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Abstract. Golusin-type inequalities for normalized univalent functions are combined with
elementary monotonicity arguments to give quick and simple proofs for numerous sharp two-point
distortion theorems for conformal maps from the unit disk into (i) the complex plane equipped
with euclidean geometry, (ii) the unit disk equipped with hyperbolic geometry, and (iii) the real
projective plane equipped with elliptic geometry.

1. Introduction

We consider three classes of conformal maps related to euclidean, hyperbolic
and elliptic geometry:

(i) conformal maps from the unit disk D endowed with the hyperbolic distance

dD into the complex plane C equipped with the euclidean distance dC

(euclidean case);
(ii) conformal maps from the unit disk D with the hyperbolic distance dD into

the unit disk D with the hyperbolic distance dD (hyperbolic case);
(iii) conformal maps from the unit disk D with the hyperbolic distance dD into

the real projective plane P with the spherical distance dP (elliptic case).

If f is a conformal map from the metric space (D, dD) into the metric space
(X, dX), where X = C , D or P , then the local length distortion of f at a point
z ∈ D is measured by the quantity

|DXf(z)| := lim
ξ→z

dX

(
f(z), f(ξ)

)

dD(z, ξ)
.

Two-point distortion theorems for conformal maps f : (D, dD) → (X, dX) provide
sharp upper and lower bounds for the global length distortion dX

(
f(z1), f(z2)

)

for two points z1, z2 ∈ D in terms of the local length distortions |DXf(z1)| and
|DXf(z2)| at these two points as well as the hyperbolic distance dD(z1, z2) between
z1 and z2 . Kim and Minda [7] pointed out that the classical growth theorem of
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Koebe for normalized univalent functions1 may be considered as the prototype for
such a two-point distortion theorem in the euclidean case.

Recently, a multitude of two-point distortion theorems for univalent functions
has been obtained using (a) differential geometric methods [1], [7], [9], [10], [11],
(b) the general coefficient theorem [5], and (c) control theory [19], [20]. Here,
we show how Golusin-type inequalities for univalent functions can effectively and
systematically be combined with elementary monotonicity arguments to establish
some new distortion theorems for conformal maps. As a byproduct, we also obtain
quick proofs of distortion estimates due to Jenkins [5], [6] and Ma and Minda [10].

In particular, the results of the present paper for the euclidean case might
be seen as completion of the work of Blatter [1], Kim and Minda [7], Jenkins [5]
and others. We therefore include a brief survey on euclidean two-point distortion
theorems in Section 2. As might be expected, the hyperbolic situation is more
complicated and by now only some partial results have been obtained, see, for
instance, [9], [6], [19], [20]. In this paper we prove some further distortion theorems
for the hyperbolic case. In passing, we also obtain the correct version of a distortion
estimate by Jenkins. Finally, we study the distortion properties of conformal maps
from the unit disk into the real projective plane. These maps were introduced by
Grunsky [3] (under the name elliptically schlicht functions) and seem to be the
natural objects, when dealing with distortion theorems for univalent meromorphic

functions. They embrace the class of spherically convex functions, which has been
considered in [11].

Acknowlegdement. We wish to thank Prof. Stephan Ruscheweyh for his com-
ments on this paper.

2. Results

2.1. The euclidean case. Let f be a conformal map from the unit disk D
into the complex plane C . If we consider f as a map from D equipped with the
hyperbolic distance

dD(z1, z2) = artanh

∣∣∣∣
z1 − z2

1 − z1z2

∣∣∣∣,

induced by the line element

λD(z) |dz| =
|dz|

1 − |z|2

into C equipped with the euclidean distance dC = | · | , then the infinitesimal
length distortion of f at a point z ∈ D is measured by the “hyperbolic-euclidean”
derivative

|DCf(z)| = lim
ξ→z

|f(ξ)− f(z)|

dD(ξ, z)
= (1 − |z|2)|f ′(z)|.

1 Sometimes also called the egg yolk principle, cf. [4, p. 93].
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Two-point distortion theorems give upper and lower bounds for |f(z1) − f(z2)|
in terms of dD(z1, z2) and the infinitesimal length distortion of f at z1 and z2 .
Natural quantities to measure the local length distortion of a conformal map at
the two points z1 and z2 are the p -means

(2.1)
(
|DCf(z1)|

p + |DCf(z2)|
p
)1/p

, p ∈ R,

of the hyperbolic-euclidean derivatives. These p -means had been used in [1], [5],
[7], [10] to prove a number of sharp two-point distortion theorems for conformal
maps.

One of the first two-point distortion theorems for conformal maps is due to
Blatter [1] in 1978. He observed that the classical growth theorem of Koebe for
normalized univalent functions g(z) = z + a2z

2 + a3z
3 + · · · ,

(2.2) |g(z)| ≥
|z|

(1 + |z|)2
, z ∈ D,

is a necessary, but not sufficient criterion for the univalence of g . Blatter there-
fore asked for distortion theorems which are also sufficient for univalence. Using
an ingenious mixture of differential geometry, comparison theorems for solutions
of linear differential equations and coefficient estimates for normalized univalent
functions, he proved the following beautiful result:

If f : D → C is a conformal map and z1 , z2 ∈ D , then

(2.3) |f(z1)− f(z2)| ≥
(
|DCf(z1)|

p + |DCf(z2)|
p
)1/p sinh

(
2 dD(z1, z2)

)

2
(
2 cosh

(
2p dD(z1, z2)

))1/p

for p = 2. Moreover, equality holds in (2.3) for distinct points z1 and z2 if and
only if f maps the unit disk onto the complex plane slit along a ray on the line
through the points f(z1) and f(z2).

Blatter noticed that (2.3) is in fact not only necessary but also sufficient
for a nonconstant analytic function f : D → C to be univalent. Later Kim and
Minda [7] extended Blatter’s work and showed that (2.3) continues to hold for
any p ≥ 3

2
. They remarked (but did not prove) that the right side of (2.3) is a

decreasing function of p and also observed that the limiting case p = ∞ ,

(2.4) |f(z1) − f(z2)| ≥ max
{
|DCf(z1)|, |DCf(z2)|

} sinh
(
2 dD(z1, z2)

)

2 exp
(
2 dD(z1, z2)

) ,

is simply an invariant form of the Koebe estimate (2.2). In contrast to (2.2),
inequality (2.4) is also sufficient for nonconstant analytic functions f : D → C
to be univalent. Thus (2.4) provides an elementary answer to Blatter’s question.



114 Daniela Kraus and Oliver Roth

Using the general coefficient theorem, Jenkins [5] (see [19] for a different approach)
proved the decisive result that (2.3) is valid for any p ≥ 1, but not for 0 < p < 1.
Again, equality occurs in (2.3) for p ≥ 1 and for distinct points z1 and z2 if and
only if f maps D onto C slit along a ray through f(z1) and f(z2).

Our first purpose is to point out the following analogous estimate to (2.3) for
negative parameters p .

Theorem 2.1. If f is a conformal map on D , then for any z1, z2 ∈ D and

any p ≤ 0 ,

(2.5) |f(z1) − f(z2)| ≥
(
|DCf(z1)|

p + |DCf(z2)|
p
)1/p tanh

(
dD(z1, z2)

)

21/p
.

Equality holds for two distinct points z1 and z2 if and only if f maps D onto C
slit along one or two rays on the line L which is perpendicular to the line joining

f(z1) and f(z2) such that f(z1) and f(z2) are symmetric with respect to L .

Conversely, if f : D → C is a nonconstant analytic function satisfying (2.5) for

some p ≤ 0 and all z1, z2 ∈ D , then f is univalent.

The estimate (2.5) is actually an invariant form of a special case of the well-
known Goluzin inequalities [2] for normalized univalent functions. In particular,
Theorem 2.1 provides a necessary and sufficient condition for a nonconstant ana-
lytic function f : D → C to be univalent. This gives another elementary answer
to Blatter’s question.

Remarks 2.2. Both inequalities, (2.5) for p ≤ 0 and (2.3) for p ≥ 1 are
sharp. Moreover, they characterize univalent functions up to constant functions.
In some cases (e.g. if f(z) = z/(1− z)2 and z2 = z1 /∈ R), (2.5) provides a better
lower bound for |f(z1) − f(z2)| , whereas in other cases (e.g. if f(z) = z/(1 − z)2

and z1 and z2 are real) (2.3) gives a better estimate. We further note that the
right side of (2.5) is an increasing function of p . Thus the limiting case p → 0,

|f(z1) − f(z2)| ≥
√

|DCf(z1)| |DCf(z2)| tanh
(
dD(z1, z2)

)
,

is the sharpest inequality contained in the one-parameter family (2.5). It is also
noteworthy to mention the limiting case p → −∞ of (2.5),

(2.6) |f(z1) − f(z2)| ≥ min
{
|DCf(z1)|, |DCf(z2)|

}
tanh

(
dD(z1, z2)

)
,

which may be considered as a counterpart of the invariant form (2.4) of Koebe’s
growth theorem. Finally, the sharp inequality (2.6) may be compared with the
following invariant version of the Koebe one-quarter theorem

|f(z1) − f(z2)| ≥
1
4

max
{
|DCf(z1)|, |DCf(z2)|

}
tanh(dD(z1, z2)),

(see [17, Corollary 1.5]), which is, however, never sharp for z1 and z2 inside D .

Our next result focuses on an upper bound for |f(z1) − f(z2)| .
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Theorem 2.3. If f is a conformal map on D , then for any z1, z2 ∈ D and

any p ≤ 0 ,

(2.7) |f(z1)− f(z2)| ≤
(
|DCf(z1)|

p + |DCf(z2)|
p
)1/p sinh

(
2 dD(z1, z2)

)

2
[
2 cosh

(
2p dD(z1, z2)

)]1/p
.

If p < 0 , then equality holds for two distinct points z1 and z2 if and only if f maps

D onto the complex plane slit along a ray on the line through f(z1) and f(z2) .

Remarks 2.4.
(a) Estimate (2.7) for p = 0 was found by Jenkins [5] (see [19] for a different

proof). In fact, employing the general coefficient theorem, Jenkins even proved
that every conformal map f on D satisfies the inequality

(2.8) |f(z1) − f(z2)| ≤
(
|DCf(z1)|

p + |DCf(z2)|
p
)1/p sinh

(
2 dD(z1, z2)

)

21+1/p

for any p > 0. Equality occurs in (2.8) for distinct points z1 and z2 if and
only if f maps D onto C slit symmetrically through the point at infinity on
the line determined by f(z1) and f(z2).

(b) Note that for p = 0, (2.7) as well as (2.8) take the form

(2.9) |f(z1) − f(z2)| ≤
√

|DCf(z1)| |DCf(z2)|
sinh

(
2 dD(z1, z2)

)

2
.

Using Blatter’s method, Ma and Minda [10] proved (2.7) for p ≤ −1. They
also observed that the right side of (2.7) is a decreasing function of p , but did
not offer a proof. In Section 4 we shall give a quick proof of this monotonicity
for all p ≤ 0, which implies that (2.7) is valid for any p ≤ 0 and not only for
p ≤ −1. Moreover, we show that Jenkins’s result (2.8) can be deduced from
the same inequality of Golusin which we also use to prove Theorem 2.1.

(c) Again, both estimates, (2.7) and (2.8) are sharp. In some cases (e.g. if f(z) =
z/(1 − z)2 and z1 and z2 are real), (2.7) gives a better bound, whereas in
other cases (e.g. if f(z) = z/(1 + z2) and z1 and z2 are real), (2.8) yields a
better estimate.

(d) Theorem 2.3 and estimate (2.8) for p > 0 give the sharp lower bound for
the p -means (2.1) for every p ∈ R . On the other hand, Theorem 2.1 in
conjunction with (2.3) for p ≥ 1 provide the sharp upper bound for the p -
means (2.1) for any p ∈ R \ (0, 1). For 0 < p < 1 the problem of finding
the maximum of the functional (2.1) was solved by Jenkins [5]. In this case
the extremal functions are no longer rational functions and cannot even be
given in closed form. They map D onto the complex plane slit along a forked
slit depending on the value of p . Consequently, the problem of maximizing
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and minimizing the p -means (2.1) for conformal maps f : D → C is now
completely understood for any p ∈ R .

(e) It is also of interest that the proofs of the distortion estimates (2.5) and (2.7)
for p < 0 and (2.8) for p > 0 given in the present paper are completely
elementary. In particular, a simple proof of Jenkins’s inequality (2.8) is ob-
tained without making use of the general coefficient theorem. In contrast, the
distortion estimate (2.3) for p ∈ [1,∞) seems to lie deeper.

2.2. The hyperbolic case. It is not unexpected that the situation for
bounded univalent functions is more involved. If f : D → D is a (bounded) con-
formal map, then it is natural to consider f as a map f : (D, dD) → (D, dD).
Now, the local length distortion of f at a point z ∈ D is given by

|DDf(z)| = lim
ξ→z

dD

(
f(ξ), f(z)

)

dD(ξ, z)
=

1 − |z|2

1 − |f(z)|2
|f ′(z)|,

which might be called the “hyperbolic-hyperbolic” derivative of f at z ∈ D . Two-
point distortion theorems for bounded univalent functions f : D → D aim at giving
upper and lower bounds for the global length distortion of f : (D, dD) → (D, dD)
at two given points z1 and z2 in terms of the local length distortion at these
points.

There are two more or less natural quantities to measure the local length
distortion of a conformal map f : (D, dD) → (D, dD) at two points z1 and z2 .
Ma and Minda [9] (see also [19]) employed the expression

(2.10)

((
|DDf(z1)|

1 − |DDf(z1)|

)p

+

(
|DDf(z2)|

1 − |DDf(z2)|

)p)1/p

, p ∈ R,

whereas Jenkins [6] used the quantity

(2.11)
(
|DDf(z1)|

p + |DDf(z2)|
p
)1/p

to state sharp upper and lower bounds for the local length distortion of f . We
would like to emphasize that in some cases (2.10) gives better results than (2.11),
whereas in other cases (2.11) is more advantageous, cf. [20] for a discussion of this
matter. Here we focus on quantity (2.11) and establish the following sharp upper
and lower bounds for the local length distortion of f in terms of (2.11) for negative
parameters p .

Theorem 2.5. If f : D → D is univalent, then for any z1, z2 ∈ D and any

p ≤ 0

(2.12) tanh
(
dD

(
f(z1), f(z2)

))
≥

(
|DDf(z1)|

p+|DDf(z2)|
p
)1/p tanh

(
dD(z1, z2)

)

21/p
.
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Equality holds for two distinct points z1 and z2 if and only if f maps D onto D
slit along two hyperbolic rays on the hyperbolic geodesic γ which is perpendicular

to the hyperbolic geodesic joining f(z1) and f(z2) and such that f(z1) and f(z2)
are symmetric with respect to γ . Conversely, if f : D → D is a nonconstant

analytic function satisfying (2.12), then f is univalent.

Theorem 2.6. If f : D → D is univalent, then for any two distinct points

z1, z2 ∈ D and any p ≤ 0

(2.13)
(
|DDf(z1)|

p + |DDf(z2)|
p
)1/p

≥
(
2 cosh

(
2p(%′ − %)

))1/p sinh(2%′)

sinh(2%)
,

where % is the hyperbolic distance between z1 and z2 and %′ is the hyperbolic

distance between f(z1) and f(z2) . For p < 0 equality holds for two distinct

points z1 and z2 if and only if f maps D onto D slit along a hyperbolic ray on

the hyperbolic geodesic through f(z1) and f(z2) .

We notice that Jenkins [6] gave an estimate of the form

(
|DDf(z1)|

p + |DDf(z2)|
p
)1/p

≥
e2%′

+ 1

e2% + 1

(
e%′

+ 1

e% + 1

)3(
cosh(%′/2)

cosh(%/2)

)4

for any conformal map f : D → D and any p > 0. Unfortunately, this formula is
not quite correct. It has to be replaced by
(2.14)

sinh
(
2 dD(f(z1), f(z2)

)
≤

(
|DDf(z1)|

p + |DDf(z2)|
p
)1/p sinh

(
2 dD(z1, z2)

)

21/p
.

Equality occurs for fixed p > 0 if and only if f maps D onto D slit along
symmetric rays on the hyperbolic geodesic through f(z1) and f(z2).

Our proof of Theorem 2.6, Theorem 2.5 and inequality (2.14) given in Sec-
tion 4.2 below is similar to the euclidean case, but instead of Goulzin’s inequalities
we employ Nehari’s inequalities [14] for bounded univalent functions. We note that
proving estimates analogous to (2.12) and (2.13), but the p -means (2.11) replaced
by (2.10), requires a completely different argument. This is discussed in [20].

2.3. The elliptic case. We finally consider univalent meromorphic functions
in the unit disk, i.e., conformal maps from D into the extended complex plane Ĉ .
Ma and Minda [11] observed that two-point distortion theorems for the class of
all univalent meromorphic functions cannot exist. They studied the subclass of
spherically convex functions and obtained sharp lower bounds for the global length
distortion of these maps.

A wider class which contains all spherically convex functions is the set of
conformal maps from the unit disk into the real projective plane P . As usual
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we equip P with the conformal metric |dz|/(1 + |z|2), which induces on P the
spherical distance

dP(z1, z2) = arctan

∣∣∣∣
z1 − z2

1 + z1z2

∣∣∣∣.

If f : D → P is a conformal2 map, then the limit

|DPf(z)| := lim
ξ→z

dP

(
f(ξ), f(z)

)

dD(ξ, z)

exists and measures the local length distortion of f : (D, dD) → (P, dP). We call
|DPf(z)| the hyperbolic-spherical derivative of f at the point z ∈ D .

The following two two-point distortion theorems for conformal maps f : D →
P complement the euclidean and hyperbolic case discussed above in a natural way.
Recall that for two points w1, w2 ∈ P there are two perpendicular elliptic bisectors
of w1 and w2 , i.e., two elliptic geodesics γ1 and γ2 which are perpendicular to
the elliptic geodesic joining w1 and w2 such that w1 and w2 are symmetric with
respect to both γ1 and γ2 .

Theorem 2.7. If f : D → P is a conformal map, and z1 , z2 are two distinct

points in D , then for any p ≤ 0

(2.15) sin
(
2dP

(
f(z1), f(z2)

))
≥ 2

(
|DPf(z1)|

p+|DPf(z2)|
p
)1/p tanh

(
dD(z1, z2)

)

21/p
.

If γ1 and γ2 denote the two perpendicular elliptic bisectors of f(z1) and f(z2) ,
then equality holds in (2.15) precisely when f maps D onto P slit along γ1 and

slit along an elliptic ray γ on γ2 such that γ ∩ γ1 6= ∅ . Conversely, if f : D → Ĉ
is a nonconstant meromorphic function satisfying (2.15), then f : D → P is a

conformal map.

Theorem 2.8. If f : D → P is a conformal map, and z1 , z2 are two distinct

points in D , then for any p > 0

(2.16) tan
(
dP(f(z1), f(z2)

)
≤

(
|DPf(z1)|

p + |DPf(z2)|
p
)1/p sinh

(
2 dD(z1, z2)

)

21/p
.

If γ1 is one of the perpendicular elliptic bisectors of f(z1) and f(z2) , then equality

holds if and only if f maps D onto P slit along γ1 and a ray γ on the elliptic

geodesic through f(z1) and f(z2) such that γ∩γ1 6= ∅ and f(z1) and f(z2) have

the same spherical distance to γ .

2 i.e. f : D → P is angle-preserving and injective. P is not orientable.
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We deduce these two results from inequalities for elliptically schlicht functions
due to Kühnau [8], see Section 5 below. We wish to emphasize that Kühnau [8]
considered elliptically schlicht functions as conformal maps from the projective
plane (P, dP) into the projective plane (P, dP), whereas we consider them as
conformal maps from (D, dD) into (P, dP).

Problem 2.9. Theorem 2.7 gives the sharp upper bound for the p -means

(
|DPf(z1)|

p + |DPf(z2)|
p
)1/p

for any p ≤ 0 , and Theorem 2.8 its sharp lower bound for any p > 0 . What

about the sharp upper bound for p > 0 and the sharp lower bound for p < 0?
In particular, is there an analog of the Jenkins–Kim-Minda–Blatter distortion

estimate (2.3) for conformal maps f : D → P?

3. Linear invariance

We first recall that the three distances dC , dD , dP are linearly invariant in
the following sense. The euclidean distance dC = | · | is invariant under euclidean
motions S , i.e., |S(z1)−S(z2)| = |z1−z2| , the hyperbolic distance dD is invariant
under conformal automorphisms T of D , that is, dD

(
T (z1), T (z2)

)
= dD(z1, z2),

and the spherical distance dP is invariant under rotations S of the Riemann sphere
Ĉ , i.e., dP

(
S(z1), S(z2)

)
= dP(z1, z2).

Also, the differential operators |DCf | , |DDf | and |DPf | are linearly invari-
ant. If f : D → C is an analytic function, then

(3.1) |DC(S ◦ f ◦ T )| = |DCf | ◦ T

for every euclidean motion S and every conformal automorphism T of D . It
follows that if f is replaced in one of the distortion inequalities (2.3), (2.5), (2.7)
or (2.8) by f̃ = S ◦ f ◦ T , where S is a conformal automorphism of C and T is a
conformal automorphism of D , then the new inequality has exactly the same form,
except that f is replaced by f̃ , z1 by T−1(z1) and z2 by T−1(z2). Similarly, if
f : D → D is a (bounded) analytic function, then |DDf | is invariant under pre-
and postcomposition with conformal automorphisms S , T of D

(3.2) |DD(S ◦ f ◦ T )| = |DDf | ◦ T.

It therefore suffices to verify Theorem 2.5 and Theorem 2.6 for appropriately
normalized conformal maps f : D → D . Finally, if f : D → P is a conformal
map, then the differential operator |DPf | is linearly invariant in the sense that
|DP(S ◦ f ◦ T )| = |DPf | ◦ T for all conformal automorphisms T of D and any
rotation S of P .

Remark 3.1. The differential invariant |DCf | was introduced by Peschl [15].
It was later generalized to arbitrary conformal metrics by Minda [13].
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4. Proofs (euclidean and hyperbolic case)

4.1. Proof of Theorem 2.1, Theorem 2.3 and (2.8). As we have
already indicated in the introduction, Theorem 2.1 is a consequence of a well-
known inequality of Golusin for normalized univalent functions. In order to state
Golusin’s inequality we need to introduce some notation.

Let Σ denote the class of functions

G(z) = z + b0 +
b1

z
+ · · ·

analytic and univalent in ∆ := {z : |z| > 1} . Also, let G ∈ Σ, let ξ1, . . . , ξn be
distinct points in ∆ and let (λ1, . . . , λn) ∈ Cn . Then (see, e.g., [2, Chapter IV,
Section 3, Theorem 1])

(4.1) Re

( n∑

j,k=1

λjλk log
G(ξj) − G(ξk)

ξj − ξk

)
≤ −

n∑

j,k=1

λjλk log

(
1 −

1

ξjξk

)
.

Equality is only possible if G maps ∆ onto Ĉ slit along a system of arcs w = w(t)
satisfying

Re

( n∑

k=1

λk log
(
w − G(ξk)

))
= const.

Next, let S be the set of functions

g(z) = z + a2z
2 + a3z

3 + · · ·

analytic and univalent in D . For each g ∈ S the function G(z) = g(z−1)−1

belongs to Σ and satisfies G(z) 6= 0. Applying Golusin’s inequality (4.1) for
n = 2, λ1 = 1, λ2 = −1 and fixed distinct points ξ1 = 1/z1 , ξ2 = 1/z2 ∈ ∆ to
G(z) = g(z−1)−1 , we obtain

(4.2) |g(z1) − g(z2)|
2 ≥

∣∣∣∣
z1 − z2

1 − z1z2

∣∣∣∣
2

(1 − |z1|
2)|g′(z1)|(1 − |z2|

2)|g′(z2)|

with equality possible only if G maps ∆ onto Ĉ slit along a system of arcs
w = w(t) satisfying ∣∣∣∣

w − G(ξ1)

w − G(ξ2)

∣∣∣∣ = const,

i.e., only if g maps D onto C slit along one or two rays on the line L which
is perpendicular to the line joining g(z1) and g(z2) such that g(z1) and g(z2)
are symmetric with respect to L . Note that (4.2) is already a linearly invari-
ant estimate; it remains unchanged if we replace g by S ◦ g with a conformal
automorphism S of C .
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Proof of Theorem 2.1. We first prove the if-part of the equality statement.
If f maps D onto C slit along one or two rays on a line which is perpendicular to
the line joining f(z1) and f(z2) and such that f(z1) and f(z2) are symmetric with
respect to this line, then it is easy to see that f = S ◦kc ◦T for some −2 ≤ c ≤ 2,
where S is a conformal automorphism of C , T is a conformal automorphism of
D such that T (z1) = T (z2) and kc(z) = z/(1 + cz + z2). We now employ the
following simple, but crucial property of the extremal function kc :

|DCkc(z)| = |DCkc(z̄)| =
|kc(z) − kc(z̄)|

tanh dD(z, z̄)
.

This shows that in (2.5) equality occurs for f = kc , z1 = z and z2 = z̄ . In view
of the linear invariance (3.1) of the differential operator |DC| , we have proved the
if-part of the equality statement of Theorem 2.1. Next, we turn to the proof of
the distortion estimate (2.5). For that fix two distinct points z1 and z2 in D .
Postcomposing f with an appropriate conformal automorphism S of C we may
assume g = S ◦ f ∈ S . Hence, (4.2) implies

|f(z1) − f(z2)| ≥ tanh
(
dD(z1, z2)

)√
|DCf(z1)| |DCf(z2)| .

Since (
|DCf(z1)|

p + |DCf(z2)|
p

2

)1/p

is an increasing function of p ≤ 0, we deduce that (2.5) holds for any p ≤ 0 with
equality only if f maps D onto C slit along one or two rays on the line L which
is perpendicular to the line joining f(z1) and f(z2) such that f(z1) and f(z2)
are symmetric with respect to L . The fact that condition (2.5) is sufficient for
univalence can be established exactly as in [7, pp. 144–145].

We now move on to the proof of Theorem 2.3. If we choose in Golusin’s
inequality (4.1) n = 2, λ1 = i , λ2 = −i , ξ1 = 1/z1 and ξ2 = 1/z2 in ∆, and
G(z) = g(z−1)−1 , where g ∈ S , then we get

(4.3) |g(z1) − g(z2)|
2 ≤

|g′(z1)| |g
′(z2)|

(1 − |z1|2)(1 − |z2|2)
|1 − z1z2|

2|z1 − z2|
2

with equality possible only if G maps ∆ onto Ĉ slit along a system of arcs
satisfying

arg

(
w − G(ξ1)

w − G(ξ2)

)
= const.

In other words, equality in (4.3) is possible only if g maps D onto C slit along
one or two rays on the line through g(z1) and g(z2).
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Proof of Theorem 2.3. Let z1 and z2 be two distinct points in D and let
f : D → C be a conformal map. Then g = S◦f ∈ S for an appropriate conformal
automorphism of C and (4.3) applied to g yields

|f(z1) − f(z2)| ≤
1
2

√
|DCf(z1)| |DCf(z2)| sinh

(
2 dD(z1, z2)

)
.

Equality can hold only if f maps D onto C slit along one or two rays on the line
through f(z1) and f(z2). We shall show momentarily (in Lemma 4.1 below) that

(
|DCf(z1)|

p + |DCf(z2)|
p
)1/p

(
2 cosh

(
2p dD(z1, z2)

))1/p

is a decreasing function for p ≤ 0. Consequently,

|f(z1) − f(z2)| ≤
(
|DCf(z1)|

p + |DCf(z2)|
p
)1/p sinh

(
2dD(z1, z2)

)

2
(
2 cosh

(
2p dD(z1, z2)

))1/p

for every p ≤ 0, which proves (2.7). Moreover, equality for fixed p < 0 is only
possible if f maps D onto C slit along one or two rays on the line through
f(z1) and f(z2). Let f be such a conformal map. Replacing f by S ◦ f ◦ T
with appropriate conformal automorphisms S of C and T of D , we may assume
z2 = 0, z1 = r ∈ (0, 1) and f(z) = kc(z) for some c ∈ [−2, 2]. It is easy to check
that for fixed r ∈ (0, 1) and fixed p < 0 the function

c 7→
|kc(r)|(

|DCkc(r)|
p

+ |DCkc(0)|p
)1/p

takes on its maximal value in the interval [−2, 2] only for c = −2 and c = 2. Hence
f(z) = z/(1 − z)2 or f(z) = z/(1 + z)2 . Conversely, if f has this form, then it is
straightforward to verify that equality holds in (2.7) for all points z1, z2 ∈ (−1, 1).
Therefore, equality holds in (2.7) for p < 0 and two distinct points z1 and z2 if
and only if f maps D onto C slit along a single ray on the line determined by
f(z1) and f(z2). In order to complete the proof of Theorem 2.3, we are left to
establish the following lemma.

Lemma 4.1. If f is a conformal map of D , then for any z1, z2 ∈ D , the

expression (
|DCf(z1)|

p
+ |DCf(z2)|

p)1/p

(
2 cosh

(
2p dD(z1, z2)

))1/p

is a decreasing function for p ≤ 0 .
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Proof. If we set x = −p , a1 = e2 dD(z1,z2) , a2 = e−2 dD(z1,z2) , b1 =
|DCf(z1)|

−1 and b2 = |DCf(z2)|
−1 , then we may assume b1 ≥ b2 and have

to prove that (
ax
1 + ax

2

bx
1 + bx

2

)1/x

is an increasing function for x ≥ 0. By a result of Marshall, Olkin and Proschan
[12] this is guaranteed if b1/a1 ≤ b2/a2 or

|DCf(z2)| ≤ e4 dD(z1,z2)|DCf(z1)|.

However, the latter inequality is just an invariant form of the Koebe distortion
theorem (see [17, p. 9]),

(4.4) |DCf(z)| = (1 − |z|2)|f ′(z)| ≤

(
1 + |z|

1 − |z|

)2

|f ′(0)| = e4 dD(0,z)|DCf(0)|

as it is seen by precomposing f with an appropriate conformal automorphism
of D .

Remarks 4.2.
(a) The Koebe distortion theorem (4.4) can be easily deduced from (2.7) for

p = −∞ , i.e., from

(4.5)
|f(z1) − f(z2)| ≤

1
2 exp

(
2 dD(z1, z2)

)
sinh

(
2 dD(z1, z2)

)

× min
{
|DCf(z1)|, |DCf(z2)|

}
.

In fact, applying (4.5) to f(z) = z +a2z
2 + · · · with z1 = 0 and z2 = z yields

|f(z)| ≤
|z|

(1 − |z|)2
min{1, |DCf(z)|} ≤

|z|

(1 − |z|)2
.

This clearly implies |a2| ≤ 2, which in turn leads to (4.4) in the usual way (see,
for instance, [17, pp. 8–9]). Thus the one-parameter family (2.7) of distortion
estimates can be deduced from the strongest inequality (the case p = 0) and
the weakest inequality (the case p = −∞) using a general monotonicity result
for ratios of means.

(b) The argument employed in the above proof of Lemma 4.1 can also be used to
show that the right side of the Blatter–Kim-Minda–Jenkins inequality (2.3)
is a decreasing function of p on [1, +∞). To see this we recall that the
case p = ∞ in (2.3) is simply the invariant version of the Koebe growth
theorem (2.2). Now, the Koebe growth theorem is equivalent to the Koebe
one-quarter theorem, which easily gives (4.4). The estimate (4.4) and the
result of Marshall, Olkin and Proschan [12] now imply that the right side in
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(2.3) is a decreasing function for p ≥ 1. Thus, the one-parameter family (2.3)
can easily be deduced from the special cases p = 1 and p = ∞ .

(c) Jenkins’s one-parameter family of inequalities (2.8) can also be verified quickly
in the following way. Note, the estimate (2.8) for p > 0 follows immediately
from (2.9) by monotonicity. Furher, we already know (see the proof of Theo-
rem 2.3) that equality in (2.8) for two distinct points z1 , z2 and p = 0 (and
therefore also for p > 0) is only possible if f maps D onto C slit along one
or two rays on the line through f(z1) and f(z2). Let f be such a conformal
map. We may assume z1 = −r and z2 = r for some r ∈ (0, 1) and f ∈ S

with f(r), f(−r) real. Hence f(z) = kc(z) for some c ∈ [−2, 2]. Now, for
fixed p > 0 and r ∈ (0, 1), the function

c 7→
|kc(r) − kc(−r)|

(
|DCkc(r)|

p
+ |DCkc(−r)|p

)1/p

attains its maximal value only for c = 0, as one can quickly verify. Therefore,
f(z) = z/(1 + z2). On the other hand, it is easily seen that equality holds in
(2.8) for f(z) = z/(1 + z2) and z1 = −z2 ∈ (0, 1). In other words, equality
holds in (2.8) for p > 0 and two distinct points z1 and z2 if and only if f
maps D onto C slit symmetrically through the point at infinity on the line
determined by f(z1) and f(z2).

4.2. Proofs of Theorem 2.5 and Theorem 2.6. We first recall the
Nehari inequalities for bounded univalent functions. Let f : D → D be a univalent
function, z1, . . . , zn points in D and λ1, . . . , λn complex numbers such that λ1 +
. . . + λn = 0. Then (see [14])

(4.6) Re

( n∑

j,k=1

λjλk log
f(zk) − f(zj)

zk − zj

)
≤ −

n∑

j,k=1

λjλk log

(
1 − f(zj)f(zk)

1 − zjzk

)
,

with equality possible only if f maps D onto D slit along a system of arcs
w = w(t) satisfying

Re

( n∑

k=1

λk log
(
w − f(zk)

)
− λk log

(
1 − f(zk)w

))
= 0.

Proof of Theorem 2.5. We begin with the if-part of the equality statement.
Note that for fixed µ ∈ (0, 1] and fixed c ∈ [−2, 2] the equation

(4.7) kc

(
Pµ,c(z)

)
= µkc(z), z ∈ D,

defines a conformal map Pµ,c: D → D , which maps D onto D slit along two
(possibly degenerate) segments (−1, lµ,c] and [rµ,c, 1) on the real axis. By con-
struction, the points lµ,c ∈ [−1, 0) and rµ,c ∈ (0, 1] can be arbitrarily prescribed
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by varying µ and c . The hyperbolic derivative of Pµ,c is given by

(4.8) |DDPµ,c(z)| = µ
1 − |z|2

1 − |Pµ,c(z)|2
|k′

c(z)|∣∣k′

c

(
Pµ,c(z)

)∣∣ .

Subtracting (4.7) for z̄ from (4.7) for z , using Pµ,c(z̄) = Pµ,c(z) and

|kc(z) − kc(z̄)| = (1 − |z|2)|k′

c(z)|
|z − z̄|

|1 − z2|
,

yields

|1 − z2|

|1 − Pµ,c(z)2|

∣∣∣∣
Pµ,c(z) − Pµ,c(z)

z − z̄

∣∣∣∣ = µ
1 − |z|2

1 − |Pµ,c(z)|2
|k′

c(z)|∣∣k′

c

(
Pµ,c(z)

)∣∣ .

Combining this and (4.8) gives

|DDPµ,c(z)| = |DDPµ,c(z̄)|

=

∣∣∣∣
Pµ,c(z) − Pµ,c(z)

z − z̄

∣∣∣∣
|1 − z2|

|1 − Pµ,c(z)2|
=

tanh
(
dD

(
Pµ,c(z), Pµ,c(z)

))

tanh
(
dD(z, z̄)

) .(4.9)

Consequently, equality holds in (2.12) for f = Pµ,c and z1 = z2 . Now, if f maps
D conformally onto D slit along two hyperbolic rays on the hyperbolic geodesic
γ which is perpendicular to the hyperbolic geodesic joining f(z1) and f(z2) and
such that f(z1) and f(z2) are symmetric with respect to γ , then it is easy to
see that f = S ◦ Pµ,c ◦ T for some µ ∈ (0, 1] and c ∈ [−2, 2], where S and T

are conformal automorphisms of D such that T (z1) = T (z2). This proves the
if-part of the equality statement of Theorem 2.5. The distortion estimate (2.12)
for p = 0 follows immediately from Nehari’s inequality (4.6) for n = 2, λ1 = 1
and λ2 = −1, which is equivalent to

∣∣∣∣
f(z1) − f(z2)

1 − f(z1)f(z2)

∣∣∣∣
2

≥
1 − |z1|

2

1 − |f(z1)|2
|f ′(z1)|

1 − |z2|
2

1 − |f(z2)|2
|f ′(z2)|

∣∣∣∣
z1 − z2

1 − z1z2

∣∣∣∣
2

,

that is

tanh
(
dD

(
f(z1), f(z2)

))
≥

√
|DDf(z1)| |DDf(z2)| tanh

(
dD(z1, z2)

)
.

Equality is only possible if f maps onto D slit along two hyperbolic rays on the
hyperbolic geodesic γ which is perpendicular to the hyperbolic geodesic joining
f(z1) and f(z2) and such that f(z1) and f(z2) are symmetric with respect to γ .
Since (|DDf(z1)|

p + |DDf(z2)|
p)1/p/21/p is an increasing function of p ≤ 0, we

deduce the only-if part of the equality statement and that (2.12) holds for every
p ≤ 0. Conversely, if f : D → D is a nonconstant analytic function satisfying
(2.12) for some p ≤ 0, then the Kim–Minda argument [7, pp. 144–145] shows that
f is univalent.
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Proof of Theorem 2.6. By applying (4.6) with n = 2, λ1 = i and λ2 = −i ,
we get

|1 − f(z1)f(z2)|
2|f(z1) − f(z2)|

2

(
|1 − |f(z1)|2

)(
1 − |f(z2)|2

) ≤ |f ′(z1)| |f
′(z2)|

|1 − z1z2|
2|z1 − z2|

2

(|1 − |z1|2)(1 − |z2|2)
,

or

(4.10) sinh(2%′) ≤
√

|DDf(z1)| |DDf(z2)| sinh(2%),

with %′ = dD

(
f(z1), f(z2)

)
and % = dD(z1, z2). Equality is possible only if f

maps D onto D slit along one or two rays on the hyperbolic geodesic through
f(z1) and f(z2). We next observe that

(
|DDf(z1)|

p + |DDf(z2)|
p

2 cosh
(
2p(%′ − %)

)
)1/p

is a decreasing function for p ≤ 0. This follows analogously as in the euclidean
case (Lemma 4.1) using again the monotonicity result [12]. Instead of the Koebe
estimate (4.4) we now have to use its analog for bounded univalent functions,
which is

(4.11) |DDf(z2)| ≤ |DDf(z1)|e
−4%′

e4%.

Consequently, (2.13) holds for any p ≤ 0 and equality is only possible if f maps
D onto D slit along one or two rays on the hyperbolic geodesic through f(z1)
and f(z2). If f is such a conformal map, then replacing f by S ◦ f ◦ T with
conformal automorphisms S, T of D , we may assume z2 = 0, z1 = r ∈ (0, 1) and
f(z) = Pµ,c(z) for some c ∈ [−2, 2]. As in the euclidean case it is a straightforward
calculation to check that for p < 0 the expression

c 7→

(
|DDPµ,c(z2)|

p + |DDPµ,c(z1)|
p

2 cosh 2p
(
dD

(
Pµ,c(z2), Pµ,c(z1)

))
)1/p

1

sinh
(
dD

(
Pµ,c(z2), Pµ,c(z1)

))

attains its minimal value in the interval [−2, 2] only for c = 2 or c = −2. Thus
f(z) = Pµ,−2(z) or f(z) = Pµ,2(z), so f maps D onto D slit along a single ray
on the real axis. Conversely, if f(z) = Pµ,−2(z) or f(z) = Pµ,2(z) then equality
holds in (2.12) for z2 = 0 and z1 ∈ (0, 1). This proves the equality statement of
Theorem 2.6.

Remarks 4.3.
(a) A quick proof of (4.11) runs as follows. We may assume z1 = 0, z2 = z ,

f(0) = 0 and f(z) > 0. Then

g(z) =
1

f ′(0)

f(z)
(
1 − f(z)

)2
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belongs to S , so |g′(z)| ≤ (1 + |z|)/(1 − |z|)3 , which is equivalent to

|f ′(z)| ≤ |f ′(0)|
1 + |z|

(1 − |z|)3

∣∣∣∣

(
1 − f(z)

)3

1 + f(z)

∣∣∣∣ = |f ′(0)|
1 + |z|

(1− |z|)3

(
1 − |f(z)|

)3

1 + |f(z)|
.

Thus

|DDf(z)| = (1 − |z|2)
|f ′(z)|

1 − |f(z)|2
≤ |f ′(0)|

(
1 − |f(z)|

1 + |f(z)|

)2(
1 + |z|

1 − |z|

)2

= |DDf(0)|e−4 dD(f(z),f(0))e4 dD(z,0),

which proves (4.11).
(b) The distortion estimate (2.14) for p > 0 follows immediately from (4.10) by

monotonicity. The discussion of the case of equality is similar to the euclidean
case (see Remark 4.2(c)) and will be omitted.

(c) As in the euclidean case the one-parameter family (2.13) of distortion esti-
mates can be deduced from the inequalities (2.13) for p = 0 and p = −∞
combined with a monotonicity argument. For this, as indicated in the above
proof of Theorem 2.6, it remains to show that inequality (4.11) can be derived
from (2.13) for p = −∞ .

If we set z1 = z , z2 = 0 and assume f(0) = 0 then (2.13) for p = −∞ takes
the form

min

{
1 − |z|2

1 − |f(z)|2
|f ′(z)|, |f ′(0)|

}
≥

|f(z)|

|z|

(1 − |z|)2
(
1 − |f(z)|

)2 .

This is a well-known estimate for normalized bounded univalent functions due to
Robinson [18]. From

|f ′(0)| ≥
|f(z)|

|z|

(1 − |z|)2
(
1 − |f(z)|

)2

we immediately obtain for f(z) = a1z +a2z
2 + · · · Pick’s coefficient inequality [16]

|a2| ≤ 2|a1|(1 − |a1|).

If f : D → D is a not necessarily normalized bounded univalent function, then
Pick’s inequality |g′′(0)| ≤ 4|g′(0)|

(
1 − |g′(0)|

)
for

g(ξ) :=

f

(
ξ + z

1 + z̄ξ

)
− f(z)

1 − f(z)f

(
ξ + z

1 + z̄ξ

) for fixed z ∈ D
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is equivalent to

∣∣∣∣
f ′′(z)(1 − |z|2)

1 − |f(z)|2
− 2z̄

f ′(z)

1 − |f(z)|2
+ 2f(z)

f ′(z)2(1 − |z|2)

(1 − |f(z)|2)2

∣∣∣∣

≤
4|f ′(z)|

1 − |f(z)|2

(
1 −

|f(z)|(1 − |z|2)

1 − |f(z)|2

)
.

We integrate from 0 to |z| to get

∣∣∣∣log
f ′(z)

f ′(0)
+log(1−|z|2)−2 log(1−|f(z)|2)

∣∣∣∣ ≤ 2 log

(
1 + |z|

1 − |z|

)
+log

(
1 − |f(z)|

1 + |f(z)|3

)
,

and by exponentiation we finally obtain

∣∣∣∣
f ′(z)

f ′(0)

∣∣∣∣
1 − |z|2

1 − |f(z)|2
≤

(
1 + |z|

1 − |z|

)2(
1 − |f(z)|

1 + |f(z)|

)2

,

which is nothing else than (4.11).

5. Proofs (elliptic case)

Conformal maps into the projective plane are closely related to the class
of elliptically schlicht functions introduced by Grunsky in [3]. We recall that a
function g meromorphic in the unit disk D is called elliptically schlicht if it maps
D univalently onto a domain on the Riemann sphere Ĉ which contains no pair of
antipodal points. In other words, if we identify on the Riemann sphere antipodal
points, i.e., if we consider the elliptic plane P = {{z,−1/z̄} : z ∈ Ĉ} , then we may

identify elliptically schlicht functions g: D → Ĉ with conformal maps f : D → P
as follows.

The map π: Ĉ → P , π(z) = {z,−1/z̄} , is a two-sheeted covering of P

and a local isometry from (Ĉ, dP) onto (P, dP). If f : D → P is a conformal
(i.e. angle-preserving and injective) map, then there exist two uniquely determined

lifts g: D → Ĉ and g̃: D → Ĉ of f . Since both maps g: (D, dD) → (Ĉ, dP) and

g̃: (D, dD) → (Ĉ, dP) are angle-preserving and π
(
g(z)

)
= π

(
g̃(z)

)
, z ∈ D , they

are related via

g(z) = −
1

g̃(z)
, z ∈ D.

Thus g: D → Ĉ is analytic and g̃: D → Ĉ is anti-analytic, or vice versa, so we
may assume g: D → Ĉ is analytic and call g the analytic lift of f . It follows by
construction that g is elliptically schlicht. Conversely, if g: D → Ĉ is elliptically
schlicht, then f := π ◦ g is a conformal map from D into P and g is its analytic
lift. We obtain this way a one-to-one correspondence between elliptically schlicht
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functions g: D → Ĉ and conformal maps f : D → P . Clearly, if f : D → P is a
conformal map and g: D → Ĉ is its analytic lift, then

|DPf(z)| = lim
ξ→z

dP

(
f(ξ), f(z)

)

dD(ξ, z)
= lim

ξ→z

dP

(
g(ξ), g(z)

)

dD(ξ, z)

=
1 − |z|2

1 + |g(z)|2
|g′(z)| = |DPg(z)|.

Kühnau [8] proved that if g: D → Ĉ is an elliptically schlicht function with
g(−r) = −w and g(r) = w for some real numbers 0 < w ≤ r < 1, then

(5.1)

(
w(1 + w2)(1 − r2)

r(1 + r2)(1 − w2)

)2

≤ |g′(r)| |g′(−r)| ≤

(
w(1 − w2)(1 + r2)

r(1 − r2)(1 + w2)

)2

.

Equality holds in the left (right) inequality if and only if g maps D onto D slit
along one or two rays on the real (imaginary) axis. (5.1) is equivalent to

(1 − r2)2

r(1 + r2)

w

1 − w2
≤

√
|DPg(r)| |DPg(−r)| ≤

1 + r2

r

w(1 − w2)

(1 + w2)2
,

or

(5.2)
tan dP

(
g(r), g(−r)

)

sinh
(
2 dD(r,−r)

) ≤
√

|DPg(r)| |DPg(−r)| ≤
sin

(
2dP

(
g(r), g(−r)

))

2 tanh
(
dD(r,−r)

) .

Now, Theorem 2.7 and Theorem 2.8 follow quite easily from the inequali-
ties (5.2). We indicate the proof of Theorem 2.7 and omit the proof of Theo-
rem 2.8.

Proof of Theorem 2.7. If g: D → Ĉ is an elliptically schlicht function,
then (5.2) implies by linear invariance

(5.3) sin
(
2dP

(
g(z1), g(z2)

))
≥ 2

(
|DPg(z1)|

p + |DPg(z2)|
p

2

)1/p

tanh
(
dD(z1, z2)

)

for any p ≤ 0 and any pair of points z1 , z2 in D . Moreover, equality for two
distinct points z1 and z2 is only possible if g maps onto a hemisphere slit along
one or two rays on the great circle C such that g(z1) and g(z2) are symmetric
with respect to C . Conversely, if g is such a conformal map, then |DPg(z1)| =
|DPg(z2)| and equality holds in (5.3) for any p ≤ 0. Thus, if f : D → P is a
conformal map, then (2.15) holds for any p ≤ 0 and any pair of points z1 and z2 .
Also, equality holds for distinct z1 and z2 if and only if f maps D onto P slit
along γ1 and slit along a ray γ on γ2 such that γ ∩ γ1 6= ∅ . Here γ1 and γ2 are
the two perpendicular elliptic bisectors of f(z1) and f(z2).

If f : D → Ĉ is a nonconstant meromorphic function satisfying (2.15), then

f : D → Ĉ is univalent, see again [7, pp. 144–145] for the required argument. f is
also elliptically schlicht, since dP

(
f(z1), f(z2)

)
= 1

2
π in (2.15) implies dD(z1, z2) =

0. Thus f(D) contains no pair of antipodal points.
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Remark 5.1. There are also Golusin-type theorems for elliptically schlicht
functions [8, pp. 85–90], which lead to two-point distortion theorems for confor-
mal maps f : D → P as in the euclidean and hyperbolic case. These two-point
distortion theorems, however, are not as sharp as (2.15) and (2.16).
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