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Abstract. The result by G. Bouligand (1926) about the boundary behaviour of the solution
to the generalized Dirichlet problem is sharpened, the requirement that the prescribed boundary
function f be bounded being now replaced by |f | having a superharmonic majorant. By way of
application, a recent result on the boundary behaviour of the solution to the variational Dirich-
let problem for harmonic maps is sharpened by leaving out the previous requirement that the
prescribed boundary map be bounded.

Introduction

In the course of his investigation from 1926 of the classical Dirichlet prob-
lem for harmonic functions in a bounded open set Ω ⊂ Rm , G. Bouligand [Bou]
essentially found that, for any bounded resolutive (e.g. Borel measurable) func-
tion f : ∂Ω → R and any regular point x0 ∈ ∂Ω at which f is continuous, the
generalized solution HΩ

f : Ω → R in the sense of Perron and Wiener satisfies

(∗) HΩ

f (x) → f(x0) for x→ x0, x ∈ Ω.

It is known that the boundedness hypothesis on f cannot be omitted, see [Br2].
The Perron–Wiener method was extended and further developed by Brelot in
his axiomatic theory of harmonic functions from the late 1950’s, comprising also
Bouligand’s result [Br2, p. 115].

In the present article it is shown that the Bouligand–Brelot result remains
valid when boundedness of f is weakened to the existence of a superharmonic
function s > 0 in a neighbourhood of Ω such that |f | 6 s on ∂Ω (Theorem 1).
The author was led to this complement to the Bouligand–Brelot result while study-
ing the Dirichlet problem for harmonic maps, in the sense of Eells and Sampson
[ES] from 1964, between Riemannian manifolds X and Y , rather than harmonic
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functions. Owing to the nonlinearity of the concept of harmonic map, the Perron–
Wiener–Brelot procedure is no longer available. Instead one applies the direct
method of variational calculus, whereby the energy (a generalized Dirichlet inte-
gral) is to be minimized among all finite energy maps X → Y which agree, in the
complement of Ω b X , with a prescribed map X → Y of finite energy.

We first consider the variational Dirichlet problem for harmonic functions

in an open set Ω of compact closure in a hypoelliptic symmetric regular real
Dirichlet space of local type, in the sense of Feyel and de La Pradelle [FP2], who
proved that such a space X is also a harmonic space in the sense of Brelot, with
all the general properties known from classical potential theory. The variational
solution is shown to be identical with the solution in the sense of Perron–Wiener–
Brelot, and Theorem 1 therefore applies (Theorem 3). The identity of the two
solutions is known for continuous and hence bounded functions, even in the setting
of nonlinear potential theory, [HKM, Corollary 9.29]. Our proof of Theorem 3
uses H. Cartan’s theorem [Ca1] from 1945 on completeness of the space E + of all
positive measures of finite energy on Rm , m > 3, extended in Theorem 2 below
to the present hypoelliptic Dirichlet space X . We further use an approximation
result [F4, Theorem 6.5] from 1972, underlying the theory of harmonic functions
relative to the Cartan fine topology on X ; this result draws on Choquet [Ch3] and
Brelot [Br3], [Br4] and [Br5].

Thus prepared, we pass to the variational Dirichlet problem for harmonic
maps. The source space X is specialized to be a Riemannian manifold (possibly
with boundary), or more generally: an admissible Riemannian polyhedron with
simplexwise smooth Riemannian metric, cf. the recent monograph [EF] by J. Eells
and the present author. The target space Y is a simply connected complete
geodesic space of nonpositive curvature in the sense of A. D. Alexandrov [Al1],
[Al2]. In this setting we have a good concept of energy of maps X → Y , introduced
and investigated by Korevaar and Schoen [KS] in 1993 (for manifold domains), and
in [EF, Chapter 9] for polyhedral domains. Existence, uniqueness, and interior
Hölder continuity of the solution to the variational Dirichlet problem for harmonic
maps Ω → Y (Ω b X , Ω open) with a prescribed map ψ: X → Y of finite
energy was established in [F9, Theorem 1], and continuity of the solution up to
the boundary at any regular boundary point for Ω at which ψ is continuous was
proved there for bounded ψ . In Theorem 4 of the present paper this boundedness
requirement is removed, by application of Theorem 3, and hence of Theorem 1.

1. A sharpening of a theorem of Bouligand

Theorem 1. In a Brelot harmonic space X without compact components,

let Ω be a relatively compact open set and x0 a regular boundary point for Ω .

If a numerical function f on ∂Ω is majorized by a superharmonic function s > 0
on X then

(1) lim sup
Ω3x→x0

H Ω

f (x) 6 lim sup
∂Ω3y→x0

f(y).
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In classical potential theory the hypothesis f 6 s can be omitted if Ω is
Lipschitz near x0 , see [Ar], but not for general Ω, as shown by Brelot by a variety
of examples in [Br2]. See also [CC, Exercise 3.2.14] and (with Ω disconnected):
[AG, p. 187]. It suffices, in Theorem 1, that s be defined in some open subset of
X containing Ω . If there exists at all a superharmonic function s > 0 on X then
s is bounded from below on ∂Ω, and Theorem 1 is therefore a sharper version
of a well-known result by Brelot [Br2, Proposition 19, p. 115] in which f 6 s is
replaced by f being bounded from above. Brelot’s result, in turn, is an axiomatic
version of a slight extension of a result due to Bouligand [Bou, p. 89] in classical
potential theory. We recall Brelot’s short proof, his result being used in the proof
of Theorem 1: Denote by c the right-hand member of (1). For given c′ > c there is
a neighbourhood ω of x0 in ∂Ω such that f 6 c′ in ω . If c′ < sup f , there exists
a continuous function g: ∂Ω → [c′, sup f ] such that g(x0) = c′ and g = sup f in
(∂Ω)\ω . If instead c′ > sup f , define g = c′ on ∂Ω. In either case we have f 6 g
on ∂Ω, and hence, by definition of regularity of x0 ∈ ∂Ω, [Br2, p. 114]:

lim sup
x→x0

H Ω

f (x) 6 lim
x→x0

HΩ

g (x) = g(x0) = c′.

Proof of Theorem 1. Choose in X a relatively compact open set X0 ⊃ Ω .
The function h := R{X0

s > 0 on X (defined as the pointwise infimum of the family
of all superharmonic functions on X which majorize s on {X0 ) is harmonic in X0 .
Replacing X0 by X we may thus assume from the beginning that there exists a
harmonic function h > 0 on X .

The right-hand member of (1) has the form c h(x0) for some c ∈ [−∞,+∞] .
We may assume that c < +∞ . Suppose first that c > 0. For given c′ > c
choose an open neighbourhood V of x0 in X so that f 6 c′h on V ∩ ∂Ω. The
superharmonic function u := R̂{V

s (the greatest lower semicontinuous minorant of
R{V
s in X ) is harmonic and hence continuous in V ; and H V

s = u in V , [Br2,
Proposition 5, p. 85]. Furthermore,

(2) f 6 u+ c′h on ∂Ω

because f 6 c′h in V ∩ ∂Ω and f 6 s = u in {V .
Since x0 is regular, {Ω is not thin at x0 , [Br2, Theorem 32, p. 142], and

v := R̂{Ω
u (6 u) therefore has the value v(x0) = u(x0), [Br2, Theorem 28]. It

follows that

(3)

u(x0) = v(x0) 6 lim inf
x→x0

v(x) 6 lim sup
x→x0

v(x)

6 lim
x→x0

u(x) = u(x0) < +∞,

and hence u and v are bounded in some neighbourhood W ⊂ V of x0 . Define
an auxiliary function g on ∂Ω by

g =

{
f − u on W ∩ ∂Ω,
c′h elsewhere on ∂Ω,
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and note that f − u 6 g 6 c′h on ∂Ω by (2); thus g is bounded from above on
∂Ω, like h . Applying the Bouligand–Brelot result to g we therefore obtain by (3)

(4) lim sup
Ω3x→x0

H Ω

g (x) 6 lim sup
∂Ω3y→x0

g(y) 6 c h(x0) − u(x0).

Since f 6 u+ g on ∂Ω and H Ω
u = R̂{Ω

u = v in Ω, we conclude from (3) and (4)
that

lim sup
Ω3x→x0

H Ω

f (x) 6 lim sup
Ω3x→x0

v(x) + lim sup
Ω3x→x0

H Ω

g (x) 6 c h(x0),

the right-hand member of (1).
In the case where −∞ < c < 0 we have HΩ

ch(x) = c h(x) → c h(x0) as
x→ x0 , x ∈ Ω; and hence from the above case c > 0, applied to f − ch in place
of f :

lim sup
Ω3x→x0

H Ω

f (x) 6 lim sup
Ω3x→x0

H Ω

f−ch(x) + c h(x0)

6 lim sup
∂Ω3y→x0

(
f(y) − c h(y)

)
+ c h(x0) = lim sup

∂Ω3y→x0

f(y).

In the remaining case where c = −∞ we obtain from the case −∞ < c < 0,
applied for −∞ < a < 0 to fa := max{f, ah} in place of f :

lim sup
Ω3x→x0

H Ω

f (x) 6 lim sup
Ω3x→x0

H Ω

fa
(x) 6 lim sup

∂Ω3y→x0

fa(y),

the last lim sup being a h(x0) > −∞ . For a→ −∞ the resulting inequality reads
lim supx→x0

H Ω

f (x) = −∞ , which implies (1).

2. Measures of finite energy

In this section, X = (X,E, τ) denotes a symmetric regular real Dirichlet
space in the sense of [De2, pp. 137, 158], or see [FOT]. Here τ is a positive
measure with supp τ = X , and E denotes the given closed symmetric Dirichlet
form with domain D dense in L2(X, τ) and topologically included in L1

loc
(X, τ).

Write E(f, f) = E(f).
We assume that the underlying space X is connected and locally compact with

countable base; furthermore that (X,E, τ) is hypoelliptic in the sense of Feyel–
de La Pradelle [FP2], see also [La]; and in particular of local type in the sense
that, for every f ∈ D , we have E(|f |) = E(f), or equivalently E(f+, f−) = 0.
Hypoellipticity means that (i) every local E -solution (see Section 3 below) has a
continuous version, and (ii) for any x ∈ X there exists in an open neighbourhood of
x an E -solution whose continuous version is strictly positive. Recall from [FP2,
p. 121] that X is noncompact and locally connected, and that there exists an
associated Brelot harmonic sheaf H on X with a symmetric lower semicontinuous
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Green kernel G , and satisfying the axiom of domination, see also [La]. The E -
potentials on (X,E, τ) are represented uniquely by the Green potentials y 7→
Gµ(y) =

∫
G( · , y) dµ on X of measures µ ∈ E + , i.e., the positive measures of

finite G -energy
∫
Gµdµ =

∫
Gd(µ⊗ µ).

The (outer) capacity capA of a set A ⊂ X is defined in [De2, pp. 162–164].
We have capA = 0 if and only if A is polar in the sense of Brelot, i.e., there
exists a superharmonic function s > 0 on X such that s = +∞ in A ; if so,
one may take s = Gµ , µ ∈ E + , [FP2, 32o , 21o ]. A polar set has µ -measure
0 for any µ ∈ E + , [FP2, 4o ]. A property involving points of X is said to hold
quasi-everywhere (q.e.) in a set A if it holds in A except perhaps in some polar
set.

A map ϕ: X → Y of X into a topological space Y is said to be quasicon-

tinuous if ϕ is continuous relative to the complements of open subsets of X of
arbitrarily small capacity. Every element of D (in particular every potential Gµ ,
µ ∈ E + ) has quasicontinuous versions [De2, p. 170], or see [FOT, Theorem 2.1.3].
Henceforth, we tacitly use quasicontinuous versions of elements of D .

For any function f ∈ D and any measure µ ∈ E + ,

(5)

∫
f dµ = E(f,Gµ),

[FP2, 37o ]. It follows that, for any µ, ν ∈ E + ,

(6)

∫
Gµdν = E(Gµ,Gν) =

∫
Gν dµ,

∫
Gµdµ = E(Gµ),

(7)

(∫
Gµdν

)2

6

∫
Gµdµ

∫
Gν dν.

For signed measures µ , ν write µ ∈ E if and only if µ+, µ− ∈ E + ; in that case
write Gµ = Gµ+ − Gµ− , which is well defined q.e.; then

∫
Gµdν is well defined

in an obvious way on account of (7) applied to the couples (µ+, ν+), (µ+, ν−),
(µ−, ν+), and (µ−, ν−). Furthermore, (5), (6), (7) remain valid for µ ∈ E , the
latter because

∫
Gµdµ > 0 for µ ∈ E .—For an alternative proof of (7), see [FP1,

Corollary 14].
Following Cartan [Ca1], [Ca2], we thus have the prehilbert space E with

the inner product 〈µ, ν〉 = E(Gµ,Gν), which is (strictly) positive definite. The
corresponding energy norm on E is given by ‖µ‖2 =

∫
Gµdµ . Extending a key

result in [Ca1], [Ca2, Théorème 2] for the Newtonian kernel on Rm , m > 3, and
for the Green kernel on an open ball in Rm , m > 2, we have in the present more
general setting:

Theorem 2. The cone E + of all positive measures of finite energy on X is

complete in the energy norm.
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Proof. The proof of this in [Ca1, p. 91] reduces to verifying that every measure
µ ∈ E + can be approximated in energy norm by signed measures µ′ ∈ E with
Gµ′ ∈ K +(X), where K (X) denotes the space of all continuous functions X →
R of compact support. It is known that the class of all measures µ ∈ E + with Gµ
finite and continuous is dense in E + in energy norm, cf. [Ca1, p. 90], [Oht], [Ch2],
[F1, Theorem 3.4.1]; the proof uses Lusin’s theorem together with the continuity
principle of Evans and Vasilescu, valid in the present setting according to [JN].
Thus, it remains to approximate any µ ∈ E + having a finite continuous potential

by measures µ′ ∈ E for which Gµ′ ∈ K +(X) .
For any relatively compact open set Ω ⊂ X take µ′ = µ − µ{Ω , where µ{Ω

is obtained by balayage of µ on {Ω, [He, Théorème 10.1], [CC, Corollary 7.1.2].

Then Gµ′ = Gµ − R̂{Ω
Gµ > 0, [He, Proposition 31.3, 2)] (the proof of which does

not require that suppµ be compact) is finite and continuous ( R̂{Ω
Gµ being lower

semicontinuous) and equals 0 off the compact closure of Ω. Furthermore, Gµ −

Gµ′ = R̂{Ω

Gµ is harmonic in Ω and decreases for increasing Ω to a function h > 0
which is harmonic in X , by Brelot’s convergence property. And h = 0 because
h 6 Gµ , a potential. Finally,

‖µ− µ′‖2 = ‖µ{Ω‖2 =

∫
Gµ{Ω dµ{Ω =

∫
R̂{Ω

Gµ dµ
{Ω =

∫
R̂{Ω

Gµ dµ↘ 0

as Ω ↗ X because
∫
Gµdµ < +∞ and

∫
R̂{Ω
Gµ dµ

{Ω =
∫
R̂{Ω

R̂{Ω
Gµ

dµ =
∫
R̂{Ω
Gµ dµ ,

by idempotency of the operator of balayage of superharmonic functions > 0 on a
given set, see e.g. [CC, Theorem 9.1.1 and Corollary 9.2.3].

Remark 1. Cartan’s proof of completeness of E + extends immediately to
that of the Green kernel on a regular domain X on a Riemann surface. The
regularity assumption was removed by Edwards [Ed], who considered the Green
kernel on a hyperbolic Riemann surface X , a particular instance of the present
setting.

3. The variational Dirichlet problem

With X = (X,E, τ) as in the preceding section we proceed to study the
variational Dirichlet problem for harmonic functions in an open set Ω ⊂ X . Recall
that we tacitly employ quasicontinuous versions of elements of D . Write

D(Ω) = {u ∈ D : u = 0 q.e. in {Ω},

and D+(Ω) = {u ∈ D(Ω) : u > 0 q.e.} . A (quasicontinuous) function u ∈ D is
said to be an E -solution in Ω if

E(u, v) = 0 for every v ∈ D(Ω),
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whereas u is termed an E -subsolution if E(u, v) 6 0 for every v ∈ D+(Ω). A
continuous E -solution in Ω is said to be harmonic in Ω.

Given a (quasicontinuous) function f ∈ D write

Df (Ω) = {u ∈ D : u = f q.e. in {Ω} = {u ∈ D : u− f ∈ D(Ω)}.

The E -minimizer u in Df (Ω) considered in the following proposition is called
the variational solution to the Dirichlet problem in Ω with prescribed function
f ∈ D .

Proposition 1. For any f ∈ D , Df (Ω) has a unique element u of least

energy E(u); and u is the only element of class Df (Ω) which is an E -solution in

Ω (and therefore, by hypoellipticity, has a version which is harmonic in Ω).

Proof. Being a convex closed nonvoid subset of the Hilbert space D , Df (Ω)
has a unique element u of minimal norm E(u)1/2 . For any v ∈ D(Ω) and any
t ∈ R we have u+ tv ∈ Df (Ω), and hence

E(u) 6 E(u+ tv) = E(u) + 2t E(u, v) + t2E(v),

from which it follows that E(u, v) = 0. Consequently, u is an E -solution in Ω
and so has a (quasicontinuous) version u on X which is harmonic in Ω. For any
other element u′ ∈ Df (Ω) which is an E -solution in Ω, u − u′ ∈ D(Ω) is an
E -solution in Ω, and hence orthogonal to itself, and so u = u′ .

The following proposition is the key to our application of Theorem 1 to har-
monic maps (Section 4). Only property (8) will be used in this paper; it was stated
in [F5, Lemme 3] (for the typical case X = Rm ) with a slight indication of proof,
and used there for characterizing the E -(sub)solutions in Ω as those functions in
D(Ω) which are finely (sub)harmonic off some polar set [F5, Théorème 11].

For any function f : X → [0,+∞] write

Rf = inf{u : u superharmonic, u > f}

(pointwise infimum, understood as identically +∞ if no such u exists). Denote

by R̂f the greatest lower semicontinuous minorant of Rf , or equivalently, by [Br2,
Proposition 23, p. 135]:

R̂f = min{u : u superharmonic, u > f q.e.}.

Proposition 2. For any f ∈ D+ there exists a unique measure λ ∈ E + such

that

Gλ > f q.e.,(8)

Gλ = f λ-a.e.,(9)
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and hence
∫
f dλ =

∫
Gλdλ 6 E(f) . This measure λ is the unique measure in

E + having one of the following equivalent properties (with pointwise minimum in

(10)):

Gλ = min{Gµ : µ ∈ E
+, Gµ > f q.e.},(10) ∫

Gλdλ = min

{∫
Gµdµ : µ ∈ E

+, Gµ > f q.e.

}
.(11)

Remark 2. It can be shown that λ is also uniquely determined by any one
of the following two properties:

∫
f dλ = max

{∫
f dµ : µ ∈ E

+, Gµ 6 f µ-a.e.

}
,

∫
(2f −Gλ) dλ = max

{∫
(2f −Gµ) dµ : µ ∈ E

+

}
.

As already noted, the left-hand members of these two equations and of (11) all
equal

∫
Gλdλ =

∫
f dλ ; their square-root ‖λ‖ is termed the energy capacity of f

in [F3, Section 6.7] 1 (where G is the Newtonian kernel on R3 ). As a seminorm
on K (X), ‖λ‖ is studied in [FP1].

Proof. Suppose first that f ∈ D+ ∩K (X); then R̂f is the bounded potential
Gλ of a unique measure λ ∈ E + , [Br2, Proposition 10, p. 94]; this implies (8).
Furthermore, Gλ ∈ D+ is harmonic in the open set Ω = {Gλ > f} , as shown
by Poisson modification, see e.g. [CC, Proposition 2.2.3]; and so supp λ ⊂ {Ω,
[He, Proposition 30.1, 2)], [CC, Proposition 11.4.12, c)]. Thus (9) holds because
Gλ > f λ -a.e. in view of (8). Furthermore, Gλ 6 f in {Ω, and hence Gλ = f
q.e. in {Ω, by (8). Thus Gλ ∈ Df (Ω); and according to Proposition 1, Gλ
is the unique solution to the variational Dirichlet problem in Ω with prescribed
function f . It follows in view of (6) that

∫
Gλdλ = E(Gλ) = min{E(u) : u ∈ D , u = f q.e. in {Ω}.

In particular, by (9),
∫
f dλ =

∫
Gλdλ 6 E(f) (since u = f competes).

For arbitrary f ∈ D+ , choose a sequence (fn) ⊂ D+ ∩ K (X) so that
E(fn − f) → 0, [De2, Lemme 1, p. 159]; and hence fn → f in L1

loc
(X, τ). We may

assume that fn → f pointwise τ -a.e. As shown above, we may write R̂fn
= Gλn

with λn ∈ E + . There is a constant c > 0 such that, in view of (6) and the
inequality following (9) (now with f replaced by fn ):

(12) E(Gλn) =

∫
Gλn dλn 6 E(fn) 6 c2.

1 The comprehensive exposition announced at the end of that subsection in [F3] exists only

in manuscript (1971).
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Since G is lower semicontinuous it follows that (λn) is vaguely bounded, and we
may therefore assume that (λn) converges vaguely to a measure λ , necessarily of
class E + ; and consequently Gλ 6 lim infnGλn pointwise in X . We show that,
actually,

(13) Gλ = lim inf
n

Gλn q.e. in X

(cf. [Ca1, Théorème 6] for the newtonien potentiel). Choquet’s theorem on ca-
pacitability e.g. of Borel sets [Ch1] applies in the present setting, [FOT, Theo-
rem 2.1.1]; and (13) will therefore follow from the integrated form of the remaining
inequality “>”:

(14) 〈λ, µ〉 > lim inf
n

〈λn, µ〉 for every µ ∈ E
+,

to be established now. As shown in the proof of Theorem 2, µ can be approximated
in energy norm by signed measures µ′ ∈ E with Gµ′ ∈ D+ ∩ K (X), and hence

〈λ, µ′〉 =

∫
Gµ′ dλ = lim

n

∫
Gµ′ dλn = lim

n
〈λn, µ

′〉,

and so

〈λ, µ〉 > 〈λ, µ′〉 − ‖λ‖ ‖µ− µ′‖ > lim inf
n

〈λn, µ〉 − 2c‖µ− µ′‖

by (12), with ‖µ − µ′‖ as small as we please. This establishes (14) and hence
(13), which in turn implies that Gλ = lim infnGλn > lim infn fn = f τ -a.e., and
so indeed Gλ > f q.e., by quasicontinuity of Gλ and f , [De1], [De2, Théorème,
p. 170], or [FOT, Theorem 2.1.3]. This establishes (8) for arbitrary f ∈ D+ .

Since λ does not charge the polar sets, (8) implies Gλ > f λ -a.e. Thus (9)
will follow from its integrated form, or just from the inequality

(15)

∫
Gλdλ 6

∫
f dλ.

To obtain (15) we show that Gλn → Gλ weakly in the Hilbert space D , i.e., in
view of (5),

(16)

∫
u dλn = E(Gλn, u) → E(Gλ, u) =

∫
u dλ for u ∈ D .

Because λn → λ vaguely, (16) holds for u ∈ D ∩ K (X) (dense in D ), and hence
for any u ∈ D , in view of (12). Since moreover fn → f in D , it is well known
that (16) extends to

∫
fn dλn = E(Gλn, fn) → E(Gλ, f) =

∫
f dλ.
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As shown in the beginning of the proof, (9) holds with λ replaced by λn and f
by fn ; and hence

∫
Gλn dλn =

∫
fn dλn . This leads to (15), and therefore to (9),

again for any f ∈ D+ :

∫
Gλdλ 6 lim inf

n

∫
Gλn dλn = lim

n

∫
fn dλn =

∫
f dλ.

Any λ ∈ E + satisfying (8) and (9) also satifies (10) and (11). To see this,
let µ ∈ E + and Gµ > f q.e., hence λ -a.e.; then Gµ > Gλ λ -a.e., by (9). By
Lemma 1 below it follows that Gµ > Gλ everywhere, and so (8), (9) imply (10),
which in turn implies (11) because

∫
Gµdµ >

∫
Gλdµ =

∫
Gµdλ >

∫
Gλdλ .

Note that (10) implies uniqueness of λ , a measure λ ∈ E + being determined
by its potential Gλ . Likewise, (11) implies uniqueness of λ , the convex subset
{µ ∈ E + : Gµ > f q.e.} of the prehilbert space E having at most one element of
minimal norm.

Lemma 1 (Cartan’s maximum principle, cf. [Ca2, Proposition 2]). Let λ ∈
E + , and let s > 0 be superharmonic on X . If Gλ 6 s λ -a.e., then Gλ 6 s
everywhere.

Proof. The pointwise minimum min{Gλ, s} is a potential Gν 6 Gλ , and
hence

∫
Gν dν 6

∫
Gλdν =

∫
Gν dλ 6

∫
Gλdλ , and so ν ∈ E + . Furthermore,

Gν = Gλ λ -a.e.; and consequently, as in [Ca1],
∫

(Gλ − Gν)(dλ − dν) 6 0, i.e.,
‖λ− ν‖2 6 0, λ = ν , and so indeed Gλ = Gν 6 s everywhere.

Theorem 3. For any relatively compact open set Ω ⊂ X and any func-

tion f ∈ D , the harmonic restriction to Ω of the variational solution u from

Proposition 1 is also the solution HΩ

f in the sense of Perron–Wiener–Brelot with

prescribed boundary function f|∂Ω . Consequently, by Theorem 1,

u(x) → f(x0) for x→ x0, x ∈ Ω

for every regular boundary point x0 for Ω at which f is continuous.

Proof. Since f+, f− ∈ D , we may assume that f > 0. By Proposition 2 there
exists λ ∈ E + such that p := Gλ > f q.e., and even everywhere (after adding a
suitable potential). In particular, p is semibounded in the sense of Brelot [Br5,
p. 41], or see [F4, Section 2]. It follows that

H Ω

f 6 H Ω

p = R{Ω

p on Ω,

the equality by [Br2, Proposition 5, p. 85], or see [CC, Proposition 5.3.3]. Denoting
by µΩ

x the harmonic measure for Ω at x , we thus have

(17) 0 6

∫

∗

f dµΩ

x 6

∫ ∗

f dµΩ

x = H Ω

f (x) 6 R{Ω

p (x) <∞,



A sharpening of a theorem of Bouligand 183

the equality by [Br2, pp. 111–112], and finiteness by harmonicity of R{Ω
p in Ω.

Furthermore, f is µΩ
x -measurable for each x ∈ Ω. Indeed, f is continuous relative

to the complements of open sets ωn with capωn → 0, and hence e :=
⋂
n ωn is

polar. Write fn = f in {ωn and fn = 0 in ωn . Then fn is Borel measurable,
and so is therefore f ′ = supn fn (pointwise). Moreover, f ′ = f in {e , and
µΩ
x (e) = 0 by [CC, Corollary 6.2.4], so f is µΩ

x -measurable; and µΩ
x -integrable

by (17). Consequently, H Ω

f (x) =HΩ

f (x) =
∫
f dµΩ

x . Thus the PWB-solution HΩ

f

exists and is harmonic in Ω.
To prove that HΩ

f is also the variational solution, it remains according to

Proposition 1 to verify that the extension u of HΩ

f by f in {Ω is quasicontinuous,

or equivalently: finely continuous q.e. in X .2 Thus the quasicontinuous function
f : X → R is finely continuous off some polar (hence finely closed) set e1 . The
irregular points of ∂Ω form another polar set e2 , [Br2, Theorem 32]; and e3 :=
{p = +∞} is likewise polar. We prove below that, for any x0 ∈ ∂Ω not in the
polar set e := e1 ∪ e2 ∪ e3 ,

(18) HΩ

f (x) → f(x0) for x→ x0 finely, x ∈ Ω .

Because HΩ

f is harmonic and therefore continuous (in particular finely continuous)

in Ω, it will follow from (18) that the said extension u of HΩ

f is indeed finely

continuous at any point x ∈ X \ e (whether x ∈ Ω, x ∈ ∂Ω, or x ∈ { Ω ).
For the proof of (18) we first approximate f from below by upper semicon-

tinuous (u.s.c.) functions h of compact support such that 0 6 h 6 f . Because

f 6 p , the function q := R̂f−h is a potential satisfying f − h 6 q 6 R̂p−h 6 p
q.e., and hence, for x ∈ Ω,

H Ω

f−h(x) 6 H Ω

q (x) = R̂{Ω

q (x) → R̂{Ω

q (x0) = q(x0)

as x → x0 finely (by definition of the fine topology), the latter equality by [Br2,
Corollary (ii), p. 115], x0 /∈ e2 being regular. Because f = h+ (f − h) it follows,
for any function ϕ ∈ K (X) with ϕ > h , that H Ω

f 6 HΩ
ϕ +H Ω

f−h , and hence

fine lim sup
Ω3x→x0

HΩ

f (x) 6 lim
Ω3x→x0

HΩ

ϕ (x) + q(x0)

= ϕ(x0) + R̂f−h(x0) 6 f(x0) + 2ε.

Indeed, for given ε > 0, ϕ can be chosen so that ϕ(x0) 6 h(x0) + ε 6 f(x0) + ε .
Moreover, f is finely u.s.c. q.e., and at x0 ∈ {e1 in particular. The u.s.c. minorant

2 Fine continuity means continuity relative to the Cartan fine topology, the weakest topology

on X in which every local superharmonic function is continuous. The stated equivalence, essen-

tially going back to Choquet [Ch3], has been established in more generality in [Br6, Theorems IV.7

and IV.8] and in [F2, Theorem 5.5].
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h can therefore be chosen so that (R̂f−h(x0) 6) Rf−h(x0) < ε according to the
former assertion of [F4, Theorem 6.5(c)], established by application of [Br3].

Next, we approximate f from above by lower semicontinuous (l.s.c.) functions

g such that f 6 g 6 p . Then r := R̂g−f satisfies g − f 6 r q.e., and hence, for
x ∈ Ω,

H Ω

g−f (x) 6 H Ω

r (x) = R̂{Ω

r (x) → R̂{Ω

r (x0) = r(x0)

as x→ x0 finely, x0 /∈ e2 being regular. Because f = g− (g−f) in {e3 it follows,
for any ϕ ∈ K +(X) with ϕ 6 g , that HΩ

f > HΩ
ϕ −H Ω

g−f , and hence

fine lim inf
Ω3x→x0

HΩ

f (x) > lim
Ω3x→x0

HΩ

ϕ (x) − r(x0)

= ϕ(x0) − R̂g−f (x0) > f(x0) − 2ε.

Indeed, since g(x0) 6 p(x0) < +∞ , ϕ can be chosen so that ϕ(x0) > g(x0) − ε .
Furthermore, f is finely l.s.c. q.e., and at x0 in particular. The l.s.c. majorant
g can therefore be chosen so that ( R̂g−f (x0) 6) Rg−f (x0) < ε according to [F4,
Remark, p. 51]. Since ε > 0 is arbitrary, we have altogether established (18),
and thereby completed the proof that the variational solution is also the PWB-
solution. The final assertion of Theorem 3 therefore follows from Theorem 1
because f 6 p .

4. The Dirichlet problem for harmonic maps

In this final section we shall complete the results on continuity of the varia-
tional solution up to the boundary, recently obtained in [F9, Theorems 1 and 3],
for harmonic maps into spaces of nonpositive curvature. By application of Theo-
rem 3 above (and hence of Theorem 1) we show that the hypothesis of boundedness

of the prescribed map, imposed in the quoted results from [EF], can be omitted.
The source space is an admissible Riemannian polyhedron (X, g), where the

Riemannian metric g is simplexwise smooth, i.e., g is defined and smooth on
each topdimensional open simplex s of X , with g|s extending smoothly to a
nondegenerate Riemannian metric on the affine m -space containing s , see [EF,
Chapter 4]. Such a polyhedron (X, g) is a particular case of a hypoelliptic Dirichlet
space as specified in Section 2; see [EF, Chapter 7], where the Dirichlet space
L1,2

0
(X) replaces the domain D of the Dirichlet form E . The reader may well think

of the particular case of a Riemannian manifold (X, g), possibly with boundary.
We require that (X, g) satisfy the Poincaré inequality

(19)

∫

X

u2 dµ 6 C

∫

X

|∇u|2 dµ for all u ∈W 1,2
0

(X)

and some constant C ; here µ denotes the Riemannian volume measure on (X, g).
For example, if (X , g) denotes a compact admissible Riemannian polyhedron with
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boundary bX 6= ∅ (cf. [EF, p. 45]) then (X, g) with X = X \bX is an admissible
Riemannian polyhedron satisfying the Poincaré inequality (19), [F8, Lemma 1(c)].

For target we first take a simply connected complete geodesic space (Y, dY )
of nonpositive curvature in the sense of A. D. Alexandrov [Al1], [Al2], cf. [EF,
Section 2, Geodesic spaces]. Denote by E (X,Y ) the class of all maps ϕ: X → Y
of finite energy E(ϕ) in the sense of Korevaar and Schoen [KS] (with p = 2) for
a Riemannian manifold (X, g), and extended in [EF, Chapter 9] to the present
case of an admissible Riemannian polyhedron. 3 Every map of class Eloc(X,Y )
(i.e., locally of finite energy) has a quasicontinuous version [F7]. Every locally E -
minimizing map (of class Eloc(X,Y )) has a (unique) Hölder continuous version,
as shown in [F6, Theorem 1] (sharpening [EF, Theorem 10.1]). Accordingly, we
define a harmonic map X → Y in the present setting as a continuous locally
E -minimizing map of class Eloc(X,Y ). This will be applied with X replaced by
(the components of) an open subset of X .

Given a relatively compact open set Ω ⊂ X and a map ψ ∈ E (X,Y ), write

(20)
Eψ(Ω, Y ) =

{
ϕ ∈ E (X,Y ) : dY (ϕ, ψ) ∈W 1,2

0
(Ω)

}

=
{
ϕ ∈ E (X,Y ) : ϕ = ψ q.e. in X \ Ω

}
,

the equality being a consequence of (19) and the spectral synthesis theorem of
Beurling and Deny, see [De2, pp. 168, 172], [FOT, Chapter 2]. Much as in Propo-
sition 1 and Theorem 3 (for functions) we have for maps ϕ: X → Y

Theorem 4. (a) With (Y, dY ) as described, Eψ(Ω, Y ) has a unique element

ϕ of least energy, and ϕ is the only map of class Eψ(Ω, Y ) which is harmonic

in Ω .

(b) If ψ|∂Ω is continuous at some regular point x0 ∈ ∂Ω , then

ϕ(x) → ψ(x0) for x→ x0, x ∈ Ω.

Proof. Part (a) was established in the proof of [F9, Theorem 1], while (b)
was proved there under the additional hypothesis that the prescribed map ψ be
bounded. Here are the changes in the proof of [F9, Theorem 1(b)] which are needed
in order to cover the general case of (b). We redefine ϕ in a polar set so that ϕ = ψ
everywhere in {Ω, cf. (20). The function

f(x) = dY
(
ϕ(x), ϕ(x0)

)
, x ∈ X,

of class E (X,R) = L1,2(X) (in view of [EF, Corollaries 9.1 and 9.2] and because
dY

(
· , ϕ(x0)

)
is Lipschitz) need not be bounded. Choose g ∈ Lipc(X) with g = 1

in a relatively compact domain X0 ⊃ Ω , and replace f by gf ∈ W 1,2
c (X) ⊂

L1,2
0

(X). Theorem 3 above then applies to the truncated function f , taking

3 In [EF], the present E (X,Y ) is denoted W 1,2(X,Y ) .
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D = L1,2
0

(X), and shows that the variational solution u in Ω (with prescribed
function f ) has the property

(21) u(x) → f(x0) = 0 for x→ x0 , x ∈ Ω .

In the paragraph containing [F9, (3.5)] this was established for bounded ψ , and
hence bounded f , by application of results from [F4] about the fine Dirichlet prob-

lem (for functions). These results, however, require that f 6 p for some finite

semibounded potential p , cf. [F4, Section 14.3], and that need not be fulfilled
in the present context where f may be unbounded. For that reason we modify
the proof of [F9, Theorem 1(b)] so that—rather than drawing on the theory of
finely harmonic functions—we employ Theorem 3 above (including the limit prop-
erty (21)), which was established in Section 3 by application merely of a key to
that theory, notably [F4, Theorem 6.5(c)].

Recall from [EF, Lemma 10.2] that f is weakly subharmonic (i.e., an E -
subsolution) in Ω. It follows by [EF, Theorem 5.2] that f 6 u µ -a.e. in Ω,
and indeed everywhere in Ω because u , ϕ , and hence f are continuous in Ω.
Consequently,

0 6 dY
(
ϕ(x), ϕ(x0)

)
= f(x) 6 u(x) → 0 for x→ x0,

showing that indeed ϕ(x) → ϕ(x0) = ψ(x0) as x→ x0 , x ∈ Ω.

Remark 3. As it might be expected, the variational solution ϕ in Theo-
rem 4 depends only on the restriction of the prescribed map ψ: X → Y to ∂Ω.
Indeed, for any ψ′ ∈ E (X,Y ) and corresponding solution ϕ′ ∈ Eψ′(Ω, Y ), the

quasicontinuous function v := dY (ϕ, ϕ′) of class E (X,R) ⊂ W 1,2
loc

(X) (because
dY ∈ Lip(Y × Y )) is subharmonic in Ω, [F8, Section 4, Proof of (b)]. After
truncation (not affecting v in Ω ) we may assume that v ∈ W 1,2

0
(X) ⊂ L1,2

0
(X).

Then v 6 Gλ q.e. in X for some λ ∈ E + , by Proposition 2; and the potential
Gλ is semibounded, cf. e.g. [F4, Theorem 2.6]. If ψ = ψ′ q.e. on ∂Ω then v = 0
q.e. on ∂Ω, and hence v = 0 everywhere in Ω according to the fine boundary
minimum principle [F4, Theorem 9.1] applied to the superharmonic (hence finely
superharmonic [F4, Theorem 8.7]) function −v on the open (hence finely open)
set Ω ⊂ X . Thus ϕ = ϕ′ in Ω.

Remark 4. The requirement in Theorem 4(b) that x0 be regular is necessary,
even if Y = R in view of Theorem 3, taking for ψ a bounded strict potential of
class L1,2(X), cf. [CC, Proposition 7.2.1].

Next, let instead (Y, dY ) be a complete geodesic space of curvature bounded

from above. By rescaling the metric dY we arrange that Y has curvature 6 1.
Let B = BY (q, R) be a closed geodesically convex ball in Y of radius R <
1

2
π (in a sense best possible, cf. [HKW, Section 6], or see [EF, Example 12.3]),

satisfying bipoint uniqueness, i.e., there is only one (minimizing) geodesic segment
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in Y joining two given points of B , and this segment varies continuously with its
endpoints (in the uniform topology on paths). It follows that every closed ball in
B is convex, and hence satisfies bipoint uniqueness, along with B . For details,
see [F8, text following Theorem 3]. Then Theorem 4 above carries over, with Y
replaced by the ball B :

Theorem 5. (a) With (Y, dY ) and B as described, Eψ(Ω, B) has a unique

element ϕ of least energy, and ϕ is the only map of class Eψ(Ω, B) which is locally

E -minimizing in Ω .

(b) If ψ|∂Ω is continuous at some regular point x0 ∈ ∂Ω then there is a polar

set Z ⊂ Ω such that

ϕ(x) → ψ(x0) for x→ x0 , x ∈ Ω \ Z .

The variational solution ϕ in Theorem 5 has a Hölder continuous and hence
harmonic version, at least if R < 1

4
π , or if Y is locally compact, [F6, Theorem 2].

In (b) we may then take Z = ∅ , as in Theorem 4.
This companion to Theorem 4 was established in [F9, Theorem 2]. We bring

a variant proof of (b).

Proof of Theorem 5(b). Again we may assume that ϕ = ψ everywhere in
X \ Ω. Fix % > 0 with R + % < 1

2
π ; if R < 1

4
π take % = 1

4
π , hence R < % .

Consider a point y ∈ BY (q, %), and note that dY
(
ϕ(x), y

)
6 R + % < 1

2
π for

x ∈ X . The function f : X → R defined by

f(x) = cos dY
(
ϕ(x0), y

)
− cos dY

(
ϕ(x), y

)

is of class W 1,2(X) by [EF, Corollaries 9.1 and 9.2] because cos dY ( · , y) ∈ Lip(B);
and f|∂Ω is continuous at x0 with the value 0. Theorem 3 applies to f (after
truncation, as in the proof of Theorem 4(b)), and the corresponding variational
solution u has the properties u− f ∈W 1,2

0
(Ω), u continuous in Ω, and

(22) u(x) → f(x0) for x→ x0 , x ∈ Ω.

According to [EF, (10.19)] with q replaced by y (noting that B ⊂ BY (y,R+ %)
with R + % < 1

2
π ), f is weakly subharmonic in Ω, hence f 6 u in Ω \ Zy for

some polar set Zy ⊂ Ω, [EF, Theorem 5.2], [De1, Théorème 5]. It follows by (22)
that

cos dY
(
ϕ(x0), y

)
− cos dY

(
ϕ(x), y

)
= f(x) 6 u(x) → f(x0) = 0

for x ∈ Ω \ Zy . Because cos is continuous and decreasing on [0, R+ %] it follows
that

(23) lim sup
Ω\Zy3x→x0

dY
(
ϕ(x), y

)
6 dY

(
ϕ(x0), y

)
.

If ϕ(x0) ∈ BY (q, %) we may take y = ϕ(x0) above, and it follows in that case from
(23) that ϕ(x) → ϕ(x0) as x→ x0 in Ω \ Zy . This applies in particular if R 6 %
(e.g. if R < 1

4
π ), so we may suppose that R > % . The same inductive scheme as

in [F8, Section 8] then serves to prove that indeed ϕ(x) → ϕ(x0) as x → x0 in
Ω \ Z for a certain polar set Z ⊂ Ω, a finite union of sets like Zy above.
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Remark 5. In Theorem 5, ϕ depends only on ψ|∂Ω . For the proof we
refer freely to [F8, Theorem 3 and the paragraph containing (2.7)]. For any ψ ′ ∈
E (X,Y ) with solution ϕ′ ∈ Eψ′(Ω, Y ), the function v = θ(ϕ, ϕ′) ∈ W 1,2

loc
(X) is

weakly subharmonic in Ω, though for a Dirichlet form obtained by multiplying
the previous volume measure µ by a certain scalar a > 0 for which a and 1/a are
bounded. This substitution causes no problems, and the argument in Remark 3
carries over.

Remark 6. Theorems 4 and 5 have companions in which the geodesic space
target (Y, dY ) is specialized to be a simply connected complete Riemannian man-

ifold (Y, h) of nonpositive Alexandrov curvature as above, or equivalently: of
nonpositive sectional curvature. The energy of maps ϕ: X → Y can then be de-
fined in an alternative and equivalent way (see [EF, Definition 9.2, Lemma 9.3, and
Theorem 9.2] [F8, Proposition 2]) which remains meaningful even when we now
drop the previous requirement that the Riemannian metric g on the source poly-
hedron X be simplexwise smooth; instead we merely require that g be bounded
and measurable, with elliptic bounds on each simplex of dimension m = dimX ,
cf. [EF, pp. 47–48]. Theorems 4 and 5 remain valid when we keep the hypotheses
that the Poincaré inequality (19) holds on (X, g), that Ω b X is open, and that
the prescribed map ψ is of class E (X,Y ), resp. E (X,B), (now in terms of the
alternative concept of energy). For bounded ψ (in the former case of nonpositive
curvature) this was proved in [F9, Theorem 3]. The proof given there remains
valid for possibly unbounded ψ when the same change is made in the proof of (b),
involving the use of the present Theorem 3, as described above for Theorem 4(b).
For upper bounded curvature, see [F9, Theorem 4]; alternatively, adapt the above
proof of Theorem 5(b). Also note that, under different hypotheses on X and the
Riemannian manifold Y , Picard [Pi] obtained by probabilistic methods continu-
ity up to the boundary of any bounded quasicontinuous map X → Y which is
harmonic in Ω as in Remark 7 below, and everywhere continuous relative to ∂Ω.

Remark 7. A particular case of Theorem 4 and of Theorem 5, now with X
compact, was obtained in [F8, Theorems 1 and 3], where Ω = X \ bX , bX 6= ∅ ;
then every point of ∂Ω = bX is regular. Similarly, the companions in Remark 6
above (with manifold target) contain [F8, Theorems 4 and 5] (where likewise Ω =
X \ bX 6= X ).
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