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Abstract. In this paper we discuss the problems on the fixed points of meromorphic solu-
tions of higher order linear differential equations with meromorphic coefficients and their deriva-
tives. Because of the restriction of differential equations, we obtain that the properties of fixed
points of meromorphic solutions of higher order linear differential equations with meromorphic
coefficients and their derivatives are more interesting than those of general transcendental mero-
morphic functions. Some estimates of the exponent of convergence of fixed points of solutions and
their derivatives are obtained.

1. Introduction and main results

Many important results have been obtained on the fixed points of general
transcendental meromorphic functions for almost four decades (see [14]). How-
ever, there are few studies on the fixed points of solutions of differential equations.
In [3], Chen Zong-Xuan at first studied the problems on the fixed points and
hyper-order of solutions of second order linear differential equations with entire
coefficients. In [11], Wang and Yi studied the problems on the fixed points and hy-
per order of differential polynomials generated by solutions of second order linear
differential equations with meromorphic coefficients. In [9], I. Laine and J. Rieppo
had given an extension and improvement of the results in [11]; they studied the
problems on the fixed points and iterated order of differential polynomials gener-
ated by solutions of second order linear differential equations with meromorphic
coefficients. In [10], Wang and Lü studied the problems on the fixed points and
hyper-order of solutions of second order linear differential equations with mero-
morphic coefficients and their derivatives. The main purpose of this paper is to
extend some results in [10] to the case of higher order linear differential equations
with meromorphic coefficients.

In this paper, we shall assume that the reader is familiar with the fundamen-
tal results and the standard notation of R. Nevanlinna’s theory of meromorphic
functions (see [4], [13], [12], [8]). In addition, let σ(f) denote the order of growth
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of the meromorphic function f(z), λ̄(f) denote the exponent of convergence of
the sequence of distinct zeros of f , vf (r) denote the central index of f(z). In
order to give some estimates of fixed points, we recall the following definitions (see
[3], [7], [9]).

Definition 1.1. Let z1, z2, . . ., |zj | = rj , 0 ≤ r1 ≤ r2 ≤ · · ·, be the sequence
of distinct fixed points of a transcendental meromorphic function f . Then τ(f),
the exponent of convergence of the sequence of distinct fixed points of f , is defined
by

τ(f) = inf

{

τ > 0
∣

∣

∣

∞
∑

j=1

|zj |
−τ < +∞

}

.

It is evident that

τ(f) = lim
r→∞

log N

(

r,
1

f − z

)

log r
.

Definition 1.2. Suppose that f(z) be a meromorphic function of infinite
order. Then the hyper-order σ2(f) of f(z) is defined by

σ2(f) = lim
r→∞

log log T (r, f)

log r
.

Definition 1.3. Let f be a meromorphic function. Then λ2(f), the hyper-
exponent of convergence of the sequence of distinct zeros of f , is defined by

λ2(f) = lim
r→∞

log log N

(

r,
1

f

)

log r
,

and τ2(f), the hyper-exponent of convergence of the sequence of distinct fixed
points of f , is defined by

τ2(f) = lim
r→∞

log log N

(

r,
1

f − z

)

log r
.

Definition 1.4 ([2], [6]). Let P (z) be rational and of the form P1(z)/P2(z),
where P1(z) and P2(z) are two polynomials. We denote by di(P ), the “degree at
infinity” of P , defined by

(1.1) di(P ) = deg P1(z) − deg P2(z).

In [10], Wang and Lü obtained the following results.
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Theorem A. Suppose that P (z) = P1(z)/P2(z) 6≡ 0 be a rational func-

tion with n = di(P ) . Then every transcendental meromorphic solution f of the

equation

(1.2) f ′′ + P (z)f = 0

satisfies that f and f ′ , f ′′ all have infinitely many fixed points and

τ(f) = τ(f ′) = τ(f ′′) = σ(f) = max
{

1
2 (n + 2), 0

}

.

Theorem B. Suppose that A(z) be a transcendental meromorphic function

satisfying δ(∞, A) > 0 , σ(A) = σ < +∞ . Then every meromorphic solution

f 6≡ 0 of the equation

(1.3) f ′′ + A(z)f = 0

satisfies that f and f ′ , f ′′ all have infinitely many fixed points and

τ(f) = τ(f ′) = τ(f ′′) = σ(f) = +∞, τ2(f) = τ2(f
′) = τ2(f

′′) = σ2(f) = σ.

Remark 1.1. In [10], Wang and Lü did not give the detailed proof of The-
orem A, they only proved that σ(f) = max

{

1
2(n + 2), 0

}

, and omit the proof of
τ(f) = τ(f ′) = τ(f ′′) = σ(f). In fact, when n = −2, we cannot prove that
τ(f ′) = τ(f ′′) = σ(f) by using the similar method as the proof of Theorem B
in [10]; please look at Remark 3.1 in Section 3.

In this paper, we shall prove the following two theorems.

Theorem 1.1. Suppose that P (z) = P1(z)/P2(z) 6≡ 0 be a rational function

with n = di(P ) , and k be an integer with k ≥ 2 . Then:

(1) Every transcendental meromorphic solution f of the equation

(1.4) f (k) + P (z)f = 0

satisfies σ(f) = max{(n + k)/k, 0} .

(2) If n 6= −k , then every meromorphic solution f 6≡ 0 of the equation (1.4)
satisfies that f and f ′, f ′′, . . . , f (k) all have infinitely many fixed points and

τ(f) = τ(f ′) = · · · = τ(f (k)) = max

{

n + k

k
, 0

}

.

(3) If n = −k , then every transcendental meromorphic solution f of the

equation (1.4) satisfies that f and f ′, f ′′, . . . , f (k−2) all have infinitely many fixed

points and

τ(f) = τ(f ′) = · · · = τ(f (k−2)) = 0.
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Remark 1.2. Setting k = 2 in Theorem 1.1, we get Theorem 1 of [10] or
Theorem A, which contains the related results in [1]. From Theorem 1.1, we know
that every transcendental meromorphic solution f of equation (1.4) has infinitely
many fixed points. In addition, if n = −k , there exists some equations of the form
(1.4) that may have solutions with finite fixed points. For example, the equation

f ′′′ −
6

z(z − 2)(z − 5)
f = 0

has a family of polynomial solutions {fc = cz(z−2)(z−5); c is a constant} , which
have at most three fixed points.

Theorem 1.2. Suppose that k ≥ 2 and A(z) be a transcendental mero-

morphic function satisfying δ(∞, A) = δ > 0 , σ(A) = σ < +∞ . Then every

meromorphic solution f 6≡ 0 of the equation

(1.5) f (k) + A(z)f = 0

satisfies that f and f ′, f ′′, . . . , f (k) all have infinitely many fixed points and

(1.6) τ(f) = τ(f (j)) = σ(f) = +∞, τ2(f) = τ2(f
(j)) = σ2(f) = σ,

for j = 1, . . . , k .

Remark 1.3. Setting k = 2 in Theorem 1.2, we get Theorem 2 of [10] or
Theorem B.

2. Some lemmas

Lemma 2.1 ([11]). Suppose that f(z) = g(z)/d(z) is a meromorphic function

with σ(f) = % , where g(z) is an entire function and d(z) is a polynomial. Then

there exists a sequence {rj} , rj → ∞ , such that for all z satisfying |z| = rj ,

|g(z)| = M(rj, g) , when j sufficiently large, we have

f (n)(z)

f(z)
=

(

vg(rj)

z

)n
(

1 + o(1)
)

, n ≥ 1,

σ(f) = lim
j→∞

log vg(rj)

log rj

.

Lemma 2.2. Suppose that k ≥ 2 and A(z) is a transcendental meromorphic

function with δ(∞, A) = δ > 0 and σ(A) = σ < +∞ . Then every meromorphic

solution f 6≡ 0 of equation (1.5) satisfies σ(f) = +∞ and σ2(f) = σ .
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Proof. Suppose that f 6≡ 0 is a meromorphic solution of (1.5). Rewrite (1.5)
as

(2.1) A = −
f (k)

f
.

By the lemma of logarithmic derivatives, there exists a set E with finite linear
measure such that m(r, A) ≤ c log

(

rT (r, f)
)

for r /∈ E , where c is a positive
constant.

It follows from the definition of deficiency that for sufficiently large r , we have
m(r, A) ≥ 1

2δT (r, A). So when r /∈ E sufficiently large, we have

(2.2) T (r, A) ≤
2c

δ
log

(

rT (r, f)
)

.

Hence by the definition of hyper-order, we obtain that σ(f) = +∞ , and

(2.3) σ2(f) = lim
r→+∞

log log T (r, f)

log r
≥ σ(A) = σ.

On the other hand, we know that the poles of f can only occur at the poles of
A , so λ(1/f) ≤ σ(A). According to the Hadamard factorization theorem, we can
write f as f(z) = g(z)/d(z), where d(z) and g(z) are entire functions satisfying
λ(d) = σ(d) = λ(1/f) ≤ σ ≤ σ2(g) = σ2(f). Substituting f(z) = g(z)/d(z) into
(1.5), by Theorem 2.1 in [7], we get

(2.4) σ2(f) = σ2(g) ≤ σ.

Hence σ2(f) = σ . This completes the proof.

Lemma 2.3. Suppose that k be a positive integer and f(z) be a nonzero

solution of equation (1.5) . Let w0 = f − z , w1 = f ′ − z , w2 = f ′′ − z . Then w0 ,

w1 and w2 satisfy the following equations:

− w
(k)
0 − Aw0 = zA, if k ≥ 2;(2.5)

− Aw
(k)
1 + A′w

(k−1)
1 − A2w1 = zA2, if k ≥ 3;(2.6)

− A2w
(k)
2 + 2AA′w

(k−1)
2 + (AA′′ − 2(A′)2)w

(k−2)
2 − A3w2(2.7)

= zA3, if k ≥ 4;

− Aw′′

1 + A′w′

1 − A2w1 = zA2 − A′, if k = 2;(2.8)

− A2w′′

2 + 2AA′w′

2 + (AA′′ − 2(A′)2 − A3)w2(2.9)

= zA3 − 2AA′ + 2z(A′)2 − zAA′′, if k = 2;

− A2w′′′

2 + 2AA′w′′

2 + (AA′′ − 2A′2)w′

2 − A3w2(2.10)
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= zA3 − AA′′ + 2A′2, if k = 3;

− A3w′′′

3 + 3A2A′w′′

3 + 3A(AA′′ − 2(A′)2)w′

3(2.11)

+ (A2A′′′ − 6AA′A′′ + 6A′3 − A4)w3

= zA4 − 3A(AA′′ − 2A′2)

− z(A2A′′′ − 6AA′A′′ + 6A′3), if k = 3.

Proof. From f = w0 + z , we have that f (k) = w
(k)
0 for k ≥ 2. Substituting

it into (1.5), we get f = −w
(k)
0 /A , that is, w0 + z = −w

(k)
0 /A . From this, we

obtain (2.5).

According to the equality f ′ = w1 + z , we obtain that f (k) = w
(k−1)
1

for k ≥ 3. Substituting it into (1.5), we get f = −w
(k−1)
1 /A , so that f ′ =

(−w
(k)
1 A + w

(k−1)
1 A′)/A2 , that is, w1 + z = (−w

(k)
1 A + w

(k−1)
1 A′)/A2 . From this,

we obtain (2.6).

By the equality f ′′ = w2 + z , we get that f (k) = w
(k−2)
2 for k ≥ 4. Substi-

tuting it into (1.5), we get f = −w
(k−2)
2 /A , so that

f ′′ = (f ′)′ =

(

−w
(k−1)
2 A + w

(k−2)
2 A′

A2

)

′

=
−A2w

(k)
2 + 2AA′w

(k−1)
2 +

(

AA′′ − 2(A′)2
)

w
(k−2)
2

A3
,

that is,

w2 + z =
−A2w

(k)
2 + 2AA′w

(k−1)
2 +

(

AA′′ − 2(A′)2
)

w
(k−2)
2

A3
.

From this, we obtain (2.7).
We may prove equations (2.9)–(2.11) similarly. Hence the proof of Lemma 2.3

is complete.

Let i , j are two non-negative integers. Now we define the notation Hij(A)
as follows.

(1) For any non-negative integer i , we define Hi0(A) = −Ai ;
(2) For any non-negative integer i , Hii(A) and Hi(i−1)(A) are defined by the

following recurrence formula:

(2.12)

H(i+1)(i+1)(A) = A · [Hii(A)]′ − (i + 1)A′ · Hii(A),

H(i+2)(i+1)(A) = A · [H(i+1)i(A)]′ − (i + 2)A′ · H(i+1)i(A)

+ A · H(i+1)(i+1)(A),

H00(A) = −1, H10(A) = −A;
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(3) For i ≥ 3 and 1 ≤ j ≤ i − 2, Hij(A) are defined as a sum of a finite
number of terms of the type

(2.13) B = bAl0(A′)l1 · · · (A(i+1))li+1 ,

where b is a constant, l0, l1, . . . , li+1 are non-negative integers such that l0 + l1 +
· · · + li+1 = i and l1 + 2l2 + · · · + (i + 1)li+1 = j . It is obvious that Hij(A) is a
differential polynomial of A . Moreover, this notation Hij(A), 1 ≤ j ≤ i− 2, may
represent a different differential polynomial of A in different occurrences, even
within one single formula.

By the definition of Hij(A), simple computation yields

(2.14)

H00(A) = −1,

H10(A) = −A,

H11(A) = A′;

H20(A) = −A2,

H21(A) = 2AA′,

H22(A) = AA′′ − 2A′2,

H32(A) = 3A2A′′ − 6AA′2,

H33(A) = A2A′′′ − 6AA′A′′ + 6A′3;

A ·
(

Hij(A)
)

′

= H(i+1)(j+1)(A) for 0 < j ≤ i − 2;

A′ · Hij(A) = H(i+1)(j+1)(A) for 0 < j ≤ i − 2;

A · Hij(A) = H(i+1)j(A) for 0 ≤ j ≤ i − 1.

Lemma 2.4. Suppose that f(z) is a nonzero solution of equation (1.5) and

k ≥ 2 . Let wi = f (i) − z , i = 0, 1, . . . , k − 2 . Then wi satisfy the following

equations:

(2.15)
i

∑

j=0

Hij(A)w
(k−j)
i − Ai+1wi = zAi+1, i = 0, 1, . . . , k − 2,

where Hij(A) are defined by (2.12)–(2.14) .

Proof. When k = 2 or 3, 4, by Lemma 2.3 and (2.12)–(2.14), it is evident that
(2.15) hold. In the following, we suppose that k ≥ 5. We shall use an inductive
method to prove it.

At first, by Lemma 2.3 and (2.14), we get that (2.15) hold for i = 0, 1, 2.
Next, suppose that wi , 2 ≤ i ≤ k − 3, satisfy (2.15). Now we verify that

wi+1 also satisfies (2.15).
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From wi + z = f (i) and wi+1 + z = f (i+1) , we know that

w
(k−j)
i = w

(k−j−1)
i+1 , j = 0, 1, . . . , i, i ≤ k − 3.

Since wi satisfies (2.15), we have

f (i) = wi + z =

∑i

j=0 Hij(A)w
(k−j)
i

Ai+1
,

so by (2.14) and (2.12), we obtain

f (i+1) = (f (i))′ =

(

∑i

j=0 Hij(A)w
(k−j)
i

Ai+1

)

′

=

(

∑i

j=0 Hij(A)w
(k−j−1)
i+1

Ai+1

)

′

=
1

A2(i+1)

{[ i
∑

j=0

(

Hij(A)
)

′

w
(k−j−1)
i+1 +

i
∑

j=0

Hij(A)w
(k−j)
i+1

]

Ai+1

− (i + 1)AiA′

i
∑

j=0

Hij(A)w
(k−j−1)
i+1

}

=
1

Ai+2

{i−2
∑

j=0

H(i+1)(j+1)(A)w
(k−j−1)
i+1 + A

(

Hi(i−1)(A)
)

′

w
(k−i)
i+1

+ A
(

Hii(A)
)

′

w
(k−i−1)
i+1 +

i
∑

j=0

AHij(A)w
(k−j)
i+1

− (i + 1)A′

i
∑

j=0

Hij(A)w
(k−j−1)
i+1

}

=
1

Ai+1+1

{i−1
∑

j=1

H(i+1)j(A)w
(k−j)
i+1 + H(i+1)i(A)w

(k−i)
i+1

+ H(i+1)(i+1)(A)w
(k−i−1)
i+1

+
i−1
∑

j=1

H(i+1)j(A)w
(k−j)
i+1 + Hi0(A) · Aw

(k)
i+1

− (i + 1)

i−1
∑

j=1

H(i+1)j(A)w
(k−j)
i+1

}
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=
1

Ai+1+1

{

−Ai+1w
(k)
i+1 +

i+1
∑

j=1

H(i+1)j(A)w
(k−j)
i+1

}

=
1

Ai+1+1

i+1
∑

j=0

H(i+1)j(A)w
(k−j)
i+1 = wi+1 + z.

From the above equality, we obtain that wi+1 also satisfies (2.15). This
completes the proof.

Lemma 2.5. Suppose that f(z) 6≡ 0 is a solution of equation (1.5) and

k ≥ 2 . Let wk−1 = f (k−1) − z . Then wk−1 satisfies

(2.16)

k−1
∑

j=0

H(k−1)j(A)w
(k−j)
k−1 − Akwk−1 = zAk − H(k−1)(k−1)(A),

where Hij are defined by (2.12)–(2.14) .

Proof. When k = 2 or 3, by (2.8), (2.10) and (2.14), it is evident that (2.16)
holds. When k ≥ 4, from wk−2 = f (k−2) − z and wk−1 = f (k−1) − z , we obtain

w
(k−j)
k−2 = w

(k−j−1)
k−1 , j = 0, 1, 2, . . . , k − 3, w′′

k−2 = w′

k−1 + 1.

Since wk−2 satisfies (2.15), rewrite it as

f (k−2) = wk−2 + z =

∑k−2
j=0 H(k−2)j(A)w

(k−j)
k−2

Ak−1
,

so by (2.14) and (2.12), we have

f (k−1) = (f (k−2))′

=

(

∑k−2
j=0 H(k−2)j(A)w

(k−j)
k−2

Ak−1

)

′

=

(

∑k−3
j=0 H(k−2)j(A)w

(k−j−1)
k−1 + H(k−2)(k−2)(A)(w′

k−1 + 1)

Ak−1

)

′

=
1

A2(k−1)

{[k−3
∑

j=0

(H(k−2)j(A))′w
(k−j−1)
k−1 +

k−3
∑

j=0

H(k−2)j(A)w
(k−j)
k−1

+
(

H(k−2)(k−2)(A)
)

′

(w′

k−1 + 1) + H(k−2)(k−2)(A)w′′

k−1

]

Ak−1

−

[k−3
∑

j=0

H(k−2)j(A)w
(k−j−1)
k−1

+ H(k−2)(k−2)(A)(w′

k−1 + 1)

]

(k − 1)Ak−2A′

}
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=
1

Ak

{k−4
∑

j=0

A
(

H(k−2)j(A)
)

′

w
(k−j−1)
k−1 +

k−3
∑

j=0

AH(k−2)j(A)w
(k−j)
k−1

+ A
(

H(k−2)(k−3)(A)
)

′

w′′

k−1 − (k − 1)A′H(k−2)(k−3)(A)w′′

k−1

+ AH(k−2)(k−2)(A)w′′

k−1 + A
(

H(k−2)(k−2)(A)
)

′

(w′

k−1 + 1)

− (k − 1)A′H(k−2)(k−2)(A)(w′

k−1 + 1)

−

k−4
∑

j=0

(k − 1)A′H(k−2)j(A)w
(k−j−1)
k−1

}

=
1

Ak

{k−4
∑

j=0

H(k−1)(j+1)(A)w
(k−j−1)
k−1 +

k−3
∑

j=1

H(k−1)j(A)w
(k−j)
k−1

+ AH(k−2)0(A)w
(k)
k−1 + H(k−1)(k−2)(A)w′′

k−1

+ H(k−1)(k−1)(A)(w′

k−1 + 1)

−

k−4
∑

j=0

(k − 1)H(k−1)(j+1)(A)w
(k−j−1)
k−1

}

=
1

Ak

{

−Ak−1w
(k)
k−1 +

k−3
∑

j=1

H(k−1)j(A)w
(k−j)
k−1

+ H(k−1)(k−2)(A)w′′

k−1 + H(k−1)(k−1)(A)(w′

k−1 + 1)

}

=
1

Ak

{k−1
∑

j=0

H(k−1)j(A)w
(k−j)
k−1 + H(k−1)(k−1)(A)

}

= wk−1 + z.

From the above equality we get (2.16). This completes the proof.

Lemma 2.6. Suppose that f(z) 6≡ 0 is a solution of equation (1.5) and

k ≥ 2 . Let wk = f (k) − z . Then wk satisfies

(2.17)

k−1
∑

j=0

Hkj(A)w
(k−j)
k +

(

Hkk(A)−Ak+1
)

wk = zAk+1−Hk(k−1)(A)−zHkk(A),

where Hij are defined by (2.12)–(2.14) .

Proof. When k = 2, by (2.9) and (2.14), it is evident that (2.17) holds.
When k ≥ 3, we obtain from wk−1 = f (k−1) − z and wk = f (k) − z ,

w
(k−j)
k−1 = w

(k−j−1)
k , j = 0, 1, . . . , k − 3,

w′′

k−1 = w′

k + 1,

w′

k−1 = wk + z − 1.
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Since wk−1 satisfies (2.16), rewrite it as

f (k−1) = wk−1 + z =

∑k−1
j=0 H(k−1)j(A)w

(k−j)
k−1 + H(k−1)(k−1)(A)

Ak
,

so by (2.14) and (2.12), we have

f (k) = (f (k−1))′

=

(

∑k−1
j=0 H(k−1)j(A)w

(k−j)
k−1 + H(k−1)(k−1)(A)

Ak

)

′

=

(

∑k−3
j=0 H(k−1)j(A)w

(k−j−1)
k + H(k−1)(k−2)(A)(w′

k + 1)

Ak

+
H(k−1)(k−1)(A)(wk + z − 1) + H(k−1)(k−1)(A)

Ak

)

′

=

(

∑k−3
j=0 H(k−1)j(A)w

(k−j−1)
k + H(k−1)(k−2)(A)(w′

k + 1)

Ak

+
H(k−1)(k−1)(A)(wk + z)

Ak

)

′

=
1

A2k

{[k−3
∑

j=0

(H(k−1)j(A))′w
(k−j−1)
k +

k−3
∑

j=0

H(k−1)j(A)w
(k−j)
k

+
(

H(k−1)(k−2)(A)
)

′

(w′

k + 1) + H(k−1)(k−2)(A)w′′

k

+ (H(k−1)(k−1)(A))′(wk + z) + H(k−1)(k−1)(A)(w′

k + 1)

]

Ak

−

[k−3
∑

j=0

H(k−1)j(A)w
(k−j−1)
k + H(k−1)(k−2)(A)(w′

k + 1)

+ H(k−1)(k−1)(A)(wk + z)

]

kAk−1A′

}

=
1

Ak+1

{k−3
∑

j=0

Hk(j+1)(A)w
(k−j−1)
k

+ AH(k−1)0(A)w
(k)
k +

k−3
∑

j=1

Hkj(A)w
(k−j)
k

+ A
(

H(k−1)(k−2)(A)
)

′

(w′

k + 1) + AH(k−1)(k−2)(A)w′′

k

+ A
(

H(k−1)(k−1)(A)
)

′

(wk + z)
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+ AH(k−1)(k−1)(A)(w′

k + 1) − kA′H(k−1)(k−2)(A)(w′

k + 1)

− kA′H(k−1)(k−1)(A)(wk + z) −

k−3
∑

j=0

kHk(j+1)(A)w
(k−j−1)
k

}

=
1

Ak+1

{k−2
∑

j=1

Hkj(A)w
(k−j)
k − Akw

(k)
k + Hk(k−1)(A)(w′

k + 1)

+ Hk(k−2)(A)w′′

k + Hkk(A)(wk + z)

}

=
1

Ak+1

{ k
∑

j=0

Hkj(A)w
(k−j)
k + Hk(k−1)(A) + zHkk(A)

}

= wk + z.

From the above equality we obtain (2.17). This completes the proof.

Lemma 2.7. Suppose that k ≥ 2 and P (z) is a rational function with

n = di(P ) < −k ≤ −2 . Then there exist two nonzero constants c1 and c2 such

that

(2.18) H(k−1)(k−1)(P ) =
c1 + o(1)

z−nk−1+k+n
as z → ∞,

and

(2.19) Hk(k−1)(P ) + zHkk(P ) =
c2 + o(1)

z−n(k+1)−1+k+n
as z → ∞.

Proof. At first, we prove (2.18) by means of induction.
Since P (z) is a rational function with n = di(P ) < −k ≤ −2, we have

(2.20) P (z) =
c0 + o(1)

z−n
as z → ∞,

where c0 6= 0 is a constant. From this and (2.14), simple computation yields

H11(P ) = P ′ =
nc0 + o(1)

z−n+1
as z → ∞,

where nc0 6= 0. Hence (2.18) holds, when k = 2.
Furthermore, if (2.18) is assumed to be valid when k = m (> 2), that is,

there exists a constant c′′1 6= 0 such that

H(m−1)(m−1)(P ) =
c′′1 + o(1)

z−nm−1+m+n
as z → ∞,
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it must also hold when k = m + 1, since, by (2.12),

Hmm(P ) = P · [H(m−1)(m−1)(P )]′ − mP ′ · H(m−1)(m−1)(P )

=
c0 + o(1)

z−n
·

[

c′′1 + o(1)

z−nm−1+m+n

]

′

− m ·
nc0 + o(1)

z−n+1
·

c′′1 + o(1)

z−nm−1+m+n

=
(1 − m − n)c0c

′′

1 + o(1)

z−n(m+1)−1+(m+1)+n

=
c1 + o(1)

z−n(m+1)−1+(m+1)+n
as z → ∞,

where c1 = (1 − m − n)c0c
′′

1 6= 0. Hence (2.18) holds.
Next, we prove (2.19) by means of induction. By (2.20) and (2.14), simple

computation yields

H21(P ) + zH22(P ) = 2PP ′ + z(PP ′′ − 2P ′2) =
n(1 − n)c2

0 + o(1)

z−2n+1

=
c′2 + o(1)

z−4n+3
as z → ∞,

where c′2 = n(1 − n)c2
0 6= 0. Hence (2.19) holds, when k = 2.

Furthermore, if (2.19) is assumed to be valid when k = m (> 2), that is,
there exists a constant c′′2 6= 0 such that

Hm(m−1)(P ) + zHmm(P ) =
c′′2 + o(1)

z−n(m+1)−1+m+n
as z → ∞,

it must also hold when k = m + 1, since, by (2.12),

H(m+1)m(P ) + zH(m+1)(m+1)(P ) = P [Hm(m−1)(P )]′ − (m + 1)P ′Hm(m−1)(P )

+ PHmm(P ) + zP · [Hmm(P )]′

− (m + 1)zP ′ · Hmm(P )

= P [Hm(m−1)(P ) + zHmm(P )]′

− (m + 1)[Hm(m−1)(P ) + zHmm(P )]

=
c0 + o(1)

z−n
·

[

c′′2 + o(1)

z−n(m+1)−1+m+n

]

′

− (m + 1) ·
nc0 + o(1)

z−n+1
·

c′′2 + o(1)

z−n(m+1)−1+m+n

=
(1 − m − n)c0c

′′

2 + o(1)

z−n(m+2)−1+(m+1)+n

=
c2 + o(1)

z−n(m+2)−1+(m+1)+n
as z → ∞,

where c2 = (1 − m − n)c0c
′′

2 6= 0. Hence (2.19) holds, and the proof is complete.
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3. Proofs of Theorems 1.1 and 1.2

Proof of Theorem 1.2. Suppose that f 6≡ 0 is a meromorphic solution of (1.5).
Then, by Lemma 2.2, we obtain that

σ(f) = ∞, σ2(f) = σ.

Set wi = f (i) − z , i = 0, 1, . . . , k . Then for every i , a point z0 is a fixed
points of f (i) if and only if z0 is a zero of wi , and

(3.1) σ(wi) = σ(f (i)) = σ(f) = +∞, τ(f (i)) = λ̄(wi),

and

(3.2) σ2(wi) = σ2(f
(i)) = σ2(f) = σ, τ2(f

(i)) = λ2(wi).

By Lemmas 2.4–2.6, we know that wi , i = 0, 1, . . . , k , satisfy the following
equations:

i
∑

j=0

Hij(A)w
(k−j)
i − Ai+1wi = zAi+1, i = 0, 1, . . . , k − 2;(3.3)

k−1
∑

j=0

H(k−1)j(A)w
(k−j)
k−1 − Akwk−1 = zAk − H(k−1)(k−1)(A);(3.4)

k−1
∑

j=0

Hkj(A)w
(k−j)
k + (Hkk(A) − Ak+1)wk(3.5)

= zAk+1 − Hk(k−1)(A) − zHkk(A).

Since A is a transcendental meromorphic function, Ai+1z 6≡ 0, i = 0, 1, . . .,
k − 2. We claim that

zAk − H(k−1)(k−1)(A) 6≡ 0 and zAk+1 − Hk(k−1)(A) − zHkk(A) 6≡ 0.

In fact, if zAk − H(k−1)(k−1)(A) ≡ 0, rewrite it as

A =
H(k−1)(k−1)(A)

zAk−1
.

From this, we obtain that m(r, A) = S(r, A), which contradicts δ(∞, A) > 0. If
zAk+1 − Hk(k−1)(A) − zHkk(A) ≡ 0, rewrite it as

A =
Hk(k−1)(A)

zAk
+

Hkk(A)

Ak
.
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Similarly, we may obtain that m(r, A) = S(r, A), which contradicts δ(∞, A) > 0;
hence the claims hold.

Rewrite (3.3), (3.4) and (3.5) as

1

zAi+1

( i
∑

j=0

Hij(A)
w

(k−j)
i

wi

− Ai+1

)

=
1

wi

, i = 0, 1, . . . , k − 2,(3.6)

1

zAk − H(k−1)(k−1)(A)

(k−1
∑

j=0

H(k−1)j(A)
w

(k−j)
k−1

wk−1
− Ak

)

=
1

wk−1
,(3.7)

1

zAk+1 − Hk(k−1)(A) − zHkk(A)
(3.8)

×

(k−1
∑

j=0

Hkj(A)
w

(k−j)
k

wk

+ Hkk(A) − Ak+1

)

=
1

wk

.

Hence there exists a set E with finite linear measure such that for r /∈ E , we
have

(3.9) m

(

r,
1

wi

)

≤ O

(

m

(

r,
1

A

))

+ C
(

log rT (r, wi)
)

, i = 0, 1, . . . , k.

On the other hand, since Hij(A) are differential polynomials of A , according
to their definition, it is easy to get that if z0 is a pole of order l (≥ 1) of A , then
z0 is a pole of order li + j of Hij(A). In the following, we split it into three cases
to discuss the poles of wi :

Case (1): i = 0, 1, . . . , k − 2. Since the coefficients of w
(k−j)
i are Hij(A),

j = 0, 1, . . . , i , and the right-hand sides of the equations (3.3) are Ai+1z , by (3.3),
all zeros (except for z = 0) of wi , whose order is larger than k , are zeros of A(z)
(each is not the pole of A , if not, it will lead to a contradiction as follows). Hence

(3.10) N

(

r,
1

wi

)

≤ kN

(

r,
1

wi

)

+ N

(

r,
1

zAi+1

)

.

Case (2): i = k−1. Suppose that wk−1 has a zero of order k1 (≥ k2−k+2)
at point z1 , and z1 is also the pole of order l of A(z). We claim that 0 ≤ l ≤ k−1.
In fact, if l ≥ k , then z1 is a pole of order kl of zAk − H(k−1)(k−1)(A), and z1

is also a pole of order l1 , l1 ≤ kl − k1 < kl , of the left-hand side in equality
(3.4); this is a contradiction; hence 0 ≤ l ≤ k − 1. At this time, z1 is a pole of
order l(k−1)+j of H(k−1)j(A)) for j = 0, 1, . . . , k−1. Therefore, by (3.4), direct
computation yields that z1 is a zero of order k1−k(l+1)+l of the left-hand side of
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equality (3.4), so z1 is also a zero of order k1−k(l+1)+l of zAk−H(k−1)(k−1)(A).
Especially, k1 − k(l + 1) + l = k1 − (k2 − k + 1) for l = k − 1. Hence

(3.11) N

(

r,
1

wk−1

)

≤ (k2−k+2)N

(

r,
1

wk−1

)

+N

(

r,
1

zAk − H(k−1)(k−1)(A)

)

.

Case (3): i = k . Suppose that wk has a zero of order k2 (≥ k2+k+1) at point
z2 , and z2 is also the pole of order t of A(z). We claim that 0 ≤ t ≤ k . In fact,
if t ≥ k +1, then z2 is a pole of order (k+1)t of zAk+1−Hk(k−1)(A)− zHkk(A),
and z2 is also a pole of order (k + 1)t − k2 of the left-hand side in equality (3.5);
this is a contradiction. Hence 0 ≤ t ≤ k . At this time, z2 is a pole of order tk + j
of Hkj(A) for j = 0, 1, . . . , k . Therefore, by (3.5), direct computation yields that
z2 is a zero of order k2 − k(t + 1) of the left-hand side of equality (3.5), so z2 is
also a zero of order k2 − k(t + 1) of zAk+1 − Hk(k−1)(A) − zHkk(A). Especially,
k1 − k(t + 1) = k1 − (k2 + k) for t = k . Hence
(3.12)

N

(

r,
1

wk

)

≤ (k2 + k + 1)N

(

r,
1

wk

)

+ N

(

r,
1

zAk+1 − Hk(k−1)(A) − zHkk(A)

)

.

Note that for sufficiently large r , C log
(

rT (r, wi)
)

≤ 1
2
T (r, wi), i = 0, 1, . . . , k .

Because wi , i = 0, 1, . . . , k , are transcendental meromorphic functions and σ(A) =
σ < +∞ , so for any given ε > 0, it follows from (3.10)–(3.12) and (3.9) that

(3.13) T (r, wi) ≤ 2(k2 + k + 1)N

(

r,
1

wi

)

+ O(rσ+ε), i = 0, 1, . . . , k,

for r /∈ E2 sufficiently large, where E2 has finite linear measure.
By Definition 1.2, (3.1), (3.2) and (3.13), we obtain that for i = 0, 1, . . . , k ,

we have

(3.14) τ(f (i)) = λ̄(wi) = σ(wi) = +∞, τ2(f
(i)) = λ2(wi) = σ2(wi) = σ.

That is, each meromorphic solution f 6≡ 0 of (1.5) and its f ′, . . . , f (k) all
have infinitely many fixed points and satisfy (1.6). This completes the proof.

Proof of Theorem 1.1. (1) Suppose that f(z) is a transcendental meromorphic
solution of (1.4). Then we know that the poles of f can only occur at the poles
of P (z), so f has only finite poles. According to the Hadamard factorization
theorem, we can write f as f(z) = g(z)/d(z), where g(z) is an entire function
satisfying σ(g) = σ(f) and d(z) is a polynomial. By Lemma 2.1, for any ε > 0,
there exists a sequence {rj} , rj → ∞ , such that for all z satisfying |z| = rj ,
|g(z)| = M(rj, g), when j is large enough, we have

f (k)(z)

f(z)
=

(

vg(rj)

z

)k
(

1 + o(1)
)

,(3.15)

σ(f) = lim
j→∞

log vg(rj)

log rj

.(3.16)



Fixed points of meromorphic solutions 207

Substituting (3.15) into (1.4), we have

(3.17)

(

vg(rj)

rj

)k
(

1 + o(1)
)

= rn
j

(

a + o(1)
)

,

where a is a nonzero constant. From (3.16) and (3.17), we obtain that σ(f) =
max{(n + k)/k, 0} .

(2): di(P ) = n 6= −k . Suppose that f 6≡ 0 is a meromorphic solution of (1.4).
Then f must be a transcendental meromorphic function. In fact, if not, then f
is a rational function. We conclude that f (k)(z)/f(z) =

(

b + o(1)
)

/zk as z → ∞
(refer to p. 62 in [4]). On the other hand, since di(P ) = n 6= −k and P (z) 6≡ 0,
we have that −P (z) = (b0 + o(1))/z−n as z → ∞ , where b0 6= 0; this contradicts
f (k)(z)/f(z) = −P (z) and −n 6= k . Hence f(z) is a transcendental meromorphic
function. From part (1), we have

(3.18) σ(f) = max

{

n + k

k
, D

}

.

Set wi = f (i)−z , i = 0, 1, . . . , k . Then for every i , a point z0 is a fixed point
of f (i) if and only if z0 is a zero of wi , and

(3.19) σ(wi) = σ(f (i)) = σ(f) = max

{

n + k

k
, D

}

, τ(f (i)) = λ̄(wi).

According to Lemmas 2.4–2.6, we know that wi , i = 0, 1, . . . , k , satisfy the
following equations:

(3.20)
i

∑

j=0

Hij(P )w
(k−j)
i − P i+1wi = zP i+1, i = 0, 1, . . . , k − 2;

(3.21)
k−1
∑

j=0

H(k−1)j(P )w
(k−j)
k−1 − P kwk−1 = zP k − H(k−1)(k−1)(P ), if k ≥ 3;

(3.22)

k−1
∑

j=0

Hkj(P )w
(k−j)
k +

(

Hkk(P )−P k+1
)

wk = zP k+1−Hk(k−1)(P )−zHkk(P ).

Since P 6≡ 0, we conclude that P i+1z 6≡ 0 for i = 0, 1, . . . , k − 2. We claim
that

zP k − H(k−1)(k−1)(P ) 6≡ 0 and zP k+1 − Hk(k−1)(P ) − zHkk(P ) 6≡ 0.

We discuss three subcases below.
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Subcase I: di(P ) = n ≥ 0. If zP k − H(k−1)(k−1)(P ) ≡ 0, rewrite it as

P = H(k−1)(k−1)(P )/P k−1z . Notice that P (z) is a rational function. We have that

P (j)(z)/P (z) → 0 as z → ∞ . From this we obtain that H(k−1)(k−1)(P )/zP k−1 →
0 as z → ∞ , which contradicts that P (z) → ∞ or a nonzero constant. If
zP k+1 − Hk(k−1)(P ) − zHkk(P ) ≡ 0, rewrite it as

P =
Hk(k−1)(P )

zP k
+

Hkk(P )

P k
.

Similarly, we may obtain that

Hk(k−1)(P )

zP k
+

Hkk(P )

P k
→ 0 as z → ∞,

which contradicts that P (z) → ∞ or a nonzero constant; hence the claims hold.

Subcase II: When −k < di(P ) = n ≤ −1, we have P (z) =
(

c0 + o(1)
)

/z−n

as z → ∞ , where c0 is a nonzero constant. From this, we have

(3.23) zP k =
ck
0 + o(1)

z−nk−1
, zP k+1 =

ck+1
0 + o(1)

z−n(k+1)−1
as z → ∞.

On the other hand, by (2.12)–(2.14), using a similar argument as in the proof
of Lemma 2.7, we have

(3.24) H(k−1)(k−1)(P ) =
d1 + o(1)

z−nk−1+k+n
as z → ∞,

and

(3.25) Hk(k−1)(P ) + zHkk(P ) =
d2 + o(1)

z−n(k+1)−1+k+n
as z → ∞,

where d1 , d2 are two constants (note that d1 or d2 may be zero). Hence it follows
from (3.23)–(3.25) and k + n > 0 that

zP k − H(k−1)(k−1)(P ) 6≡ 0 and zP k+1 − Hk(k−1)(P ) − zHkk(P ) 6≡ 0,

that is, the claims hold.

Subcase III: n = di(P ) < −k . By Lemma 2.7, there exist two nonzero
constants c1 , c2 such that

(3.26) H(k−1)(k−1)(P ) =
c1 + o(1)

z−nk−1+k+n
as z → ∞,
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and

(3.27) Hk(k−1)(P ) + zHkk(P ) =
c2 + o(1)

z−n(k+1)−1+k+n
as z → ∞.

Hence it follows from (3.23), (3.26), (3.27) and k + n < 0 that

zP k − H(k−1)(k−1)(P ) 6≡ 0 and zP k+1 − Hk(k−1)(P ) − zHkk(P ) 6≡ 0,

that is, the claims hold.
Rewrite (3.20), (3.21) and (3.22) as

(3.28)
1

zP i+1

( i
∑

j=0

Hij(P )
w

(k−j)
i

wi

− P i+1

)

=
1

wi

, i = 0, 1, . . . , k − 2,

(3.29)
1

zP k − H(k−1)(k−1)(P )

(k−1
∑

j=0

H(k−1)j(P )
w

(k−j)
k−1

wk−1
− P k

)

=
1

wk−1
,

(3.30)

1

zP k+1 − Hk(k−1)(P ) − zHkk(P )

(k−1
∑

j=0

Hkj(P )
w

(k−j)
k

wk

+ Hkk(P ) − P k+1

)

=
1

wk

.

Hence there exists a set E with finite linear measure such that for r /∈ E ,
and we have

(3.31) m

(

r,
1

wi

)

≤ O

(

m

(

r,
1

P

))

+ C
(

log rT (r, wi)
)

, i = 0, 1, . . . , k.

Applying similar arguments as in the proof of Theorem 1.2, we obtain that

(3.32) N

(

r,
1

wi

)

≤ kN

(

r,
1

wi

)

+ N

(

r,
1

zP i+1

)

, i = 0, 1, . . . , k − 2;

(3.33) N

(

r,
1

wk−1

)

≤ (k2−k+2)N

(

r,
1

wk−1

)

+N

(

r,
1

zP k − H(k−1)(k−1)(P )

)

;

(3.34)

N

(

r,
1

wk

)

≤ (k2 + k + 1)N

(

r,
1

wk

)

+ N

(

r,
1

zP k+1 − Hk(k−1)(P ) − zHkk(P )

)

.
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Note that for sufficiently large r , C log
(

rT (r, wi)
)

≤ 1
2T (r, wi), i = 0, 1, . . . , k .

Because wi , i = 0, 1, . . . , k , are transcendental meromorphic functions and P is
a rational function, so for any given ε > 0, from (3.31)–(3.34), we have

T (r, wi) ≤ 2(k2 + k + 1)N

(

r,
1

wi

)

+ O(log r), i = 0, 1, . . . , k,

for r /∈ E3 sufficiently large, where E3 has finite linear measure.
By (3.19), we obtain that for i = 0, 1, . . . , k , f (i)(z) all have infinitely many

fixed points and

(3.35) τ(f (i)) = λ̄(wi) = σ(wi) = max

{

n + k

k
, 0

}

.

That is, each meromorphic solution f 6≡ 0 of (1.4) and its f ′, . . . , f (k) all
have infinitely many fixed points and satisfy (3.35).

Case (3): di(P ) = n = −k . Suppose that f(z) is a transcendental meromor-
phic solution of (1.4). Set wi(z) = f (i)(z)− z , i = 0, 1, . . . , k− 2, since P i+1z 6≡ 0
for i = 0, 1, . . . , k − 2. Using similar arguments as in part (2), we may prove that
for any given ε > 0,

(3.36) T (r, wi) ≤ 2kN

(

r,
1

wi

)

+ O(log r), i = 0, 1, . . . , k − 2,

for r /∈ E4 sufficiently large, where E4 has finite linear measure.
Note that wi , i = 0, 1, . . . , k − 2, are transcendental meromorphic functions.

It follows from (3.36) that f and f ′, f ′′, . . . , f (k−2) all have infinitely many fixed
points and

τ(f) = τ(f ′) = · · · = τ(f (k−2)) = σ(wi) = max

{

n + k

k
, 0

}

= 0.

Hence the proof of Theorem 1.1 is complete.

Remark 3.1. When n = −k in Theorem 1.1, we cannot prove that τ(f k−1)
= τ(f (k)) = σ(f) by using similar arguments as in part (2) of the proof of The-
orem 1.1. Since we cannot prove that zP k − H(k−1)(k−1)(P ) 6≡ 0 and zP k+1 −
Hk(k−1)(P ) − zHkk(P ) 6≡ 0 in (3.21) and (3.22), respectively. In fact, if n = −k ,

there exist some equations of the form (1.4) such that zP k−H(k−1)(k−1)(P ) ≡ 0 or

zP k+1 −Hk(k−1)(P )− zHkk(P ) ≡ 0. For example, when k = 2, by (2.12)–(2.14),
simple computation yields

zP 2 − H11(P ) = zP 2 − P ′ ≡ 0 for P (z) =
−2

z2
,

and



Fixed points of meromorphic solutions 211

zP 3 − H21(P ) − zH22(P ) = zP 3 − 2PP ′ + 2z(P ′)2 − zPP ′′ ≡ 0 for P (z) =
−6

z2
.

When k = 3, simple computation yields zP 3−H22(P ) = zP 3−PP ′′+2P ′2 ≡
0 for P (z) = −6/z3 , and for P (z) = −24/z3 , we have

zP 4 − H32(P ) − zH33(P ) = zP 4 − 3P (PP ′′ − 2P ′2)

+ 6zPP ′P ′′ − zP 2P ′′′ − 6zP ′3 ≡ 0.
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