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Abstract. Let G be a Kleinian group G acting on Bn , n ≥ 2 . We show that if the
orders of the elliptic elements in G which have non-degenerate fixed set are bounded, then G
carries non-constant G -automorphic quasimeromorphic mappings. This together with an earlier
non-existence theorem by Srebro gives a complete characterization of Kleinian groups that admit
non-constant quasimeromorphic automorphic mappings.

1. Introduction

Definition 1.1. Let D ⊆ Rn be a domain; n ≥ 2 and let f : D → Rn be a
continuous mapping. f is called

(1) quasiregular if and only if (i) f belongs to W 1,n
loc (D) and (ii) there exists

K ≥ 1 such that:

(1.1) |f ′(x)|n ≤ KJf (x) a.e.

where f ′(x) denotes the formal derivative of f at x , |f ′(x)| = sup|h|=1 |f
′(x)h| ,

and where Jf (x) = det f ′(x).
(2) quasiconformal if and only if f : D → f(D) is a quasiregular homeomorphism.

(3) quasimeromorphic if and only if f : D → R̂n , R̂n = Rn
⋃
{∞} is quasireg-

ular, where the condition of quasiregularity at f−1(∞) can be checked by
conjugation with auxiliary Möbius transformations.

The smallest number K that satisfies (1.1) is called the outer dilatation of f .

One can extend the definitions above to oriented, connected C ∞ Riemannian
manifolds as follows:

Definition 1.2. Let Mn , Nn be oriented, connected C ∞ Riemannian n -
manifolds, n ≥ 2, and let f : Mn → Nn be a continuous function. f is called
locally quasiregular if and only if for every x ∈Mn , there exist coordinate charts
(Ux, ϕx) and (Vf(x), ψf(x)), such that f(Ux) ⊆ Vf(x) and g = ψf(x) ◦ f ◦ ϕ−1

x is
quasiregular.

If f is locally quasiregular, then Txf : Tx(Mn) → Tf(x)N
n exist for a.e. x ∈

Mn .
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Definition 1.3. Let Mn , Nn be oriented, connected C ∞ Riemannian n -
manifolds, n ≥ 2, and let f : Mn → Nn be a continuous function. f is called
quasiregular if and only if

(i) f is locally quasiregular
and

(ii) there exists K , 1 ≤ K <∞ , such that

(1.2) |Txf |
n ≤ KJf (x)

for a.e. x ∈Mn .

Recall that a group G of homeomorphisms acts properly discontinuously on
a locally compact topological space X if and only if the following conditions hold
for any g ∈ Gx , x ∈ X : (a) the stabilizer Gx = {g ∈ G | g(x) = x} of x is finite;
and (b) there exists a neighbourhood Vx of x , such that (b1) g(Vx) ∩ Vx = ∅ , for
any g ∈ G \Gx ; and (b2) g(Vx) ∩ Vx = Vx .

Definition 1.4. A discontinuous group of orientation-preserving isometries
of Bn is called a Kleinian group.

It is well known that a discontinuous group is discrete (see [Ms]).

Definition 1.5. Let f : Bn → R̂n , and let G be a Kleinian group acting
upon Bn . The function f is called G -automorphic if and only if:

(1.3) f
(
g(x)

)
= f(x); for any x ∈ Bn and for all g ∈ G;

Recall the definition of elliptic transformations:

Definition 1.6. A Möbius transformation f : Bn → Bn , f 6= Id is called
elliptic if and only if f has a fixed point in Bn .

The existence of non-constant automorphic meromorphic functions in dimen-
sion n = 2 represents a classical result which follows from the existence of mero-
morphic functions on Riemann surfaces (see [Fo], [K]).

The question whether quasimeromorphic mappings (or qm-mappings, in short)
exist in any dimension n ≥ 3 was originally posed by Martio and Srebro in [MS1];
subsequently in [MS2] they proved the existence of the fore-mentioned mappings
in the case of co-finite groups, i.e., groups such that Volhyp(Bn/G) <∞ (the im-
portant case of geometrically finite groups being thus included). Also, it was later
proved by Tukia ([Tu]) that the existence of non-constant qm-mappings is assured
in the case when G acts torsionless upon Bn . Moreover, since for torsionless
Kleinian groups G , Bn/G is an (analytic) manifold, the next natural question to

ask is whether there exist non-constant qm-mappings f : Mn → R̂n ; where Mn is
an orientable n -manifold. A partial affirmative answer to this question is due to
Peltonen (see [Pe]); to be more precise she proved the existence of qm-mappings
in the case when Mn is a complete, connected, orientable C ∞ -Riemannian man-
ifold.

Our main result is the following theorem:
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Theorem 1.7. Let G be a Kleinian group G acting on Bn , n ≥ 2 . If the or-

ders of the elliptic elements of G which have non-degenerate fixed set are bounded,

then G admits non-constant G -automorphic quasimeromorphic mappings.

In contrast with the above results it was proved by Srebro ([Sr]) that, if
G is a Kleinian group acting on Bn , n ≥ 3, containing elliptic elements with
non-degenerate fixed set, of arbitrarily large orders, then G does not admit non-
constant G -automorphic qm-mappings; and showed that such groups exist in all
dimensions n ≥ 3.

This non existence result, together with Theorem 1.7 gives a complete charac-
terization of those Kleinian groups which admit G -automorphic quasimeromorphic
mappings. Namely:

Theorem 1.8. Let G be a Kleinian group acting on Bn . Then G admits

non-constant automorphic qm-mappings if and only if :

(1) n = 2;
or

(2) n ≥ 3 , and the orders of the elliptic elements of G having non-degenerate

fixed sets are uniformly bounded.

Remark 1.9. Given any finitely generated Kleinian group acting on B3 the
number of conjugacy classes of elliptic elements is finite (see [FM]). However, this
is not true for Kleinian groups acting upon Bn , n ≥ 4; (for counterexamples, see
[FM], [Po] and [H]).

Remark 1.10. Hamilton ([H, Theorem 4.1]) constructed examples of
Kleinian groups G acting on B4 such that there exists an infinite sequence
{fn}n∈N ⊂ G of elliptic transformations, with ord (fn) → ∞ and such that
the fixed set of each fn is degenerate. (For the relevant definitions, see Section 2
below.) (Here ord (fn) denotes the order of fn .)

Note that by Remark 1.9 we have the following corollary:

Corollary 1.11. Let G be a finitely generated Kleinian group acting upon

B3 . Then there exists a non constant G -automorphic qm-mapping f : B3 → R̂3 .

The classical methods employed in proving the existence in the case n =
2 do not apply in higher dimensions—indeed, for n ≥ 4, Bn/G is not even a
manifold, but an orbifold. Therefore, different methods are needed. Following
other researchers, we shall employ the classical “Alexander trick” (see [Al]).

A uniform bound for the dilatations can be attained (see [MS2], [Tu]) if the
considered triangulation is fat, i.e. such that each of its individual simplices may
be mapped onto a standard n -simplex, by a L -bilipschitz map, followed by a
homothety, for a fixed L . (For a precise definition of fatness see Section 3 below.)

The idea of the proof of Theorem 1.7 is, in a nutshell, as follows: Based
upon the geometry of the elliptic transformations construct a fat triangulation
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T1 of N∗
e , where N∗

e is a certain closed neighbourhood of the singular set of
Bn/G . Since Mp =

(
Bn \ Fix(G)

)
/G , Fix(G) =

{
x ∈ Bn | there exists g ∈

G \ {Id}, g(x) = x
}

is an orientable analytic manifold, we can apply Peltonen’s
result to gain a triangulation T2 of Mp . Therefore, if the triangulations T1 and
T2 are chosen properly, each of them will induce a triangulation of N ∗

e \N∗
e
′ , for

a certain N∗
e
′ ( N∗

e (see Section 2).

‘Mash’ T1 and T2 (in N∗
e \N∗

e
′ ) i.e. ensure that the given triangulations

intersect into a new triangulation T0 (see [Mun, Theorem 10.4]). Modify T0 to
receive a new fat triangulation T of Bn/G .

In the presence of degenerate components Ak = A(fk) of the fixed set of G ,
where the transformations fk may have arbitrarily large orders, a modification of
this construction is needed; see Section 4.

Apply Alexander’s trick to receive a quasimeromorphic mapping f : Bn/G→

R̂n . The lift f̃ of f to Bn represents the required G -automorphic quasimero-
morphic mapping.

In [S3] we showed how to build T1 using a generalization of a theorem of
Munkres ([Mun, 10.6]) on extending the triangulation of the boundary of a mani-
fold (with boundary) to the whole manifold. Munkres’ technique also provided us
with the basic method of mashing the triangulations T1 and T2 . In this paper we
present a more direct, geometric method of triangulating N ∗

e and mashing the two
triangulations. We already employed this simpler method in [S1], where we proved
Theorem 1.7 in the case n = 3. The original technique used in [S1] for fattening
the intersection of T1 and T2 is, however, restricted to dimension 3. Therefore
here we make appeal to the method employed in [S3], which is essentially the one
developed in [CMS].

This paper is organized as follows: in Section 2 we show how to triangulate
the closed neighbourhood N∗

e of the singular set of Bn/G . Section 3 is dedicated
to the main task of mashing the triangulations and fattening the resulting com-
mon triangulation. In Section 4 we show how to apply the main result in the

construction of a G -automorphic quasimeromorphic mapping from Bn to R̂n .

2. Geometric neigbourhoods

If G is a discrete Möbius group and if f ∈ G , f 6= Id is an elliptic transfor-
mation, then there exists m ≥ 2 such that fm = Id. The smallest m satisfying
this condition is called the order of f , and it is denoted by ord(f). In the 3-
dimensional case the fixed point set of f , i.e. Fix(f) = {x ∈ B3 | f(x) = x} ,
is a hyperbolic line and will be denoted by A(f)—the axis of f . In dimension
n ≥ 4 the fixed set (or axis of f ) of an elliptic transformation is a k -dimensional
hyperbolic plane, 0 ≤ k ≤ n − 2. An axis A is called degenerate if and only if
dimA = 0. In dimensions higher than n = 3, different elliptics may have fixed
sets of different dimensions.
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If G is a discrete group, G is countable and so is the set of elliptics and the
set of connected components of Fix(G), which we denote by {fi}i≥1 and {Cj} ,
respectively.

Moreover, by the discreteness of G , the sets A = {Ai≥0}—and hence S =
{Cj}—have no accumulation points in Bn .

N(A) = N(f)
r r

O

{4}

A(f)

f = (4)

int{4}   A(f)+
H

3
≡ B

3

Figure 1. Geometric neighbourhood for n = 3 and m = 4. Here {4} denotes the regular

(hyperbolic) polygon with 4 sides.

Hence we can choose disjoint, G -invariant neighbourhoods Nj and N ′
j of

Cj , N ′
j ( Nj . Indeed, first choose a neighbourhood N1 of C1 , such that N1 ∩⋃

j≥2 Cj = ∅ ; then recursively build a neighbourhood Nk of Ck , such that Nk ⊂

Bn\(N1∪· · ·∪Nk−1) and Nk∩
⋃

j>k Cj = ∅ , for all k ≥ 2. Denote Ne =
⋃

j∈N
Nj ,

N ′
e =

⋃
j∈N

N ′
j . Define N∗

e = (Ne ∩ Bn)/G , N∗
e
′ = (N

′

e ∩ Bn)/G .
To produce the desired closed neighbourhood N ∗

e of the singular set of Bn/G
and its triangulation T1 , we first consider the case where Ci = A(f), for some
f ∈ G , and then construct a standard neighbourhood Nf = N

(
A(f)

)
of the axis

of each elliptic element of G such that Nf ' A(f)× In−k , where A(f) = Sk and
where In−k denotes the unit (n−k)-dimensional interval. The construction of Nf

proceeds as follows: By [Cox, Theorem 11.23] the fundamental region for the local
action of the stabilizer group of the axis of f , Gf = GA(f) = {g ∈ G | g(x) = x}
is a simplex or a product a simplices. Let Sf be the fundamental region (see
Figure 2).

Then we can define the generalized prism (or simplotope—see [Som, VII.25])
S ⊥

f , defined by translating Sf in a direction perpendicular to Sf , where the

translation length is disthyp

(
Sf , A(f)

)
. It naturally decomposes into simplices

(see [Som, VII.25], [Mun, Lemma 9.4]). We have thus constructed an f -invariant
triangulation of a prismatic neigbourhood Nf of A(f). We can reduce the mesh
of this triangulation as much as required, while controlling its fatness by dividing
Sf into similar simplices and partitioning Nf into a finite number of radial strata
of equal width % . In the special case when the minimal distance between axes
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δ = min
{
disthyp

(
A(f), A(g)

)
| g elliptic, g 6= f

}
is attained we can chose % =

δ/κ0 , for some integer κ0 , and further partition it into ‘slabs’ of equal hight h . (In
particular one can use this approach in the case when G acts on B3 and it contains
no order two elliptics, since in this particular case, according to a result of Gehring
and Martin [GM1], the minimum exists and is strictly positive.) Henceforth we
shall call the neighbourhood thus produced, together with its fat triangulation, a
geometric neighbourhood.

f

A(f)

σ

σ

σ
1

2

3

Sf
⊥

Figure 2. Canonical decomposition into simplices of S ⊥
f , for n = 3.

Since the stabilizer Stab(A1,...,k) of the intersection of axes A1,...,k = Ai1 ∩
· · · ∩ Aik

is a finite subgroup of O+(n), and since in any dimension there exist
only a finite number of such groups of orders ≤ M0 , for any M0 ∈ N (see [Cox,
Chapter 11]), the angles between the axes of transformations of orders ≤ m0 admit
a bound α = α(m0, n). Therefore, the intersection N(A1,...,k) = Nf1

∩ · · · ∩Nfk

of the geometric neighbourhoods of several axes is also endowed with a natural fat
triangulation, invariant under the group G = 〈Gf1

, . . . , Gfk
〉 . (In the particular

case n = 3 one can choose as a geometric neighbourhood of A a regular or a
semi-regular polyhedron together with its interior (see Figure 3 below).

If q ∈ Bn, dim q = 0, is a degenerate element of the singular locus, we replace
the tubular neighbourhood considered above by Pq∪intPq , where Pq is a regular
polytope invariant under the stabilizer Gq of q in G , together with its canonical
simplicial subdivision (see [Cox, 7.6]). Indeed, every finite group generated by
reflections is the symmetry group of a regular polyhedron P (see [Cox, p. 209]).
Moreover, the rotation group of P has order nl/2, where l is the number of faces
of P (see [Cox, pp. 227–231]).

Remark 2.1. As noted above, if G is a Kleinian group acting with torsion
on Bn , then Mp =

(
Bn \Fix(G)

)
/G is a complete orientable manifold. Moreover,

since the isotropy groups of any point in QG = Bn/G are subgroups of O+(n), it
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O

Q

P
M

A

Figure 3. A Euclidean semi-regular polyhedron and two of its fundamental tetrahedra (n = 3).

follows that Bn/G is complete orientable orbifold (see [Dr, p. 46]). The singular
locus ΣQG

= Fix(G)/G of QG contains all the non-manifold points of QG , yet
the two sets are not equal. Indeed, in dimension n = 2 (n = 3) any orbifold
(orientable orbifold) is homeomorphic to a manifold. The local structure of ΣQG

at a point xQ ∈ QG is determined by the stabilizer in G of its preimage in Bn ,
i.e. by the finite subgroups of O+(n). (For instance, in dimension n = 3 only two
infinite families and three more special cases of branching points (of Fix(G) and
thus of ΣQG

) can occur—see [Th1, 5.6]). However, the global structure of ΣQG

can be very complicated (see [Th1, 5.6]).

3. Mashing and fattening triangulations

We present the main steps of the Munkres ([Mun, Chapter 10]) and Cheeger
([CMS, pp. 432–440]) techniques, and we indicate how to adapt them to our par-
ticular setting. First let us establish some definitions and notation:

Definition 3.1. Let Mn be a PL-manifold. Two triangulations T1,T2 of
Mn intersect transversally if and only if for any p ∈ Mn , there exist neighbour-
hoods U1 , U2 , U3 of p in |T1| , |T2| and Mn , respectively, such that the triple
(U1, U2, U3) is PL-homeomorphic to a neighbourhood of 0 in (Rn×0, 0×Rn,Rn×
Rn).

To ensure the fatness of the common triangulation we need to make appeal
to a stronger notion of transversality, namely:

Definition 3.2. Let σi ∈ K , dimσi = ki , i = 1, 2; such that diamσ1 ≤
diamσ2 . Denote by [σi] the affine subspace of RN generated by σi , and let 〈σi〉
denote the subspace parallel to [σi] , such that 0 ∈ 〈σi〉 ⊂ RN ; i = 1, 2. We say
that σ1 , σ2 are δ -transverse if and only if

(i) dim([σ1] ∩ [σ2]) = max(0, k1 + k2 − n);
(ii) 0 < δ < ]([σ1], [σ2]) , where ]([σ1], [σ2]) = ](〈σ1〉, 〈σ2〉), and where

](〈σ1〉, 〈σ2〉) = min(e1,e2) arccos (e1, e2), ei ∈ (〈σ1〉 ∩ 〈σ1〉)
⊥ ∩ 〈σi〉 , ‖ei‖ = 1,
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i = 1, 2; where (e1, e2) denotes the standard inner product on Rn ; and if σ3  σ1 ,
σ4  σ2 , such that dimσ3 + dimσ4 < n = dimK , then

(iii) dist(σ3, σ4) > δ · d1 , where d1 = diamσ1 .
In this case we write: σ1 tδ σ2 .

Definition 3.3. Let τ ⊂ Rn ; 0 ≤ k ≤ n be a k -dimensional simplex. The
fatness ϕ of τ is defined as being:

(3.1) ϕ = ϕ(τ) = inf
σ<τ

dim σ=l

Vol(σ)

diam lσ
.

The infimum is taken over all the faces of τ , σ < τ , and Voleucl(σ) and
diamσ stand for the Euclidean l -volume and the diameter of σ , respectively. (If
dimσ = 0, then Voleucl(σ) = 1, by convention.)

A simplex τ is ϕ0 -fat, for some ϕ0 > 0, if ϕ(τ) ≥ ϕ0 . A triangulation (of
a submanifold of Rn ) T = {σi}i∈I is ϕ0 -fat if all its simplices are ϕ0 -fat. A
triangulation T = {σi}i∈I is fat if there exists ϕ0 > 0 such that all its simplices
are ϕ0 -fat.

Remark 3.4. There exists a constant c(k) that depends solely upon the
dimension k of τ such that

(3.2)
1

c(k)
· ϕ(τ) ≤ min

σ<τ

dim σ=l

](τ, σ) ≤ c(k) · ϕ(τ),

and

(3.3) ϕ(τ) ≤
Vol(σ)

diam lσ
≤ c(k) · ϕ(τ);

where ](τ, σ) denotes the (internal) dihedral angle of σ < τ . (For a formal
definition, see [CMS, pp. 411–412], [Som].)

Remark 3.5. The definition above is the one introduced in [CMS]. For
equivalent definitions of fatness, see [Ca1], [Ca2], [Mun], [Pe], [Tu].

The first step is that of mashing the triangulations T1 , T2 :
We approximate the triangulation T2 of Mp by a locally finite Euclidean

triangulation, by means of the secant map (see [Mun, p. 90]). Also, the hyperbolic
simplices of T1 can be approximated arbitrarily well by Euclidean simplices, by
considering diamσ, σ ∈ T1 small enough (see [Tu]). Therefore the mashing and
fattening of triangulations reduces to that of Euclidean ones.

Next we ensure that the given triangulations intersect into a new triangu-
lation T0 . This is first done locally by modifying these local triangulations co-
ordinate chart by chart, so they will be PL-compatible wherever they overlap.
More precisely, we first apply infinitesimal moves of the vertices so that the two
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triangulations will intersect transversally. Next we perform suitable barycentric
subdivisions of the closed, convex polyhedral cells γ̄ = σ̄1 ∩ σ̄2 , σi ∈ Ti , i = 1, 2;
in the following manner: suppose each cell β ⊂ ∂γ already has a subdivision into
simplices βi , i = 1, . . . , p ; choose an interior point pγ ∈ intγ , construct the joins
J(pγ , βi), i = 1, . . . , p ; and consider all their simplices (see [Mun, 10.2–10.3]).

To extend the local triangulations to a global triangulation T0 , we work in
Rn , by using the coordinate charts and maps. Here again we have to approximate
the given triangulation by a PL-map, such that the given triangulation and the
one we produce will be PL-compatible (see [Mun, Theorem 10.4]). The existence
of the common triangulation T0 follows immediately (see [Mun, Theorem 10.5]).

We next present the main steps of the fattening process (for details see [CMS]):
One begins by triangulating and fattening the intersection of two individual

simplices belonging to the two given triangulations, respectively. First one shows
that if two individual simplices are fat and if they intersect δ -transversally, then
one can choose the points pγ such that the barycentric subdivision γ̄∗ will be
composed of fat simplices. (See [CMS, Lemma 7.1].)

Next one shows that given two fat Euclidean triangulations that intersect δ -
transversally, it is possible to infinitesimally move any given point of one of the
triangulations such that the resulting intersection will be δ∗ -transversal, where δ∗

depends only on δ , the common fatness of the given triangulations, and on the
displacement length (see [CMS, Lemma 7.3]).

By repeatedly applying this results to the simplices of dimensions 0, . . . , n ,
of the intersection of two fat triangulations, one can now prove the main fattening
result:

Proposition 3.6 ([CMS, Lemma 6.3]). Let T1 , T2 be two fat triangulations

of open sets U1, U2 ⊂ Rn , Br(0) ⊆ U1 ∩ U2 , having common fatness ≥ ϕ0 and

such that d1 = infσ1∈T1
diamσ1 ≤ d2 = infσ2∈T2

diamσ2 . Then there exist ϕ∗
0 -fat

triangulations T ′
1 ,T

′
2 , ϕ∗

0 = ϕ∗
0(ϕ0) , of open sets V1, V2 ⊆ Br(0) , such that

(1) T ′
i |Br−8d2

(0) = Ti|Br−8d2
(0) , i = 1, 2;

(2) T ′
1 and T ′

2 agree near their common boundary.

Moreover:
(3) infσ′

1
∈T ′

1
diamσ′

1 ≤ 3d1/2 , infσ′

2
∈T ′

2
diamσ′

2 ≤ d2 .

We apply Proposition 3.6 above to our particular context in the following
manner: Let T1 , T2 be the triangulations of N∗

e \N∗
e
′ constructed above. To

gain a globally fat triangulation from the mashing of T1 and T2 , we start by
partitioning N∗

e \N∗
e
′ into (almost) cubes Q . If the diameters of the sets Q are

small enough we can apply Proposition 3.6, for Q instead Br(0). Extend T0 by
T2 on the face included in ∂Ne and by T1 on the other faces, to receive the
desired triangulation T . (Further fattening of the triangulations induced on the
lower dimensional faces may be necessary. However, by the locally finiteness of
the triangulation, the number of steps required for fattening the lower dimensional
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intersections is finite and depends solely upon the dimension n .) This gives the
required globally fat triangulation of Bn/G .

4. The existence of quasimeromorphic mappings

We first prove the following lemma:

Lemma 4.1 ([MS1], [Pe]). Let Mn ⊂ RN be an orientable n -manifold,

let T be a chessboard fat triangulation of Mn , let σ ∈ T , σ = (p0, . . . , pn)
and let τ0 = (p0,1, . . . , p0,n) denote the equilateral n -simplex inscribed in the

unit sphere Sn−1 . Then there exists a orientation-preserving homeomorphism

h = hσ: |σ| → R̂n such that

(1) h(|σ|) = |τ0| , if σ is positively oriented and h(|σ|) = R̂n \ |τ0| , otherwise.

(2) h(pi) = p0,i , i = 0, . . . , n.
(3) h|∂|σ| is a PL-homeomorphism.

(4) h|int|σ| is quasiconformal.

Proof. If det (p0, . . . , pn) > 0, then the PL-mapping h defined by condition
(2) above also satisfies conditions (1), (3) and (4). If det(p0, . . . , pn) < 0, we
define h as follows: h = ϕ−1 ◦ J ◦ ϕ ◦ h0 , where ϕ is the radial linear stretching

ϕ: τ0 → Rn , J denotes the reflection in the unit sphere Sn−1 and h0: |σ| → |τ0|
is the orientation-reversing PL-mapping defined by condition (2). Recall that ϕ is
onto and bilipschitz (see [MS2]). Moreover, by a result of Gehring and Väisalä, ϕ

is also quasiconformal (see [V]). We can extend ϕ to R̂n by defining ϕ(∞) = ∞ .
It follows that h indeed represents the required PL-homeomorphism.

The existence theorem of quasimeromorphic mappings now follows immedi-
ately:

Proof of Theorem 1.7. Let T be the ϕ∗
0 -fat chessboard triangulation of Bn/G

constructed in Section 3 above. Let f : Bn/G → R̂n be defined by: f ||σ| = hσ ,
where h is the homeomorphism constructed in the lemma above. Then f is a
local homeomorphism on the (n − 1)-skeleton of T̃ too, while its branching set

Bf is the (n − 2)-skeleton of T̃ . By its construction f is quasiregular and its
(outer) dilatation depends only ϕ∗

0 and on the dimension n (see [Tu, Lemma E]).
The lift f̃ of f to Bn represents the required G -automorphic quasimeromorphic
mapping.

In the case of degenerate components Ak of the fixed set S , the proof is
essentially the same as in the classical case of Riemann surfaces (see, e.g. [Fo,
pp. 233–238]). More precisely, we proceed as follows: We excise from Bn disjoint
ball neighbourhoods Bk of Ak . Let Sk = ∂Bk . Then each of the quotients
Sk/G admits a fat triangulation Tk . The manifold

(
Bn \

⋃
k≥1Bk

)
/G admits

a fat triangulation that extends the fat triangulation of Sk (see [CMS, p. 444]
and [S3, Theorem 2.9]). We build the simplices Pk with vertex Ak/G and base
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Tkl , where Tkl are simplices belonging to Tk . Then each of the simplices Pk can
be quasiconformally mapped onto a half-space, with bounded dilatation which
depends only on n and not on the angles at the vertices Ai , even if the orders
of the transformations fk are not bounded from above (see [Car, Theorem 3.6.10
and Theorem 3.6.13]).
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