing the crossing between s2 and S4 so that the resulting link L for F | ∂V
has the form given in Figure 2. There we have denoted the modified s2 and S4

by s̃2 and S̃ 4 respectively.
To study G |Y and its extension G |W we write

E′ = {x ∈ T 2 : |x1|, |x2| ≥ 1/3}.

We have
GY = S2 × S2 \ U ′,

where U ′ is the open 4-ball (S2 \ fE′)× (S2 \ fE′) = G(T 4 \Y ). Instead of (2.3)
we have in an analogous way

G∂Y =
(
(S2 \ int fE′) × ∂fE′

)
∪

(
∂fE′ × (S2 \ int fE′)

)
= ∂U ′.

The image of the branch set of G | ∂Y now consists of the circles

s′i = bi × ∂fE′, S′

i = ∂fE′ × bi, i = 2, 3, 4.
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A treatment similar to the one for F shows that the image of the branch set of
G | ∂W is the link L′ given in Figure 3. There s̃′

4
and S̃ ′

4
are obtained from s′

4

and S′
4

when G(Y ∩H2

14
) is replaced by G(X∩H2

14
). We denote the set ∂V = ∂W

by M . The sets V and W induce opposite orientations on M , and F |V and
G |W induce orientations on FM and GM .

PSfrag replacements
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Figure 3. Link L′ .

3. Monodromies and change to simple maps

In order to relate F |M and G |M as explained in the introduction we will in
this section present preparatory material in order to apply Piergallini’s paper [9].

To present the monodromy of F |M we choose q ∈ FM ' S3 for which
F−1(q) = {p1, p2, p3, p4} , where

p1 = (−1/3, 0, 0,−1/3),

p2 = (1/3, 0, 0,−1/3),

p3 = (−1/3, 0, 0, 1/3),

p4 = (1/3, 0, 0, 1/3).

Let αi , βi , i = 1, 2, 4, be paths in FM with base point q shown in Figure 4. We
observe that these paths stay in F (M ∩ ∂X) so that we see the various lifts by
looking at F | ∂X . When we identify pj with j in the presentation of elements
of the symmetric group of degree four, the monodromy map takes these paths as
follows:

αi 7→ (12)(34), βi 7→ (13)(24), i = 1, 2, 4.

Paths αi , βi represent a part of the Wirtinger generators of π1(FM \ L) (see
[14, p. 56]). By studying the behavior at the bridges of L we find that the
other Wirtinger generators give permutations so that permutations stay constant
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for each circle of L . In Figure 4 we have indicated this by placing the corre-
sponding permutations at each subarc and by using abbreviations x = (12)(34),
y = (13)(24).

The monodromy of G |M is similar. This time we take q′ ∈ GM ' S3 for
which G−1(q′) = {p′

1
, p′

2
, p′

3
, p′

4
} , where

p′1 = (−1/3, 1, 1,−1/3),

p′
2

= (1/3, 1, 1,−1/3),

p′3 = (−1/3, 1, 1, 1/3),

p′
4

= (1/3, 1, 1, 1/3),

and paths α′
i , β

′
i , i = 2, 3, 4, in GM with base point q′ shown in Figure 5. Then

we can repeat word by word for the link L′ what was said for the link L above.
Without loss of generality we can therefore assume that F |V and G |W are maps
onto two copies of S2 × S2 \ B4 with a common boundary S3 where L and L′

are identified together with their monodromies. Because of this latter property
the boundary maps F |M and G |M are conjugated by a homeomorphism of M .
We cannot use directly this fact because such a homeomorphism is not necessarily
isotopic to identity. The solution to this problem is given in the next section by
the technique presented in [9, Section 2]. The rest of this section is devoted to
perform moves for the maps that result into so called normalized forms. Note
that the induced orientations on S3 are opposite, hence F |M : M → S3 and
G |M : M → S3 are orientation preserving because M is equipped with opposite
orientations for F |M and G |M .

By isotopy on S3 we then move L together with monodromy labelling to the
link presented in Figure 6. There we have decomposed S3 into two 3-balls B1
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and B2 and a ring R = S2 × [0, 1]. The monodromies stay in our case fixed on
circles in the link during the isotopy. The part in R of the link is called a braid.
We denote F |M and G |M followed by the isotopies described above by ϕ and
ψ respectively.

By slightly perturbing maps ϕ and ψ in small tubes arround the preimages
of the circles of the link in Figure 6 we change ϕ and ψ to simple maps, i.e.,
the inverse of a point consists of at least three points. The monodromy is then
represented by transpositions. Each arc of the link in B1 and B2 is then replaced
by two arcs. In Figure 7 we see the part in B1 of the new link together with
the corresponding transpositions. There are simple rules for the behavior of the
transpositions at each bridge of the braid. To see this we look at a bridge of the
braid with transpositions u, v, w as in Figure 8. Then u and v determine w by
the following rules. If u and v have no common index or if u = v , then w = v .
If u = (ij) and v = (kj) with k 6= i , then w = (ik).

Next we perform isotopies on S3 in order to rearrange the braid into a so
called normalized form. First we move each pair of arcs in B1 and B2 coming
from a single circle in Figure 6 as shown in Figure 9 for the first pair from left
in B1 . Then, by successive use of the isotopies presented in [9, Figure 8, p. 910] in
a way that only three indices are taken at a time, we obtain a new braid diagram
where the parts B1 and B2 are shown in Figure 10. This we call a normalized

form. We call the new ϕ and ψ by ξ and η respectively.
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4. Stable equivalence and its realization

An easy argument shows that the preimages

H1 = ξ−1B1, H2 = ξ−1B2

H ′

1
= η−1B1, H ′

2
= η−1B2

are handlebodies. Furthermore, P = ξ−1R and P ′ = η−1R have product presen-
tations

P = ∂H1 × [0, 1],

P ′ = ∂H ′

1
× [0, 1],

such that ξ−1(S2 × t) and η−1(S2 × t) are identified with ∂H1 × t and ∂H ′
1
× t

respectively. Maps ξ and η define Heegard splittings (H1, P ∪H2) and (H ′
1, P

′∪
H ′

2
) of M with same genus g .
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Next we fix a handlebody Tg ⊂ R3 of genus g with boundary surface Fg and
a standard map s with degree four of Tg onto B1 (with B1 deformed slightly)
as shown in Figure 11. Without loss of generality we may assume that there are
homeomorphisms θi: Hi → Tg and θ′i: H

′
i → Tg , i = 1, 2, such that ξ |H1 = s◦θ1 ,

η |H ′
1

= s ◦ θ′
1
, ξ |H2 = % ◦ s ◦ θ2 , η |H ′

2
= % ◦ s ◦ θ′

2
, where %: B1 → B2 is the

obvious homeomorphism. In [9, Figure 4, p. 906] a map similar to s is shown for
degree three.
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The braid in Figure 10 can be realized by an isotopy on ∂B1 . Such an isotopy
gives a homeomorphism h: Fg → Fg through lifting by s .

Let W be a closed oriented 3-manifold and (W1, W2) a Heegard splitting
of W . Let U ⊂ W2 be a disk such that ∂U consists of two arcs Γ1 ⊂ ∂W1 and
Γ2 ⊂ W2 . We form a new Heegard splitting of W by adding to W1 a closed
tubular neighborhood V of Γ2 so that (W1 ∪ V, W2 \ V ) is a Heegard splitting
of one genus higher. A Heegard splitting (Z1, Z2) is obtained from (W1, W2) by
stabilization if it is obtained by a finite number of steps as above.

Given two Heegard splittings (W1, W2) and (W ′
1
, W ′

2
) of W , then they are

stably equivalent, that is, there exist stabilizations of these to splittings (Z1, Z2)
and (Z ′

1, Z
′
2) of same genus and a homeomorphism ζ: W →W isotopic to identity

such that ζZi = Z ′
i , i = 1, 2. This result is known as the stabilization theorem by

Reidemeister [11] and Singer [16]. See the paper [19] by Waldhausen. Later proofs
are given by Craggs [2] and by Lei [6].
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We apply the stabilization theorem to Heegard splittings (H1, P ∪H2) and
(H ′

1
, P ′ ∪H ′

2
). We may assume that in the first step of the stabilization process

the new map corresponding to s takes the form obtained by adding one (12)-part
to the braid in Figure 10 as shown in Figure 12. For this, see [9, Figure 9] and
[15, 3.1]. We continue similarly. We retain the original notation for the stabilized
case, like Hi , H

′
i , g , s etc. The map h: Fg → Fg is now a lift with respect to

s |Fg: Fg → ∂B1 of some isotopy realizing the braid diagram D for the stabilized
case corresponding to the braid diagram in Figure 10. So we have an isotopy
ζt: M → M , t ∈ [0, 1], with ζ0 = id, ζ1H1 = H ′

1
, ζ1(P ∪ H2) = P ′ ∪ H ′

2
. We

may also assume ζ1H2 = H ′
2 and ζ1P = P ′ .

Next we transfer ζ1 to Tg via our maps θi: Hi → Tg , θ′i: H
′
i → Tg , and set

ζi = θ′i ◦ ζ
1 ◦ θ−1

i , i = 1, 2. Then we have the following diagram:
PSfrag replacements

⊃

⊃

⊂

⊂

TgTg

TgTg

FgFg

FgFg

h

h

ζ1ζ1 ζ2ζ2

This corresponds to the diagram in [9, p. 910] where instead of one map h one
has two different maps. We emphasize here that our map h in both places in the
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above diagram is the result of lifting the same braid diagram D by s .
Our final task is to find moves that correct the difference presented by ho-

meomorphisms ζ1 and ζ2 . The idea is to replace η by another map η̃ through
adding braids D1 and D2 to top and bottom of D that lift by s and % ◦ s to ho-
meomorphisms ζ1 and ζ2 . Suppose we have done this. Let λt

1 and λt
2 , t ∈ [0, 1],

be isotopies on B1 and B2 realizing the braids D1 and D2 on ∂B1 and ∂B2 .
We use the isotopies ζt , λt

1 , and λt
2 to define a level preserving branched covering

σ: M × [0, 1] → S3 × [0, 1] of degree four such that σ0 = ξ , σ1 = η̃ with the
notation σt(x) = pr1

(
σ(x, t)

)
. In particular,

σt | ζtH1 = λt
1 ◦ s ◦ θ1 ◦ (ζt)−1 | ζtH1,

σt | ζtH2 = λt
2
◦ % ◦ s ◦ θ2 ◦ (ζt)−1 | ζtH2,

t ∈ [0, 1]. To obtain the braids D1 and D2 we apply [9, Section 2] in a slightly
modified form.

Following the notation in [9] let M∗(g) be the subgroup of the mapping
class group M(g) of Fg whose elements extend to Tg . The isotopy classes of ζ1
and ζ2 belong to M∗(g). The task is to find moves that result in adding braids
that generate, through lifting by s , homeomorphisms of Fg which give generators
for M∗(g). Generators for M∗(g) are given in [17] and listed in [9, p. 912]. The
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solution for the case of degree three is given in [9, pp. 912–916]. By looking at
the steps given there, we see that we can in our case be limited to the restriction
of s to the right of the dashed lines in Figure 11. The reason is that the braid
generator involving the transposition (14) is not needed and that the parts to the
left of the dashed lines remain unchanged under braids that we need. We also
observe that the action on the 4th sheet is trivial for our needed braids: They
lead to compositions of disk twists in that sheet. According to [9] our conclusion
therefore is that we need to use only isotopy on S3 with transposition labelling
(usually called colored isotopy in the case of degree three) and move I (Figure 13)
according to the terminology in [9], see third paragraph on p. 912 in [9]. Details
how move I is sitting in our map w is presented in [7]. Note that move I is called
move C± in [7] and [10]. Observe that move I is local and is restricted to a part
where the degree is three. This finishes the proof of Theorem 1.
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