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Abstract. We define the class of weakly mean porous sets and prove a sharp dimension
estimate for the sets in this class. By using this geometric tool, we establish an essentially sharp
dimension bound for the boundaries of generalized Hölder domains and John domains.

1. Introduction

In this paper we consider the following problem. Suppose that we are given
the growth condition

(1) kΩ(x0, x) ≤ φ

(
d(x, ∂Ω)

d(x0, ∂Ω)

)
+ C0

on the quasihyperbolic metric kΩ of a domain Ω, where φ is a decreasing function
and x0 is a fixed point in Ω. Under which conditions on the function φ can we
prove a dimension estimate for the boundary ∂Ω, and what is the sharp dimension
estimate in this case?

Let us comment on the history of this problem. Recall that a domain Ω
satisfying condition (1) with the function φ(t) = C log(1/t) is called a Hölder
domain (see e.g. [SS1]). It is well known that for a Hölder domain Ω ⊂ Rn

we have the estimate dimH(∂Ω) < n . This was proven by Smith and Stegenga
[SS2] using ideas of Jones and Makarov [JM]. They established this result by
applying Marcinkiewicz integrals. Later Koskela and Rohde [KR] proved a sharp
extension of this result using a different technique. They introduced the concept
of mean porosity and, as an application of this concept, they proved the sharp
dimension estimate for the boundary of a Hölder domain. In this paper, we define
a generalized version of mean porosity and, by applying this concept, we will
prove an essentially sharp dimension estimate for the boundary of a domain Ω
satisfying condition (1) with some decreasing function φ . Note that since the
Hausdorff dimension of a Hölder domain can be arbitrarily close to n , one cannot
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hope for an estimate on the usual Hausdorff dimension with weaker assumptions.
Instead we will use Carathéodory’s construction of measure and dimension, which
allows us to measure the size of a set with much finer scale. For example, if a
domain Ω ⊂ Rn satisfies condition (1) with φ(t) =

(
log(1/t)

)s
, then we will

obtain a dimension bound when s ≤ n/(n− 1), whereas the boundary can have
positive volume when s > n/(n− 1). In particular, for s = n/(n− 1), we prove

that Hh(∂Ω) = 0 for the gauge function h(t) = tn
(
log(1/t)

)C
.

Notice that the geometric problem introduced above can be considered also
from the viewpoint of uniform continuity of quasiconformal mappings. Indeed, if
f : Bn → Rn is a uniformly continuous quasiconformal mapping defined in the unit
ball with a modulus of continuity ψ , then the image domain f(Bn) satisfies condi-
tion (1) with a corresponding function φ (see Section 5). For conformal mappings
in the plane, the sharp condition for the function ψ implying m2

(
∂f(B2)

)
= 0

is already known by [JM]. We will prove an extended result for quasiconformal
mappings in Rn with n ≥ 2 and, moreover, we will prove an essentially sharp
dimension estimate for ∂f(Bn).

Another question, related to our main problem, concerns John domains. It
is well known that the Hausdorff dimension of the boundary of a usual c -John
domain is strictly smaller than n , see [T], [MV], [KR]. But what can be said
about the size of the boundary of a ϕ -John domain (see Section 6 for definition)
with some function ϕ that is not linear? We will give a precise answer to this
question in Chapter 6.

We obtain the results above by establishing a sharp dimension bound for sets
satisfying a certain porosity condition. Roughly speaking, we require that, if we
consider dyadic annuli Ak(x), k = 1, 2, . . ., centered at some point x ∈ E , then
at least half of the annuli contain λ “holes” of size α . Here λ and α are some
functions depending on the scale k . Moreover, we require that these cubes or
“holes” can be picked for each point x from a single disjoint collection of cubes
in the complement of E that does not depend on the point x . Thus our porosity
condition is not strictly pointwise (as porosity conditions are in general). Also note
that our porosity condition does not permit scaling. Nevertheless, our definition
of generalized mean porosity works well from the viewpoint of our applications.

The paper is organized as follows. After establishing some notation and def-
initions in Section 2, we introduce the porosity condition in Section 3 and prove
also the basic dimension estimate. Section 4 contains an application of generalized
mean porosity to the domains satisfying a quasihyperbolic growth condition. In
Section 5 we prove a corresponding result for the boundaries of image domains
under uniformly continuous quasiconformal mappings. We discuss the properties
of ϕ -John domains in Section 6 and, finally, in Section 7 we construct examples
of sets showing the sharpness of the dimension estimates proven in this paper.

2. Notation and definitions

Throughout this paper we denote by Rn , n ≥ 1, the euclidean space of
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dimension n . The Lebesque measure of a set E ⊂ Rn is denoted by |E| , al-
though we sometimes write mn(E) to emphasize the dimension n . We denote
the euclidean distance between two points x, y ∈ Rn by d(x, y). We define a
neighborhood of E by E + r := {z ∈ Rn : d(z, E) < r} , where r > 0 and
d(z, E) = inf{d(z, x) : x ∈ E} .

We set Z+ := {1, 2, 3, . . .} . For x ∈ Rn we denote by Ak(x) the set

Ak(x) = {y ∈ Rn : 2−k < |x− y| < 2−k+1},
where k ∈ Z+ . We denote by ]I the number of elements in the set I .

For a cube Q ⊂ Rn we denote by l(Q) the edge length and by d(Q) the
diameter of Q . The radius of a ball B ⊂ Rn is denoted by r(B). We denote by
pB , p > 0, a ball with the same center as B but with radius pr(B). We write
Bn ⊂ Rn for the unit ball centered at the origin with radius 1. We denote the
unit sphere by Sn−1 .

Let γ ⊂ Rn be an injective curve and let x, y ∈ γ . We denote by γ(x, y) the
subcurve of γ connecting y to x . We write l(γ) for the euclidean length of the
curve γ .

Let f : ]0, 1[→ R . We write
∫
0
f(t) dt = ∞ , if

∫ r
0
f(t) dt = ∞ for arbitrarily

small r > 0.
We denote by C( · ) various positive constants that depend only on the quan-

tities written in paranthesis.

2.1. Carathéodory’s construction. Let h be a function defined for all
t ≥ 0, monotonic increasing for t ≥ 0, positive for t > 0 and continuous from
the right for all t ≥ 0. Define h(G) for an open nonempty set G ∈ Rn by
h(G) = h

(
d(G)

)
, where d(G) is the diameter of G in the euclidean metric, and

h(∅) = 0.
Now the set function

Hh(E) = lim sup
δ→0

Hh
δ (E),

where

Hh
δ (E) = inf

{ ∞∑

i=1

h(Bi) : E ⊂
∞⋃
i=1

Bi, d(Bi) ≤ δ

}
,

is a measure on Rn . It is called the Haudorff measure corresponding to the pre-
measure h , or simply h -measure. The construction of Hh is called Carathéodory’s
construction in [F].

Following C. A. Rogers [R, p. 78], we write

g ≺ h,

and say that g corresponds to a smaller generalized dimension than h , if

h(t)/g(t) → 0 as t→ 0.

Note also the following result (see [R, p. 79]). Let f , g , h be premeasures such
that f ≺ g ≺ h . If 0 < Hg(E) < ∞ , then Hh(E) = 0 and Hf (E) = ∞ .
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3. Generalized mean porosity

We define the generalized mean porosity as follows.

Definition 3.1. Let E ⊂ Rn be a compact set. Let α: ]0, 1[−→]0, 1[ be a
continuous function such that

(2)
α(t)

t
is an increasing function

and let λ: Z+ −→ Z+ be a function. Let Q be a collection of pairwise disjoint
cubes Qi ⊂ Rn \E . We define for each such a collection Q and for every k ∈ Z+

a function

χQ

k (x) =





1, if one can find cubes Qki (x) ∈ Q, i = 1, . . . , λ(k),
such that Qki (x) ⊂ Ak(x) and l

(
Qki (x)

)
≥ α(2−k) for all i;

0, otherwise.

Let

SQ

j (x) =

j∑

k=1

χQ

k (x).

We say that a set E is weakly mean porous with parameters (α, λ), if there
exists a collection Q as above and an integer j0 ∈ Z+ such that

(3)
SQ
j (x)

j
>

1

2

for all x ∈ E and for all j ≥ j0 .

There are two principal differences between generalized mean porosity and
other porosities. Firstly, it is not a pointwise property, since the collection Q

does not depend on the point x . Secondly, it does not permit scaling, since the
parameters α and λ depend on the scale. In particular, α(t)/t is not necessarily
a constant (as it is in the usual mean porosity). For example, let us consider a
set E ⊂ R2 which is weakly mean porous with parameters α(t) = ct/ log(1/t) for
small t and λ(k) = k . Fix a point x ∈ E . Roughly speaking, half of the annuli
Ak(x), k = 1, 2, . . ., now contain k disjoint “holes” Qki (x) ∈ Q with side lengths
at least c2−k/k . In this section we will prove that this implies m2(E) = 0 and

even Hh(E) <∞ for the gauge function h(t) = t2
(
log(1/t)

)C
with some C > 0.

In Definition 3.1 the property (2) can be described as follows. We require,
that as one reduces the scale, the size of the “holes” does not increase in proportion
to the scale. Note that when α(t)/t is a constant and λ(k) ≡ 1 our definition is
equivalent with the definition of mean porosity in [KR]. Indeed, for a mean porous
set E , we can take Q to be the collection of the Whitney decompositions of all
cubes in the Whitney decomposition of Rn \ E . The fact that this collection
satisfies condition (3) is shown in the proof of [KR, Theorem 2.1].
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The parameter λ(k) controls the number of “holes” in each annulus. It is
important for our applications that we use a general λ that allows us to use the
contribution from several “small” holes in a single set Ak(x) \E .

We could also define the porosity condition of Definition 3.1 in a pointwise
way (i.e. allow the collection Q to depend on the point x), as porosity conditions
are defined in general. Then, however, we could prove a dimension estimate for the
set E only in the case that λ(k) is bounded from above. We do not know whether
it is possible to prove a sharp dimension bound for sets satisfying such a pointwise
porosity condition with an unbounded parameter λ . However, in our applications
we will find the collection Q independently of x , and thus Definition 3.1 works
well for us.

The constant 1
2 in condition (3) plays a technical role only and could be

replaced with any positive constant without essential effect on the dimension es-
timates. In fact, if we replace it with a constant κ > 0, then the constant C(n)
in Corollary 3.5 is replaced with κC(n). Note also that our porosity condition is
uniform in the sense that j0 is independent of x .

In order to prove a dimension estimate for weakly mean porous sets we need
the following well-known consequence of the Hardy–Littlewood maximal theorem,
see [Bo]. Here χE denotes the characteristic function of the set E .

Lemma 3.2. Let B be a collection of balls B ⊂ Rn and let p ≥ 1 . Then

∫

Rn

( ∑

B∈B

χpB(x)

)k
dx ≤ (C1kp

n)k
∫

Rn

( ∑

B∈B

χB(x)

)k
dx

for all k ≥ 1 , where C1 = C1(n) .

Next we introduce the main result of this section. It is an estimate on the
size of weakly mean porous sets.

Theorem 3.3. There exists a positive constant C(n) such that whenever

E ⊂ Rn is a weakly mean porous set with parameters (α, λ) , then Hh(E) < ∞
for each premeasure h , which satisfies

(4) h(2−j) ≤M2−jn exp

(
C(n) inf

Ij

{∑

k∈Ij

λ(k)α(2−k)n

(2−k)n

})

for all j > j0 with some positive constant M . Here the infimum is taken over all

index sets Ij that satisfy

Ij =
j⋃
i=1

Ii with Ii ⊂ Ii+1 ⊂ {1, 2, . . . , i+ 1} so that
]Ii
i
>

1

2
for all j0 ≤ i ≤ j.

Proof. Let Q0 = {(x1, . . . , xn) : −1 ≤ xj ≤ 1} . We can assume that E is a
subset of the cube Q0 . If this is not the case, we can subdivide E into a finite
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number of compact sets Ej so that each set fits into the cube Q0 . We can also
assume that Q ⊂ E + 1 for all Q ∈ Q .

Let j > j0 , and for each k ≤ j let N(k) be the smallest integer such that

N(k) ≥ 2−jα(2−k)

2−kα(2−j)
.

By property (2), N(k) ≥ N(k + 1). Now we define Qj by subdividing the cubes
of the collection Q in the following way: If Q ∈ Q and there is 1 < k ≤ j such
that α(2−k) ≤ l(Q) < α(2−k+1), then each edge of the cube Q is divided into
N(k) parts. As for a cube Q with l(Q) ≥ α(2−1), divide each edge into N(1)
parts. Hence Q is subdivided into N(k)n cubes that have edge lengths of at least
2−kα(2−j)/2 ·2−j . Let Qj be the collection of cubes acquired in this manner from
the cubes Q ⊂ Q with l(Q) ≥ α(2−j).

Denote the largest ball B ⊂ Q by B(Q). Let

Bj = {B(Q) : Q ∈ Qj}.

Let x ∈ E + 2−j . We choose x′ ∈ E such that d(x, x′) < 2−j . Let k < j
satisfy χk(x

′) = 1. By Definition 3.1 there are cubes Qi ∈ Q , i = 1, . . . , λ(k),
in the annulus Ak(x

′) such that α(2−k) ≤ l(Qi). Hence from the annulus Ak(x
′)

we find disjoint balls Bi ∈ Bj , i = 1, . . . , λ(k)N(k)n , such that

r(Bi) ≥
1

4

2−kα(2−j)

2−j
.

Let Ij consist of all the indices k ≤ j for which χk(x
′) = 1. Then, by

Definition 3.1, the index set Ij satisfies

Ij =
j⋃
i=1

Ii with Ii ⊂ Ii+1 ⊂ {1, 2, . . . , i+ 1} so that
]Ii
i
>

1

2
for all j0 ≤ i ≤ j,

where the number of indices in the set Ii is denoted by ]Ii .
By enlarging the balls B ∈ Bj we have that

∑

B∈Bj

χ
C1(n) 2−j

α(2−j )
B

(x) ≥ inf
Ij

{∑

k∈Ij

λ(k)N(k)n
}

≥
(

2−j

α(2−j)

)n
inf
Ij

{∑

k∈Ij

λ(k)α(2−k)n

(2−k)n

}
,

when the constant C1(n) is large enough. Hence we have the estimate

(5)
1

Gj

(
α(2−j)

2−j

)n ∑

B∈Bj

χ
C1(n) 2−j

α(2−j)
B

(x) ≥ 1,
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where

Gj = inf
Ij

{∑

k∈Ij

λ(k)α(2−k)n

(2−k)n

}
.

Next we use inequality (5) to estimate the Lebesgue measure of a neighbor-
hood of E . For all 0 < t < 1 and Q > 0 we have that

|E + 2−j | exp

(
Gj
Q

)
≤

∫

E+2−j

∑

i≥0

1

i!

Gij
Qi

dx

≤ |E + 1|
( ∑

0≤i<1/t

1

i!

Gij
Qi

)

+
∑

i≥1/t

1

i!

Gij
Qi

∫

Rn

(
1

Gj

(
α(2−j)

2−j

)n

×
∑

B∈Bj

χ
C1(n) 2−j

α(2−j)
B

(x)

)ti
dx.

By combining Lemma 3.2, inequality ii ≤ eii! and Hölder’s inequality we thus
deduce that

|E + 2−j | exp

(
Gj
Q

)
≤ |E + 1|

( ∑

0≤i<1/t

1

i!

Gij
Qi

)

+
∑

1/t≤i

1

i!

G
(1−t)i
j

Qi

(
C2(n)tiC1(n)n

(
α(2−j)

2−j

)n

×
(

2−j

α(2−j)

)n)ti ∫

Rn

( ∑

B∈Bj

χB(x)

)ti

≤ |E + 1|
( ∑

0≤i<1/t

1

i!

Gij
Qi

+
∑

1/t≤i

G
(1−t)i
j

(
C3(n)ti

)ti

Qii!

)

≤ |E + 1|
( ∑

0≤i<1/t

1

i!

Gij
Qi

+
∑

1/t≤i

G
(1−t)i
j (i!ei)t

(
C3(n)t

)ti

Qii!

)

≤ |E + 1|
( ∑

0≤i<1/t

1

i!

Gij
Qi

+
∑

1/t≤i

ttiG
(1−t)i
j

(
C3(n)e

)ti

Qi(i!)1−t

)
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≤ |E + 1|
( ∑

0≤i<1/t

1

i!

Gij
Qi

+

( ∑

1/t≤i

tti/t
)t

×
( ∑

1/t≤i

Gij
(
C3(n)e

)ti/(1−t)

Qi/(1−t)i!

)1−t)

≤ |E + 1|
( ∑

0≤i<1/t

1

i!

Gij
Qi

+

(
1

1 − t

)t

× exp

(
Gj

(
C3(n)e

)t/(1−t)
(

1 − t

Q1/(1−t)

)))

≤ M0(n) exp

(
Gj
2Q

)
,

when we choose t = 1
2 , a constant M0(n) big enough and a constant Q = C3(n)e .

By the previous calculations we arrive at

|E + 2−j | exp

(
Gj
2Q

)
≤M0(n),

and hence

(6) |E + 2−j | exp
(
C(n)Gj

)
≤M0(n),

where C(n) = 1/2C3(n)e .
The desired dimension estimate follows from inequality (6) by a standard

calculation using the Besicovich covering theorem. We show this in the following.
Let A be the collection of all the balls of radii 2−j with centers in the set E .

By the Besicovich covering theorem we can choose balls Bi ∈ A , i = 1, . . . ,mj ,
such that E ⊂ ⋃mj

i=1Bi and

(7)

mj∑

i=1

χBi
(x) < P (n)

for all x ∈ Rn . By (6) and (7) we have that

M0(n)

exp
(
C(n)Gj

) ≥ |E + 2−j | ≥ mjΩn(2
−j)n

1

P (n)
,

and hence

mj ≤
M0(n)P (n)2jn

Ωn exp
(
C(n)Gj

) .
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Let h be a premeasure satisfying (4). Then we obtain the estimate

Hh(E) ≤ lim sup
j→∞

{mjh(2
−j)}

≤ lim sup
j→∞

{
mjM2−jn exp

(
C(n)Gj

)}

≤ lim sup
j→∞

{
R(n)M2jn exp

(
−C(n)Gj

)
2−jn exp

(
C(n)Gj

)}

≤ R(n)M <∞.

Let us make some remarks on Theorem 3.3. Notice that λ(k)α(2−k)n esti-
mates the total volume of the cubes or “holes” Qki (x) ∈ Q , i = 1, . . . , λ(k), in
the annulus Ak(x), where k satisfies χQ

k (x) = 1. The index set Ij consists of all
indices k ≤ j for which χQ

k (x) = 1. Hence Ij depends on the point x . That is
why the infimum is taken over all possible index sets. The condition given for Ij
is implied directly by Definition 3.1.

Note the following special cases of Theorem 3.3. If we have for arbitrarily
large j that

Gj = inf
Ij

{∑

k∈Ij

λ(k)α(2−k)n

(2−k)n

}
≥ Cj

with some constant C > 0, then it follows from Theorem 3.3 that dimH(E) < n .
Note that this happens, for example, if we have the parameters α(t) = ct and
λ(k) ≡ 1, in other words, if the set E is mean porous.

If Gj → ∞ as j → ∞ , then mn(E) = 0, and Theorem 3.3 will also give us
a dimension estimate with the gauge function h . However, if Gj is bounded, i.e.
there is M ∈ R such that Gj < M for all j , then Theorem 3.3 does not give us
a dimension estimate. Indeed, in this case the set E can have positive Lebesgue
measure, see Section 7.1.

Let us also point out that, in fact, we proved more than what we claim in
Theorem 3.3. Indeed, we proved inequality (6), which is a stronger condition for
the set E than the claimed dimension estimate.

In the next remark we show that in certain cases the index set Ij of Theo-
rem 3.3 can be given explicitly.

Remark 3.4. If it holds for the parameters in Theorem 3.3 that

(8) p(k) :=
λ(k)α(2−k)n

(2−k)n

is increasing as a function of k , then (for even j )

inf
Ij

{∑

k∈Ij

λ(k)α(2−k)n

(2−k)n

}
=

j/2∑

k=1

λ(k)α(2−k)n

(2−k)n
≥ Cj
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with some positive constant C .
If however p(k) is decreasing as a function of k , then (for even j0 )

inf
Ij

{∑

k∈Ij

λ(k)α(2−k)n

(2−k)n

}
=

∑

k∈Jj

λ(k)α(2−k)n

(2−k)n
,

where

Jj =

{
j0
2

+ 1,
j0
2

+ 2, . . . , j0

}
∪

{
i ∈ {j0 + 1, . . . , j} such that i is odd

}
.

Moreover, for all j > j0 we have that

∑

k∈Jj

λ(k)α(2−k)n

(2−k)n
≥ 1

2

j∑

k=j0

λ(k)α(2−k)n

(2−k)n
.

Corollary 3.5. Let E ⊂ Rn be a weakly mean porous set with parameters

(α, λ) such that p(k) (defined by (8)) is a decreasing function of k and

∞∑

k=j0

λ(k)α(2−k)n

(2−k)n
= ∞.

Then mn(E) = 0 and there exists a positive constant C(n) such that Hh(E) <∞
for each premeasure h , which satisfies

h(2−j) ≤M2−jn exp

(
C(n)

j∑

k=j0

λ(k)α(2−k)n

(2−k)n

)

for all j > j0 with some positive constant M .

Proof. The claim follows by combining Theorem 3.3 and Remark 3.4.

Note that this corollary is essentially sharp by an example in Section 7.1.

4. A quasihyperbolic growth condition

Let Ω ⊂ Rn be a domain. We recall that the quasihyperbolic distance be-
tween two points x1, x2 ∈ Ω is defined as

kΩ(x1, x2) = inf
γ

∫

γ

ds

d(x, ∂Ω)

where the infimum is taken over all rectifiable arcs joining x1 to x2 in Ω.
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Definition 4.1. Let φ: ]0, 1] −→]0,∞[ be a continuous and decreasing func-
tion. We say that a bounded domain Ω ⊂ Rn satisfies a quasihyperbolic growth
condition with a function φ , if there is a point x0 ∈ Ω and a constant C0 such
that

(9) kΩ(x0, x) ≤ φ

(
d(x, ∂Ω)

d(x0, ∂Ω)

)
+ C0

for all x ∈ Ω.

Note that for a bounded domain we can always choose the point x0 so that
d(x, ∂Ω)/d(x0, ∂Ω) ≤ 1 for all x ∈ Ω, and hence the domain of φ can be assumed
to be ]0, 1]. Recall that if a domain Ω satisfies condition (9) with a function
φ(t) = C log(1/t), then Ω is called a Hölder domain (see [SS1]). Thus we can say
that domains defined in Definition 4.1 are generalized Hölder domains. It is well
known that the Hausdorff dimension of the boundary of a Hölder domain is strictly
smaller than n . This is shown in [JM], [SS2] and [KR]. In this section we prove
a corresponding dimension estimate for domains satisfying (9) with a function φ
that satisfies certain conditions formulated below. To indicate how fast decreasing
functions φ allow for a generalized dimension estimate, let us already point out
that, for φ(t) =

(
log(1/t)

)s
we will obtain a dimension bound when s ≤ n/(n− 1),

whereas the boundary can have positive volume when s > n/(n− 1).

Definition 4.2. We say that a decreasing function φ: ]0, 1] →]0,∞[ is of
logarithmic type, if there exist positive constants t0 < 1 and β such that φ
satisfies the following conditions for all t ≤ t0 :

(10) φ(t) is differentiable and − φ′(t)t is a decreasing function;

(11) φ(t) ≤ βφ
(√
t
)
.

Note that, for example, a function of the form

φ(t) =




C

(
log

1

t

)s1(
log log

1

t

)s2
· · ·

(
log(m) 1

t

)sm

+ C, t < am;

C, t ≥ am,

where C > 0, m ∈ Z+ , am = 1/ exp(m−1)(e), s1 ≥ 1, s2, . . . , sm ≥ 0, is of
logarithmic type.

Lemma 4.3. Let φ be a function of logarithmic type. Then

φ(ab) ≤ β
(
φ(a) + φ(b)

)

for all a, b ∈]0, 1[ for which ab ≤ t0 .
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Proof. Either a ≤
√
ab or b ≤

√
ab , and hence we obtain β

(
φ(a) + φ(b)

)
≥

βmax{φ(a), φ(b)} ≥ βφ
(√
ab

)
≥ φ(ab).

Lemma 4.4. Let φ be a function of logarithmic type. Then there is t1 ∈]0, 1[
such that the inequality

βφ(tk+1) ≤ 2−k
(

1

t

)k

holds for all t < t1 and every k ∈ Z+ .

Proof. Let t0 < 1 be as in Definition 4.2. We show first that there is t̃1 such
that

(12) φ(t) ≤ 1

t

for all t < t̃1 . Suppose that (12) is false. Then for arbitrarily large j ∈ Z+ there

is t20 ≤ rj ≤ t0 such that φ(r2
j

j ) > (1/rj)
2j ≥ (1/t0)

2j

. By iterating condition

(11), we obtain φ(r2
j

j ) ≤ βjφ(rj) ≤ βj+1φ(t0), and hence (1/t0)
2j

< βj+1φ(t0).
This is a contradiction with large j , and thus property (12) is proved.

Let k ∈ Z+ . Applying property (11) twice, we have that

βφ(tk+1) ≤ β3φ(t(k+1)/4)

for all t < t20 . Then, by property (12), we obtain

β3φ(t(k+1)/4) ≤ β3

(
1

t

)(k+1)/4

for all t < t̃21 . A simple calculation yields

β3

(
1

t

)(k+1)/4

≤ 2−k
(

1

t

)k
for all t <

1

4β6
.

This proves the claimed inequality for all t < t1 = min{t20, t̃21, 1/4β6} .

The next theorem extends a result by Smith and Stegenga in [SS1, Theorem 3]
given for Hölder domains. For an intermediate result see [KOT, Lemma 4.6].

Theorem 4.5. Let Ω ⊂ Rn be a bounded domain that satisfies the quasi-

hyperbolic growth condition with the function φ of logarithmic type. Then there

is a constant CΩ <∞ such that

(13) kΩ(x, x0) ≤ βφ

(
l
(
γ(x, x1)

)

d(x0, ∂Ω)

)
+ CΩ

for all x1 ∈ Ω , where γ is a quasihyperbolic geodesic connecting x0 to x1 , and

x ∈ γ .
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Proof. Assume that (13) is false. Then for each constant CΩ there is a point
x1 , a geodesic γ connecting x0 to x1 , and a point y0 ∈ γ for which

(14) βφ

(
l
(
γ(y0, x1)

)

d(x0, ∂Ω)

)
+ CΩ < kΩ(x0, y0).

Let L = l
(
γ(y0, x1)

)
. Define points yk ∈ γ(yk−1, x1) recursively so that

l
(
γ(yk−1, yk)

)
= 2−kL for all k ∈ Z+ . Let

δk = sup{d(x, ∂Ω) : x ∈ γ(yk, x1)}.
We can choose the constant CΩ so large that δ0/d(x0, ∂Ω) ≤ t0 . Then, by

combining (9), (14) and Lemma 4.3, we obtain the following chain of inequalities
for all x ∈ γ(y0, x1):

βφ

(
L

d(x0, ∂Ω)

)
+ CΩ < kΩ(x0, y0)

≤ kΩ(x0, x) ≤ φ

(
d(x, ∂Ω)

d(x0, ∂Ω)

)
+ C0

≤ βφ

(
d(x, ∂Ω)

L

)
+ βφ

(
L

d(x0, ∂Ω)

)
+ C0.

Hence

CΩ − C0 ≤ βφ

(
δ0
L

)
.

Now we can choose the constant CΩ so large that CΩ ≥ C0 and the ratio
δ0/L is so small that, by Lemma 4.4,

(15) βφ

((
δ0
L

)k+1)
≤ 2−k

(
L

δ0

)k

for all k ∈ Z+ .
We show by induction that δk−1/L ≤ (δ0/L)k for all k ∈ Z+ . This is trivially

true if k = 1, so assume that it is true for some k ≥ 1. By combining the
induction assumption, Lemma 4.3 and the inequalities (14) and (15), we obtain
for all x ∈ γ(yk, x1) that

βφ

(
L

d(x0, ∂Ω)

)
+ CΩ + βφ

((
δ0
L

)k+1)
≤ kΩ(x0, y0) + 2−k

(
L

δ0

)k

≤ kΩ(x0, y0) + 2−k
L

δk−1

≤ kΩ(x0, y0) + kΩ(yk−1, yk) ≤ kΩ(x0, x)

≤ φ

(
d(x, ∂Ω)

d(x0, ∂Ω)

)
+ C0

≤ βφ

(
d(x, ∂Ω)

L

)
+ βφ

(
L

d(x0, ∂Ω)

)
+ C0.
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Now we have that

βφ
(
(δ0/L)k+1

)
+ CΩ − C0 ≤ βφ

(
δk
L

)

which proves the induction hypothesis.

Since δ0/L < 1 and the inequality

0 < d(x1, ∂Ω) ≤ δk ≤ L

(
δ0
L

)k+1

holds for all k ∈ Z+ , we have a contradiction which proves the theorem.

For the proof of the main theorem of this section we need one more lemma
concerning the geometric properties of the Whitney decomposition. For the exact
construction of this decomposition we refer the reader to [S].

Lemma 4.6. Let Q0 ⊂ Rn be a cube that has sides parallel to the coordinate

planes, and let the edge length of Q0 be 2−m . Let Q̃ ⊂ Q0 be a cube sharing

a part of a face with Q0 . Let l(Q̃ ) = c2−m with c < 1 . Let W be a Whitney

decomposition of Q0 . Then, there is a cube Q ∈ W for which Q ⊂ Q̃ and

l(Q) ≥ c2−m/D(n) . Moreover, there are at least 2i(n−1) cubes Qj ∈ W for which

Qj ⊂ Q̃ and l(Qj) ≥ c2−m−i/D(n) . Here D(n) = 2 + 6
√
n .

Proof. Recall that each Whitney cube Qkj ∈ W has sides parallel to the

coordinate planes and the edge length of Qkj is 2−k . The collection {Qkj : j =

1, . . . , Nk} is called the kth generation of the cubes. It follows from the construc-
tion of the Whitney decomposition that the inequality

(16) 2−k
√
n ≤ d(Qkj , ∂Q0) < 3 · 2−k

√
n

holds for each cube in the kth generation, see [G]. Thus we see that there must be

a cube Q ∈ W such that Q ⊂ Q̃ and

l(Q) ≥ c2−m

2 + 6
√
n

as otherwise the inequality (16) would fail for some cube near the center of Q̃ .

To prove the second part of the lemma let i ∈ Z+ and subdivide the cube Q̃
into 2in cubes with equal side lengths of at least c2−m−i . Of these subcubes at
least 2i(n−1) cubes share a face with the cube Q0 and, by inequality (16), from
each subcube we find a cube Qj ∈ W such that l(Qj) ≥ c2−m−i/D(n).
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We recall also the following property of the Whitney decomposition. Let W

be the Whitney decomposition of a domain Ω ⊂ Rn . Pick a cube Q0 ∈ W ,
and set q(Q0) = 0. For any two adjacent (i.e. sharing at least a part of a face)
Whitney cubes, join their centers by an interval, and let q(Q) be the number of
intervals in the shortest chain joining the centers of Q0 and Q . We can remove the
redundant intervals so that the resulting collection of intervals is a tree. We denote
the set of cubes connecting Q to Q0 by chain(Q0, Q), and the number of cubes
in chain(Q0, Q) by ]chain(Q0, Q). Note that now q(Q) + 1 = ]chain(Q0, Q) ≤
CkΩ(z0, z) for any z0 ∈ Q0 and z ∈ Q for which kΩ(z0, z) > constant.

The next theorem extends the result given for Hölder domains in [KR, The-
orem 5.1]. We show that the boundary of a generalized Hölder domain is weakly
mean porous with appropriate parameters.

Theorem 4.7. Let Ω ⊂ Rn be a bounded domain that satisfies the quasihy-

perbolic growth condition with the function φ of logarithmic type. Then there is

a constant c > 0 such that the boundary of the domain Ω is weakly mean porous

with parameters C1(n)α(t) and C2(n)λ(k) , where (for small t) α(t) = c/−φ′(t)
and λ(k) is the smallest integer such that λ(k) ≥ 2−k/α(2−k) .

Proof. Let j0 ∈ Z+ such that 2−j0+1 ≤ d(x0, ∂Ω). Let j > 2j0 and let
x ∈ ∂Ω. Choose a point

y ∈ B(x, 2−j−1) ∩ Ω,

and let γ be a quasihyperbolic geodesic connecting y to x0 . Choose w ∈ γ such
that

l
(
γ(w, y)

)
= 2−j−1.

Then w ∈ B(x, 2−j). Moreover, Lemma 4.5 implies the estimate

(17) kΩ(w, x0) ≤ βφ

(
2−j−1

d(x0, ∂Ω)

)
+ CΩ.

Define for each k ≥ j0 a function

χk(x) =





1, if

∫

Ak(x)∩γ

dt

d(t, ∂Ω)
≤ 2−k

α(2−k)
;

0, otherwise.

Let

Sj(x) =

j∑

k=j0

χk(x).

We prove first that

(18)
Sj(x)

j
>

1

2
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for all sufficiently large j .
For those Ak(x), j0 ≤ k ≤ j , for which χk(x) = 0, we have that

(19)

∫

Ak(x)∩γ

dt

d(t, ∂Ω)
>

2−k

α(2−k)
.

Suppose that the assertion Sj(x)/j >
1
2 fails for some large j . Then by (19) we

have that

kΩ(w, x0) >

j∑

k=j0

|χk(x) − 1| 2−k

α(2−k)
,

which is by property (10) at least

j/2∑

k=j0

−φ′

(2−k)2−k

c
≥ 1

c

(
φ(2−j/2) − φ(2−j0)

)
.

This number is greater than βφ
(
2−j−1/d(x0, ∂Ω)

)
+ CΩ , when we choose j big

enough and c < 1/β4 . Hence we have a contradiction with inequality (17), which
proves (18).

Next we define a collection Q of disjoint cubes in Ω in the following way. Let
W be a Whitney decomposition of the domain Ω. Then let Q consist of all the
cubes in the Whitney decompositions of the cubes Q ∈ W . We show that

(20) χQ

k (x) ≥ χk(x)

for all k ≥ j0 with parameters C1(n)α(2−k) and C2(n)λ(k).
Consider k ∈ Z+ such that χk(x) = 1. Then

∫

Ak(x)∩γ

dt

d(t, ∂Ω)
≤ 2−k

α(2−k)
.

Choose y ∈ γ ∩ Sn−1(x, 2−k+1) and z ∈ γ ∩ Sn−1(x, 2−k) such that γ(y, z) ⊂
Ak(x). Let Qy, Qz ∈ W such that y ∈ Qy and z ∈ Qz . Now

(21) ]chain(Qy, Qz) ≤
c02

−k

α(2−k)

with some constant c0 depending only on n .
For each Qi ∈ chain(Qy, Qz), let Q̃ i ⊂ Rn be the largest cube such that it

has sides parallel to the coordinate planes and Q̃ i ⊂ Qi ∩Ak(x). Now Q̃ i shares
at least one part of a face with Qi . Moreover

(22)

]chain(Qy,Qz)∑

i=1

d(Q̃ i) ≥ 2−k.
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Combining (21) and (22) we have that

(23)
∑

i:d(Q̃ i)≥α(2−k)/2c0

d(Q̃ i) ≥
2−k

2
.

Applying Lemma 4.6 and inequality (23) we see that from these cubes Q̃ i , for

which d(Q̃ i) ≥ α(2−k)/2c0 , we find at least c02
−k/α(2−k) cubes Q ∈ Q such

that l(Q) ≥ α(2−k)/2c0D(n)
√
n . Thus we have proven (20) with constants

C1(n) = 1/2c0D(n)
√
n and C2(n) = c0/2. The claim follows immediately

from (18) and (20).

Note that property (10) for the function φ implies property (2) in Defini-
tion 3.1 for the function α(t) = c/−φ′(t). Also note that, for a Hölder domain,
−φ′(t)t is a constant, and by Theorem 4.7 the boundary of such a domain is mean
porous (this result is equivalent to [KR, Theorem 5.1]).

Corollary 4.8. Let Ω ⊂ Rn be a bounded domain that satisfies the quasi-

hyperbolic growth condition with the function φ of logarithmic type. Then there

are positive constants M , C(β, n) and an integer j0 such that

|∂Ω + 2−j | ≤M exp

(
−C(β, n)

∫

[2−j,2−j0 ]

dt
(
−φ′(t)t

)n−1
t

)

for all j > j0 .

Proof. By combining Theorem 4.7 and the proof of Theorem 3.3 we deduce
by (6) that there are j0 ∈ Z+ and c = c(β) > 0 such that (the summation indices
follow from Remark 3.4)

|∂Ω + 2−j | ≤ M exp

(
−C(n)

j∑

k=j0

(
c

−φ′(2−k)2−k
)n−1)

≤ M exp

(
−1

2
C(n)cn−1

∫

[2−j ,2−j0 ]

dt
(
−φ′(t)t

)n−1
t

)

for all j > j0 with a constant M depending on Ω.

Corollary 4.9. Let Ω ⊂ Rn be a bounded domain that satisfies the quasi-

hyperbolic growth condition with the function φ of logarithmic type satisfying
∫

0

dt
(
−φ′(t)t

)n−1
t

= ∞.

Then mn(∂Ω) = 0 and there is a positive constant C(β, n) and an integer j0 such

that Hh(∂Ω) <∞ for each premeasure h , which satisfies

h(2−j) ≤M2−jn exp

(
C(β, n)

∫

[2−j ,2−j0 ]

dt
(
−φ′(t)t

)n−1
t

)

for all j > j0 with some positive constant M .
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Proof. The claim follows by Theorem 4.7, Corollary 3.5 and a similar argu-
ment as in the proof of Corollary 4.8.

Note that Corollary 4.9 is essentially sharp by an example in Section 7.2.

Remark 4.10. Let Ω ⊂ Rn be a bounded domain that satisfies the quasi-
hyperbolic growth condition with the function

φ(t) =
1

ε

(
log

1

t

)s
with 1 ≤ s ≤ n

n− 1
.

Then, by Corollary 4.9, mn(∂Ω) = 0 and Hh(∂Ω) <∞ for the gauge function

h(t) = tn exp

(
C(

n− (n− 1)s
)
(

log
1

t

)n−(n−1)s)

when s < n/(n− 1), and for the gauge function

h(t) = tn
(

log
1

t

)C

when s = n/(n− 1). Here the constant C depends on ε , n and s .
If n/(n− 1) < s , then the boundary of the domain Ω can have positive

Lebesgue measure, see Section 7.2.

5. Uniform continuity of quasiconformal mappings

The connection between uniform continuity of quasiconformal mappings and
the concept of generalized mean porosity comes from the following observation.

Theorem 5.1. Let ψ: ]0, 1[→]0, 1[ be an increasing bijection, and let u(t) :=
ψ−1(t) . Assume that log

(
1/u(t)

)
is of logarithmic type. Let f : Bn → Ω ⊂ Rn

be a K -quasiconformal map such that the inequality

(24) |f(tω) − f(ω)| ≤ ψ(1 − t)

holds for all ω ∈ Sn−1 and t0 < t < 1 . Then there is a constant c > 0 such

that ∂f(Bn) is weakly mean porous with parameters C1(n)α(t) and C2(n)λ(k) ,
where (for small t) α(t) = cu(t)/u′(t) and λ(k) is the smallest integer such that

λ(k) ≥ 2−k/α(2−k) .

Let us already remark that this theorem could be considered as a special case
of Theorem 4.7. At the end of this section we discuss the connection between
the uniform continuity of a quasiconformal mapping f and the quasihyperbolic
growth condition in the image domain f(Bn).
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Proof of Theorem 5.1. Let ω ∈ ∂Bn . Define functions χk and Sj as in the
proof of Theorem 4.7. We prove that

(25)
Sj

(
f(ω)

)

j
>

1

2

for all sufficiently large j ∈ Z+ .
Let j0 ∈ Z+ such that 2−j0+1 ≤ d

(
f(0), ∂f(Bn)

)
and 2−j0+1 ≤ 1 − t0 . Let

j > 2j0 and let j0 ≤ k ≤ j such that χk
(
f(ω)

)
= 0. The curve γ = f([0, ω])

intersects the two boundary components of Ak
(
f(ω)

)
in two points a = f(taω)

and b = f(tbω), say. The quasihyperbolic distance kΩ(a, b) of a and b is at
least 2−k/α(2−k). As quasiconformal maps are quasi-isometries for large distances
in the quasihyperbolic metrics (see [GO, p. 62]), the quasihyperbolic distance
kBn(taω, tbω) is at least C2−k/α(2−k), provided c is small enough. Here C
depends on K and n .

Consider the largest t < 1 with

|f(tω) − f(ω)| = 2−j .

It follows from (24) that 2−j ≤ ψ(1 − t), and equivalently

(26) log
1

1 − t
≤ log

(
1

u(2−j)

)
.

On the other hand

(27) log
1

1 − t
= kBn(0, tω) ≥

∑
kBn(taω, tbω) ≥

∑
C

2−k

α(2−k)
,

where the summation is over all j0 ≤ k ≤ j with χk
(
f(ω)

)
= 0.

Suppose that the assertion Sj
(
f(ω)

)
/j > 1/2 fails for some large j . Then,

by combining (26) and (27), we obtain that (the summation indices follow from
assumption (10))

log

(
1

u(2−j)

)
≥ C

j/2∑

k=j0

2−ku′(2−k)

cu(2−k)

≥ C
1

c

(
log

(
1

u(2−j/2)

)
− log

(
1

u(2−j0)

))
.

This contradicts property (11) when we choose j large enough and the constant
c < C/2β , and thus (25) is proved. To prove the claim we can choose the collection
Q and the constants C1 , C2 similarly as in the proof of Theorem 4.7.
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Corollary 5.2. Let f : Bn → Ω ⊂ Rn be a K -quasiconformal map and

suppose

|f(x) − f(x′)| ≤ ψ(|x− x′|)

for all x, x′ ∈ Bn sufficiently close to each other. Assume that the function

log(1/ψ−1) is of logarithmic type and that u = ψ−1 satisfies

(28)

∫

0

(
u(t)

u′(t)

)n−1
dt

tn
= ∞.

Then mn

(
∂f(Bn)

)
= 0 and there is a positive constant C = C(β,K, n) and an

integer j0 such that Hh
(
∂f(Bn)

)
<∞ for each premeasure h which satisfies

h(2−j) ≤M2−jn exp

(
C

∫

[2−j ,2−j0 ]

(
u(t)

u′(t)

)n−1
dt

tn

)

for all j > j0 with some positive constant M .

Proof. The claim follows by combining Theorem 5.1, Corollary 3.5, and a
similar argument as in the proof of Corollary 4.8.

Remark 5.3. Consider (28) in the case n = 2. Assume that u = ψ−1

satisfies the conditions of Corollary 5.2 and

(29)

(
logψ(t)

)′

logψ(t)
t log t is monotone for all sufficiently small t.

Then ∫

0

(
u(t)

u′(t)

)
dt

t2
= ∞ if and only if

∫

0

(
logψ(t)

log t

)2
dt

t
= ∞.

The statement above seems to be known (cf. [JM, p. 453]), but for the con-
venience of the reader we present a proof.

Proof of Remark 5.3. By a change of variable we have for arbitrarily small
r > 0 that ∫ r

0

(
u(t)

u′(t)

)
dt

t2
=

∫ ψ−1(r)

0

(
ψ′(u)

ψ(u)

)2

u du

=

∫ ψ−1(r)

0

((
logψ(u)

)′)2
u du

=

∫ ψ−1(r)

0

((
logψ(u)

)′

(logu)′

)2
du

u
.
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Let us write ψ(t) = exp
(
−α(t)

)
and assume that log(1/ψ−1) is of logarithmic

type (as assumed in Corollary 5.2). By (29) it suffices to show that

ε ≤
∣∣∣∣

(
logψ(t)

)′

(log t)′

∣∣∣∣/
∣∣∣∣

logψ(t)

log t

∣∣∣∣ =

∣∣∣∣
α′(t)

α(t)
t log t

∣∣∣∣ ≤M

for some arbitrarily small t > 0 with some positive constants ε and M . Assume
towards a contradiction that

∣∣∣∣
α′(t)

α(t)
t log t

∣∣∣∣ < ε

for all small t with arbitrarily small ε > 0. By Gronwall’s lemma ([W, p. 436])
we deduce that α(t) ≤ C

(
log(1/t)

)ε
for small t and hence

ψ(t) ≥ exp

(
−C

(
log

1

t

)ε)
.

This implies that

ψ−1(t) ≤ exp

(
−

(
1

C
log

1

t

)1/ε)

or equivalently

log
1

ψ−1(t)
≥

(
1

C
log

1

t

)1/ε

for small t . But this is a contradiction with (11) when ε is chosen small enough.
Let us then assume that |α′(t)/α(t)t log t| > M for all small t with arbitrarily

large M . Again by Gronwall we deduce that α(t) ≥ C
(
log(1/t)

)M
and hence

ψ(t) ≤ exp
(
−C

(
log(1/t)

)M
). This implies that

ψ−1(r) ≥ exp

(
−

(
1

C
log

1

t

)1/M)

or equivalently (
1

C
log

1

t

)1/M

≥ log

(
1

ψ−1(t)

)
.

This, however, contradicts property (10) when M is chosen large enough.

By Remark 5.3 we see that, in the case n = 2, condition (28) is essentially
equivalent with the assumption of [JM, Theorem C.1]. Jones and Makarov proved
in this paper that this condition, implying m2

(
∂f(B2)

)
= 0, is sharp. We will

show in Section 7.2 that even the dimension estimate of Corollary 5.2 is essentially
sharp.
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Remark 5.4. Let f : Bn → Ω ⊂ Rn be a K -quasiconformal map and
suppose

|f(x) − f(x′)| ≤ ψ(|x− x′|)

for all x, x′ ∈ Bn with the function

ψ(t) = exp

(
−

(
ε log

1

t

)1/s)

where 1 ≤ s ≤ n/(n− 1). Then, by Corollary 5.2, mn

(
∂f(Bn)

)
= 0 and

Hh
(
∂f(Bn)

)
<∞ for the gauge function

h(t) = tn exp

(
C(

n− (n− 1)s
)
(

log
1

t

)n−(n−1)s)

when s < n/(n− 1), and for the gauge function

h(t) = tn
(

log
1

t

)C

when s = n/(n− 1). Here the constant C depends on K , ε , n and s .

If n/(n− 1) < s , then the boundary of the domain f(Bn) can have positive
Lebesgue measure, see Section 7.2.

Note that the previous example is roughly equivalent with Remark 4.10. In-
deed, by using the fact that quasiconformal mappings are quasi-isometries for large
distances in the quasihyperbolic metrics, we see the following connection between
uniform continuity of quasiconformal mappings and the quasihyperbolic growth
condition. If f : Bn → Ω ⊂ Rn is a K -quasiconformal mapping from the unit ball
onto a bounded domain Ω, and

|f(x) − f(x′)| ≤ ψ(|x− x′|)

for all x, x′ ∈ Bn sufficiently close to each other, where ψ satisfies the condi-
tions of Theorem 5.1, then the image domain f(Bn) satisfies the quasihyperbolic
growth condition with the function φ(t) = C log

(
1/ψ−1(t)

)
. Moreover, the di-

mension estimates implied by Corollaries 4.9 and 5.2 for the boundary of f(Bn)
are equivalent (except perhaps with different constants).
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6. John domains

Definition 6.1. Let ϕ: [0,∞[→ [0,∞[ be a continuous function such that
ϕ(t)/t is an increasing function. We say that a domain Ω is a ϕ -John domain, if
there is a John center x0 ∈ Ω such that for all x ∈ Ω there is a curve γ: [0, l] → Ω,
parametrized by arclength and with γ(0) = x , γ(l) = x0 , and d(γ(t), ∂Ω) ≥ ϕ(t)
for all 0 < t < l .

Note that, when ϕ(t) = ct with some c < 1, this definition is equivalent to the
definition of a usual c -John domain. The Hausdorff dimension of the boundary of a
usual c -John domain is known to be strictly less than n , see e.g. [KR, p. 599]. The
question arises, whether one could establish a dimension bound for the boundary
of a ϕ -John domain Ω ⊂ Rn with ϕ(t) = cts for some s > 1. This cannot
be done, however. In Section 7.3 we show that, for any s > 1, the boundary
∂Ω can have positive Lebesgue measure. However, with a proper function ϕ , a
dimension estimate for the boundary can be established by applying generalized
mean porosity. It is indeed immediate that the boundary of a ϕ -John domain
is weakly mean porous with parameters α(t) = Cϕ(t) (for small t) and λ(k) ≥
2−k/2α(2−k) (take Q to be the collection of the Whitney decompositions of all
the cubes in the Whitney decomposition of Rn \ ∂Ω). By applying Corollary 3.5
we obtain the following result.

Corollary 6.2. Let Ω ⊂ Rn be a ϕ -John domain. Assume that

∫

0

ϕ(t)n−1dt

tn
= ∞.

Then mn(∂Ω) = 0 and there is a positive constant C(n) and an integer j0 such

that Hh(∂Ω) <∞ for each premeasure h which satisfies

h(2−j) ≤M2−jn exp

(
C(n)

∫

[2−j,2−j0 ]

ϕ(t)n−1 dt

tn

)

for all j > j0 with some positive constant M .

Note that this corollary is essentially sharp by an example given in Section 7.3.
Therefore, if

ϕ(t) =
t(

log(1/t)
)s

for small t , then we obtain a dimension bound when s ≤ 1/(n− 1), whereas the
boundary can have positive volume when s > 1/(n− 1).

Remark 6.3. Let Ω ⊂ Rn be a ϕ -John domain with

ϕ(t) = t

(
log

1

t

)−1/(n−1)
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for small t . Then Corollary 6.2 implies that mn(∂Ω) = 0 and, moreover, Hh(∂Ω)
<∞ for the gauge function

h(t) = tn
(

log
1

t

)C(n)

.

7. Sharpness of the results

Recall the well-known Frostman lemma. We denote by M (A) the set of
Radon measures µ such that spt(µ) ⊂ A and µ(Rn) = 1.

Lemma 7.1. Let A be a Borel set in Rn and suppose there exists µ ∈ M (A)
such that µ

(
B(x, r)

)
≤ h(r) for x ∈ Rn and r > 0 . Then Hh(A) > 0 .

Proof. Take any collection of balls Bi = B(xi, ri), xi ∈ Rn , ri < r , such
that A ⊂ ⋃

iBi . Then 1 = µ(A) ≤ µ(
⋃
iBi) ≤

∑
i µ(Bi) ≤

∑
i h(ri).

7.1. Sharpness of Corollary 3.5. We show the sharpness of Corollary 3.5
by constructing an example of a set E which is weakly mean porous with param-
eters α and λ and for which Hh(E) > 0 with a premeasure h satisfying for all
j ∈ Z+

h(2−j) ≤ 2−jn exp

(
C̃ (n)

j∑

k=1

λ(k)α(2−k)n

(2−k)n

)

with some constant C̃ (n).
Let α and λ be as in Corollary 3.5. Then

(30) p(k) =
λ(k)α(2−k)n

(2−k)n
is a decreasing function of k.

Let

Q0 =

{
x ∈ Rn : |xi| ≤

1

4
√
n

for all i = 1, 2, . . . , n

}
.

We define for each k ∈ Z+ a collection Ek of closed sets F ⊂ Rn in the following
way. E0 consists of Q0 alone. To obtain Ek from Ek−1 , subdivide Q0 into
2nk closed dyadic cubes Qik of diameter 2−k−1 in the natural way. For each

i = 1, . . . , 2nk , let Q̃ i
k ⊂ Qik be the smallest open cube in the center of Qik such

that it contains 2nλ(k) disjoint open cubes of side length α(2−k). We may assume

that the diameter of Q̃ i
k is dyadic and, by condition (30),

(31)
d(Q̃ i

k)

d(Qik)
≤ 1

4
for all i and k.

Let
Ek = {F ∩Qik \ Q̃ i

k : F ∈ Ek−1, i = 1, . . . , 2nk}.
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We show that the set

E =
∞⋂
k=1

⋃
F∈Ek

F

is weakly mean porous with parameters α and λ .
Define for every k ∈ Z+ a collection Q̃ k of disjoint cubes by subdividing

each Q̃ i
k , i = 1, . . . , 2nk , into 2nλ(k) subcubes of side length α(2−k). Then let

Qk =

{
Q ∈ Q̃ k : Q ⊂

2nk⋃
i=1

Q̃ i
k \

k−1⋃
j=0

2nj⋃
l=1

Q̃ l
j

}
,

and let

Q = {Q ∈ Qk : k = 1, 2, . . .}.

To see that Q indeed satisfies the conditions of Definition 3.1, notice the
following geometric facts. Fix x ∈ E and take any Qk (a dyadic subcube of Q0

with diameter 2−k−1 ) such that x ∈ Qk . Now, there exists a dyadic subcube
Qk+3 ⊂ Qk such that Qk+3 ⊂ Ak+3(x). Moreover, by inequality (31), we can

choose the cube Qk+3 so that it is not completely covered by the set
⋃k+2
j=0

⋃2nj

l=1 Q̃
l
j

(here Q̃ l
j is defined as above). Now, by inequality (31), there is at most one dyadic

subcube Qj such that j ≤ k + 2 and Q̃ j ∩ Q̃ k 6= ∅ . Since the diameter of the

cube Q̃ j is dyadic, we see that the set Q̃ k+3 \ ⋃k+2
j=0

⋃2nj

l=1 Q̃
l
j contains at least

λ(k + 3) cubes Q ∈ Q such that l(Q) ≥ α(2−k−3). Thus we have that

χQ

k (x) = 1

for every k and hence E is weakly mean porous.
Next we estimate the dimension of E by using Frostman’s lemma. Define the

density

∆k,F =

∣∣⋃
G∈Ek+1

G ∩ F
∣∣

|F | =
∑

G∈Ek+1

|G ∩ F |
|F |

for each (nonempty) set F ∈ Ek . The construction above implies

(32) ∆k,F ≥
(

1 − C(n)λ(k)α(2−k)n

(2−k)n

)
=: ∆k.

For each set F ∈ Ek let Fi ∈ Ei , i = 0, 1, . . . , k − 1, be the (unique) sets for
which F ⊂ Fi . We define a sequence of Radon measures µk , k = 0, 1, 2, . . ., so
that

µ0(A) =
1

|Q0|
|Q0 ∩ A|
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and

µk(A) =
1

|Q0|
∑

F∈Ek

|F ∩ A|
∆k−1,Fk−1

× · · · × ∆0,F0

for all measurable A ⊂ Rn . Then spt(µk) ⊂
⋃
F∈Ek

F and

µk+1(F ) =
1

|Q0|
∑

G∈Ek+1

|G ∩ F |
∆k,F × ∆k−1,Fk−1

× · · · × ∆0,F0

=
1

|Q0|
|F |

∆k−1,Fk−1
× · · · × ∆0,F0

= µk(F )

for all F ∈ Ek . Hence µl(F ) = µk(F ) for all l ≥ k . In particular, for all k

µk(R
n) = µk(Q0) = µ0(Q0) = 1

and thus µk ∈ M (Rn) for all k .
Recall that M (Rn) is a compact metric space with an appropriate metric d

(see [M, pp. 52–55]). Hence there is a subsequence µki
converging to a measure

µ ∈ M (Rn) in the metric d . Note that spt(µ) ⊂ E .
Let j ∈ Z+ and let x ∈ Rn . By (32) we have for each G ∈ Ej+1 that

µ(G) ≤ |G|
|Q0|

∏j
k=1 ∆k

and, by the construction, the ball B(x, 2−j) intersects at most P (n) sets Gi ∈
Ej+1 , where P (n) is a constant depending only on n . Hence

µ
(
B(x, 2−j)

)
≤ µ

(
P (n)⋃
i=1

Gi
)

≤
∑P (n)
i=i |Gi|

|Q0|
∏j
k=1 ∆k

≤ P (n)2−jn

|Q0|
∏j
k=1 ∆k

.

We choose the constant Q(n) ≥ P (n)/|Q0| and the function

h(2−j) =
Q(n)2−jn
∏j
k=1 ∆k

= Q(n)2−jn exp

(
− log

( j∏

k=1

∆k

))

= Q(n)2−jn exp

(
−

j∑

k=1

log ∆k

)

= Q(n)2−jn exp

(
−

j∑

k=1

log

(
1 − C(n)λ(k)α(2−k)n

(2−k)n

))
.

Clearly we have that

h(2−j) ≤ 2−jn exp

(
C̃ (n)

j∑

k=1

λ(k)α(2−k)n

(2−k)n

)
,
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when we choose the constant C̃ (n) large enough. Therefore

µ
(
B(x, 2−j)

)
≤ h(2−j) ≤ 2−jn exp

(
C̃(n)

j∑

k=1

λ(k)α(2−k)n

(2−k)n

)

and the claim follows by Frostman’s lemma.
Note especially that if

∞∑

k=1

λ(k)α(2−k)n

(2−k)n
<∞,

then Frostman’s lemma implies that mn(E) > 0.

7.2. Sharpness of Corollary 4.9. We show the sharpness of Corollary
4.9 in the case n = 2 by constructing a domain Ω ⊂ R2 such that it satisfies
the quasihyperbolic growth condition with a function φ , and Hh(∂Ω) > 0 with a
premeasure h satisfying

h(2−j) ≤ 2−2j exp

(
C̃

∫

[2−j,2−j0 ]

dt

−φ′(t)t2
)

for all large j ∈ Z+ , where the constant C̃ depends only on β .
Let φ: ]0, 1] →]0,∞[ be a function satisfying the conditions of Corollary 4.9.

By condition (10) we can take j0 to be the smallest integer such that

4β2

−φ′(2−j0) ≤ 2−j0

16
.

Then define a function α so that it satisfies

α(2−k) =
4β2

−φ′(2−k)

for all k ≥ j0 . Thus α(2−k)/2−k ≤ 1/16 for all k ≥ j0 . We may assume that
α(2−k) is dyadic for all k ≥ j0 .

Let
Qj0 =

{
(x, y) ∈ R2 : |x| ≤ 2−j0−1 and |y| ≤ 2−j0−1

}
.

Let Ωxj0 be the α(2−j0) neighborhood of the x -coordinate axis in the square Qj0 .

Let Ωyj0 be the α(2−j0) neighborhood of the y -coordinate axis in the square Qj0 .
Let Ωj0 = Ωxj0 ∪ Ωyj0 . For each k > j0 define Ωk by subdividing Qj0 into dyadic

squares Qik , i = 1, 2, . . . , 22(k−j0) , of side length 2−k . Let Ω̃ x
k be the union of the

α(2−k) neighborhoods of the centered x -coordinate axes in the squares Qik and let
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Ωxk = Ω̃ x
k \

⋃k−1
i=j0

Ωi . Similarly let Ω̃ y
k be the union of the α(2−k) neighborhoods

of the centered y -coordinate axes in the squares Qik and let Ωxk = Ω̃ x
k \

⋃k−1
i=j0

Ω i .

Let Ωk = Ωxk ∪ Ωyk .
Define the domain Ω by

Ω =
∞⋃
k=j0

Ωk ∪
∞⋃
k=j0

int1( Ωx
k ∩ Ωy

k+1),

where we denote by int1( · ) the one-dimensional interior of the set.
Notice that the domain Ω satisfies the quasihyperbolic growth condition with

the function φ : Let x0 = 0 and let xj ∈ Ω such that α(2−j−1) ≤ d(xj, ∂Ω) ≤
α(2−j) for some j ≥ 2j0 . Now we have that

kΩ(x0, xj) ≤ 2

j+1∑

k=j0

∫ 2−k

0

dt

α(2−k)
≤ 2

j+1∑

k=j0

2−k

α(2−k)

=
1

2β2

j+1∑

k=j0

−φ′(2−k)2−k ≤ 1

β2

∫ 2−j0+1

2−j−1

−φ′(t) dt

≤ 1

β2
φ(2−j−1) ≤ φ(2−j/2) ≤ φ

(
2−j

2−j0

)

≤ φ

(
α(2−j)

α(2−j0)

)
≤ φ

(
d(xj , ∂Ω)

d(x0, ∂Ω)

)
.

Hence there is a constant C0 such that the inequality

k(x, x0) ≤ φ

(
d(x, ∂Ω)

d(x0, ∂Ω)

)
+ C0

holds for all x ∈ Ω.
We obtain the desired dimension estimate for ∂Ω similarly to Section 7.1. Let

Ej0 = {Qj0 \ Ωj0} and define for all k > j0

Ek =
{
F ∩Qik \ Ωk : F ∈ Ek−1, i = 1, 2, . . . , 22(k−j0)

}
.

Now

∂Ω = E =
∞⋂
k=j0

⋃
F∈Ek

F,

and for the density ∆k,F we have the estimate

∆k,F ≥
(

1 − Cα(2−k)

2−k

)
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for each F ∈ Ek . Hence

∆k,F ≥
(

1 − C

−φ′(2−k)2−k
)
,

where the constant C depends only on β . The claim follows as in Section 7.1
by using Frostman’s lemma. Note especially that if the sum

∑
1/−φ′(2−k)2−k

converges, or equivalently, if

∫

0

dt

−φ′(t)t2 <∞,

then mn(∂Ω) > 0.
Note that this example also shows the essential sharpness of Corollary 5.2.

Indeed, the domain Ω is simply connected and hence it is the image of the disk
B2 for some quasiconformal mapping f : B2 → R2 . Since Ω satisfies the quasi-
hyperbolic growth condition with the function φ which satisfies the conditions of
Corollary 4.9, the mapping f is uniformly continuous with a corresponding mod-
ulus of continuity ψ(t) = Cφ−1

(
C log(1/t)

)
; see [HK] for details. In this case

the dimension estimates of the Corollaries 4.9 and 5.2 are essentially equivalent
(except perhaps with different constants).

To prove the sharpness of the dimension estimate in Rn with n > 2, a similar
construction can be carried out. We sketch an outline for the case n = 3. Let

Qj0 =
{
x ∈ R3 : |xi| ≤ 2−j0−1 for all i = 1, 2, 3

}
.

Define Ωj0 now by removing the α(2−j0) neighborhoods of the coordinate axes
in Qj0 and of the lines (t,±2j0−2, 0) in Qj0 . Define Ωj accordingly for j > j0
in the dyadic subcubes of Qj0 and, finally, define the domain Ω by attaching the
x3 -components of Ωj+1 to the x1 -components of Ωj . By [V] one can deduce that
with this construction Ω is a quasiconformal ball.

7.3. Sharpness of Corollary 6.2. We show the sharpness of Corollary 6.2
in the case n = 2 by constructing a ϕ -John domain Ω ⊂ R2 for which Hh(∂Ω) > 0
with a premeasure h satisfying

h(2−j) ≤ 2−2j exp

(
C̃

∫

[2−j ,2−j0 ]

ϕ(t)dt

t2

)

for all large j with some constant C̃ .
Let ϕ: ]0, 1[→]0, 1[ be a continuous function such that ϕ(t)/t is an increasing

function. Choose α(t) = ϕ(t) and construct a domain Ω similarly as in Section 7.2.
Notice that Ω is a ϕ -John domain: Let x0 = 0 be the John center, and for any
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x ∈ Ω let γ(x0, x) be the quasihyperbolic geodesic joining x to x0 . Now the
length of γ is at most 2−j0 and d

(
γ(t), ∂Ω

)
≥ ϕ(t) for all 0 < t < l ≤ 2−j0 .

We obtain the desired dimension estimate similarly as in Section 7.2. Now,
for the density ∆k,F , we have the following estimate. For each F ∈ Ek

∆k,F ≥
(

1 − Cϕ(2−k)

2−k

)
.

The claim follows as in Section 7.1 by using Frostman’s lemma. To prove the
sharpness of the dimension estimate in Rn with n > 2, a similar construction can
be carried out. The case n = 3 is outlined at the end of Section 7.2.
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