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Abstract. We study the number of sign changes of Sf (t) (related to Hecke L -functions
attached to holomorphic cusp forms of even positive integral weight with respect to the full modular
group) over shorter intervals.

1. Introduction

Let
S(t) = π−1 arg ζ

(

1
2 + it

)

,

where the argument is obtained by continuous variation along the straight lines
joining 2, 2 + it and 1

2 + it , starting with the value zero. When t is equal to the
imaginary part of any zero of ζ(s), we put

S(t) = lim
ε→0

1
2

{

S(t + ε) + S(t − ε)
}

.

As for Atle Selberg’s comment on a deep result of Littlewood on S(t), A. Ghosh
established that (see Theorem 1 of [5] and also the paper of Selberg [16]) S(t)
changes its sign at least

T (log T ) exp
(

−A(δ)(log log T )(log log log T )−(1/2)+δ
)

times in the interval (T, 2T ). Here δ is any arbitrarily small positive constant,
and A(δ) > 0 depending only on δ . In fact, he proved this result over shorter
intervals.

Let f(z) =
∑∞

n=1 ane2πinz be a holomorphic cusp form of even integral weight
k > 0 with respect to the full modular group Γ = SL(2,Z). We define the
associated Hecke L -function

(1.1) Lf (s) =
∞
∑

n=1

ann−s
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for Re s > (k + 1)/2. Throughout this paper, we assume that f(z) is a Hecke
eigenform with a1 = 1. It is known (see [7]) that Lf (s) admits analytic continu-
ation to C as an entire function and it satisfies the functional equation

(1.2) (2π)−sΓ(s)Lf (s) = (−1)k/2(2π)−(k−s)Γ(k − s)Lf (k − s).

Lf (s) has an Euler-product representation (for Re s > (k + 1)/2)

(1.3) Lf (s) =
∏

p

(

1 − app
−s + pk−1p−2s

)−1
.

The non-trivial zeros of Lf (s) lie within the critical strip (k − 1)/2 < Re s <
(k+1)/2. These zeros are located symmetrically to the real axis and they are also
symmetrical about the line Re s = k/2. The Riemann hypothesis in this situation
asserts that all the non-trivial zeros are on the critical line Re s = k/2. From
Deligne’s proof of Ramanujan–Petersson’s conjecture (see [1] and [2]), we have the
bound for the coefficients

(1.4) |an| ≤ d(n)n(k−1)/2.

Several interesting deep results about the Hecke L -functions have been established
lately. As a sample, a certain average growth of these L -functions in the weight
aspect on the critical line has been investigated in the papers of Peter Sarnak (see
[15]) and of Matti Jutila and Yoichi Motohashi (see [9]).

Let Nf (T ) denote the number of zeros β + iγ of Lf (s) for which 0 < γ < T .
If T is equal to the ordinate of any zero, then we define

(1.5) Nf (T ) := lim
ε→0

1
2
{Nf (T + ε) + Nf (T − ε)}.

Now, one can show that (following Theorem 9.3 of [18])

(1.6) Nf (T ) =
T

π
log

T

π
− T

π
+ 1 + Sf (T ) + O

(

1

T

)

,

where

(1.7) Sf (t) =
1

π
arg Lf

(

k

2
+ it

)

.

The argument is obtained by a continuous variation along the straight lines joining
the points 1

2
k+1, 1

2
k+1+it and 1

2
k+it , starting with the value 1

2
(k − 1). Hence

the variation of Sf (t) is closely connected with the distribution of the imaginary
parts of the zeros of Lf (s).

We now define, for σ ≥ k/2, T ≥ 1 and H ≤ T ,

(1.8) Nf (σ, T, T + H) = #
{

β + iγ : Lf (β + iγ) = 0, β ≥ σ, T ≤ γ ≤ T + H
}

.

In [14], we proved the following two theorems:
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Theorem A. For t ≥ 2 , 2 ≤ x ≤ t2 , we have

Sf (t) = − 1

π

∑

n<x3

Λx,f (n) sin(t log n)

nσx,t log n
+ O

(

(σx,t − k/2)

∣

∣

∣

∣

∑

n<x3

Λx,f (n)

nσx,t+it

∣

∣

∣

∣

)

+ O
(

(σx,t − k/2) log t
)

,

where

σx,t = k/2 + 2 max(β − k/2, 2/ logx),

% = β + iγ running over those zeros for which

|t − γ| ≤ x3|β−k/2|(log x)−1,

and Λx,f (n) is as in (2.6).

As corollaries we obtained (by choosing x =
√

log t )

Sf (t) = O(log t)

unconditionally, and assuming the Riemann hypothesis for Lf (s), we got

Sf (t) = O

(

log t

log log t

)

.

Theorem A ′ . Let B be any fixed small positive constant. Let

B′ =
19

20
+

13.505

5
B

and B′ < α ≤ 1 . Then for T α ≤ H ≤ T , we have

Nf (σ, T, T + H) � H

(

H

TB′

)−(B/(1−B′))(σ−k/2)

log T

uniformly for k/2 ≤ σ ≤ (k + 1)/2 .

As an application to the above Theorems A and A ′ , the object of this paper
is now to prove

Main theorem. Let B′ be the constant as in Theorem A ′ . Let B′ < α ≤ 1 .

If (T + 1)α ≤ H ≤ T and δ > 0 is an arbitrarily small real number, there is an

A = A(α, δ) > 0 and a T0 = T0(α, δ) > 0 such that when T > T0 , Sf (t) changes

its sign at least

H(log T ) exp
(

−A(log log T )(log log log T )−(1/2)+δ
)

times in the interval (T, T + H) .
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Remark 1. This main theorem is an analogous result of the theorem in the
case of S(t) related to the ordinary Riemann zeta-function, which was established
by A. Ghosh (see Theorem 1 of [5]). In the case of S(t), B ′ can be replaced by 1

2
(or even by a better positive constant).

Remark 2. If we assume the Riemann hypothesis for Lf (s), then the main
theorem is true with 0 < α ≤ 1.

The proof requires asymptotic formulae for integrals of the type

∫ T+H

T

|Sf (t)|2l dt

and
∫ T+H

T

|S1,f (t + h) − S1,f (t)|2l dt,

where

S1,f (t) :=

∫ t

0

Sf (u) du

with the error terms uniform in integers l ≥ 1 and h > 0 with a suitable value
of h . It should be mentioned that the asymptotic formulae for higher moments
of S(t) over shorter intervals have been extensively studied earlier in [3], [4], [5]
and [6].

In fact, first we establish the following theorems from which the main theorem
follows. The constants B and B′ occurring in the sequel are as in Theorem A ′ ,
which we do not mention hereafter.

Theorem 1. Let B′ < α ≤ 1 . If T α ≤ H ≤ T , then there is an absolute

positive constant A1 = A1(α) such that for any integer l satisfying

1 ≤ l � (log log T )1/3,

we have

∫ T+H

T

|Sf (t)|2l dt =
(2l)!

l!

(

1

2π

)2l

H(log log T )l+O
(

Al
1l

l−(1/2)H(log log T )l−(1/2)
)

,

where the implied constants depend at most on α .

Theorem 2. Let B′ < α ≤ 1 . If (T + h)α ≤ H ≤ T , then there is an

absolute positive constant A2 = A2(α) such that for any integer l , with

1 ≤ l � (log log T )1/3,
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and any h satisfying

(log T )1/2 < h−1 <
1

10l
log T,

we have
∫ T+H

T

|S1,f (t + h) − S1,f (t)|2l dt =
(2l)!

l!

(

h

2π

)2l

H(log h−1)l

+ O
(

Al
2l

l−(1/2)Hh2l(log log T )l−(1/2)
)

.

Remark 3. Theorems 1 and 2 are analogous results of Theorems 2 and 3
of [5]. However, here the range of l as well as the error terms have been improved.
In fact, Theorems 2 and 3 of [5] hold with this range of l as well as with this error
term, which can be easily noticed from our arguments.

As a consequence of Theorems 1 and 2, we obtain

Theorem 3. Let B′ < α ≤ 1 . If T α ≤ H ≤ T , then for any given δ > 0 , we

have
∫ T+H

T

|Sf (t)| dt =
2√
π

H

2π
(log log T )(1/2)

+ Oδ

(

H
(

(log log T )(log log log T )−(1/2)+δ
)(1/2))

,

where the implied constants depend on α and δ .

Theorem 4. Let B′ < α ≤ 1 . If (T + h)α ≤ H ≤ T , then for any given

δ > 0 and any h satisfying

(log T )1/2 < h−1 < ε1
log T

log log T
,

for some suitable constant ε1 = ε1(α) > 0 , we have
∫ T+H

T

|S1,f(t + h) − S1,f (t)| dt =
2√
π

Hh

2π
(log h−1)1/2

+ O
(

Hh
(

(log log T )(log log log T )−(1/2)+δ
)1/2)

,

where the implied constants depend on α and δ .

Remark 4. We prove Theorems 1 and 2 in detail adapting the approach
of [5] to our situation. However, we need an asymptotic estimate for the quan-
tity

∑

p≤x a2
p log p/pk−1 which is proved in Section 4 using Shimura’s split of the

Rankin–Selberg L -function into the ordinary Riemann zeta-function and the sym-
metric square L -function associated to a Hecke eigenform f for the full modular
group. Apart from this, Theorem A′ plays a crucial role (on the whole) particu-
larly in proving the main theorem over shorter intervals.

Acknowledgement. The author wishes to thank the anonymous referee for the
careful reading of the manuscript and for valuable comments.
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2. Notation and preliminaries

Throughout the paper, the implied constants A are effective absolute positive
constants and they need not be the same at each occurrence. When k is even, it is
known that an s are real. In fact, they are totally real algebraic numbers. Hence ap

is real from (1.1) and (1.3). By Deligne’s estimate, we also have |ap| ≤ 2p(k−1)/2 .
We define a real number A′

p such that ap = 2A′
pp

(k−1)/2 , and hence, |A′
p| ≤ 1.

Let α′
p and α′

p be the roots of the equation x2 − 2A′
px + 1 = 0 and we note that

|α′
p| = 1. Therefore, from the Euler product of Lf (s), we can write

(2.1) Lf (s) =
∏

p

(1 − αpp
−s)−1(1 − αpp

−s)−1

with |αp| = p(k−1)/2 and ap = αp + αp . Taking the logarithm and differentiating
both sides of (2.1) with respect to s , we find that

(2.2) −
L′

f (s)

Lf (s)
=
∑

m≥1,p

(αm
p + αp

m)p−ms(log p).

Now we define

(2.3) Λf (n) = (αm
p + αp

m)(log p) if n = pm; 0 otherwise.

Hence we obtain

(2.4) −
L′

f (s)

Lf (s)
=

∞
∑

n=2

Λf (n)n−s (in Re s > (k + 1)/2).

Note that

(2.5) Λf (n) ≤ 2(log n)n(k−1)/2.

For x > 1, we define

(2.6) Λx,f (n) =











































Λf (n), if 1 ≤ n ≤ x,

Λf (n)

{(

log

(

x3

n

))2

− 2

(

log

(

x2

n

))2}

2(logx)2
, if x ≤ n ≤ x2,

Λf (n)

(

log

(

x3

n

))2

2(log x)2
for x2 ≤ n ≤ x3.
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3. Some lemmas

Lemma 3.1. Let τ be a real positive number and suppose that δ(n) are

complex numbers satisfying

|δ(n)| ≤ C

for some fixed constant C > 0 . Then, for any integer l ≥ 1 , we have

S1 :=
∑

p1,···,pl<y,
q1,···,ql<y,

p1···pl=q1···ql

δ(p1) · · · δ(pl)δ(q1) · · · δ(ql)

(p1 · · · plq1 · · · ql)τ

= l!

(

∑

p<y

δ2(p)

p2τ

)l

+ O

(

C2ll!

(

∑

p<y

p−2τ

)l−2(
∑

p<y

p−4τ

))

.

Proof. See, for example, Lemma 1 of [5].

For x ≥ 2, t > 0, we define the number σx,t by

σx,t = k/2 + 2 max
(

β − k/2, 2/ logx
)

,

where % = β + iγ runs over all zeros of Lf (s) for which

|t − γ| ≤ x3|β−k/2|(log x)−1.

Lemma 3.2. Suppose that T α ≤ H ≤ T , where B′ < α ≤ 1 and x ≥ 2 ,

1 ≤ ξ ≤ x8l , x3ξ2 ≤ (H/T B′

)1/4 . Then, for 0 ≤ ν ≤ 8l , we have

I1 :=

∫ T+H

T

(

σx,t −
k

2

)ν

ξσx,t−(k/2) dt � Al H

(log x)ν

+ Al

(

H log T

(

(ν)!
log T

logx

(

4

log
(

H/T B′
)

)ν+1

+ (ν)!
1

log x

(

4

log
(

H/T B′
)

)ν)
)

.

Proof. The proof follows using Theorem A ′ at the appropriate place of the
proof of Lemma 12 of [16].

Lemma 3.3. Let H > 1 , l ≥ 1 and 1 < y ≤ H1/l . Suppose that βp are

complex numbers satisfying

(3.3.1) |βp| < B1
log p

log y
for p < y.
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Then, we have

(3.3.2)

∫ H

0

∣

∣

∣

∣

∑

p<y

βpp
−(1/2)−it

∣

∣

∣

∣

2l

dt � (AB2
1 l)lH,

and if |βp| < B1 , then we have

(3.3.3)

∫ H

0

∣

∣

∣

∣

∑

p<y

βpp
−1−2it

∣

∣

∣

∣

2l

dt � (AB2
1 l)lH.

Proof. See, for example, Lemma 3 of [5].

Remark. It should be mentioned here that a general mean-value theorem
for the Dirichlet polynomial with a better error term is also available, for which
we refer to [10].

Lemma 3.4. Let B′ < α ≤ 1 , T α ≤ H ≤ T and x = T (α−B′)/(60l) . Then,

for T ≤ t ≤ T + H , we have

Sf (t) +
1

π

∑

p<x3

(αp + αp) sin(t log p)

pk/2

= O

(
∣

∣

∣

∣

∑

p<x3

Λf (p) − Λx,f (p)

pk/2 log p
p−it

∣

∣

∣

∣

)

+ O

(
∣

∣

∣

∣

∑

p<x3/2

Λx,f (p2)

pk log p
p−2it

∣

∣

∣

∣

)

+ O

((

σx,t −
k

2

)

log T

)

+ O

((

σx,t −
k

2

)

x(σx,t−(k/2))

∫ ∞

k/2

x(k/2)−σ

∣

∣

∣

∣

∑

p<x3

Λx,f (p) log(xp)

pσ+it

∣

∣

∣

∣

dσ

)

.

Proof. From Theorem A (stated in the introduction), we obtain

(3.4.1)

Sf (t) = − 1

π

∑

p<x3

Λx,f (p) sin(t log p)

pσx,t log p
− 1

π

∑

p2<x3

Λx,f (p2) sin(t log p2)

p2σx,t(log p2)

+ O

((

σx,t −
k

2

)
∣

∣

∣

∣

∑

p<x3

Λx,f (p)

pσx,t+it

∣

∣

∣

∣

)

+ O

((

σx,t −
k

2

)
∣

∣

∣

∣

∑

p2<x3

Λx,f (p2)

p2σx,t+2it

∣

∣

∣

∣

)

+ O

(
∣

∣

∣

∣

∑

pr<x3

r>2

Λx,f (pr) sin(t log pr)

prσx,t(log pr)

∣

∣

∣

∣

)

+ O

((

σx,t −
k

2

)
∣

∣

∣

∣

∑

pr<x3

r>2

Λx,f (pr)

prσx,t+rit

∣

∣

∣

∣

)

+ O

((

σx,t −
k

2

)

log t

)

.
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Note that σx,t ≥ 1
2k and

|Λx,f (n)| ≤ |Λf (n)| ≤ 2(logn)n(k−1)/2.

Now, it is easy to see that

(3.4.2)
∑

pr<x3

r>2

Λx,f (pr) sin(t log pr)

prσx,t(log pr)
= O(1) = O

((

σx,t −
k

2

)

log T

)

,

(3.4.3)

(

σx,t −
k

2

)
∣

∣

∣

∣

∑

pr<x3

r>2

Λx,f (pr)

prσx,t+rit

∣

∣

∣

∣

= O

((

σx,t −
k

2

))

= O

((

σx,t −
k

2

)

log T

)

and

(3.4.4)

(

σx,t −
k

2

)
∣

∣

∣

∣

∑

p2<x3

Λx,f (p2)

p2σx,t+2it

∣

∣

∣

∣

= O

((

σx,t −
k

2

)

log x

)

= O

((

σx,t −
k

2

)

log T

)

.

Now, we write the first four terms on the right-hand side of (3.4.1) in the following
manner, namely,

(3.4.5)

Sf (t) +
1

π

∑

p<x3

(αp + αp) sin(t log p)

pk/2

= O

(
∣

∣

∣

∣

∑

p<x3

Λf (p) − Λx,f (p)

pk/2 log p
p−it

∣

∣

∣

∣

)

+ O

(
∣

∣

∣

∣

∑

p<x3

Λx,f (p)

pk/2 log p
(1 − p(k/2)−σx,t)p−it

∣

∣

∣

∣

)

+ O

((

σx,t −
k

2

)
∣

∣

∣

∣

∑

p<x3

Λx,f (p)

pσx,t+it

∣

∣

∣

∣

)

+ O

(
∣

∣

∣

∣

∑

p<x3/2

Λx,f (p2)

pk log p
p−2it

∣

∣

∣

∣

)

+ O

(
∣

∣

∣

∣

∑

p<x3/2

Λx,f (p2)

pk log p
(1 − pk−2σx,t)p−2it

∣

∣

∣

∣

)

+ O

((

σx,t −
k

2

)

log T

)

.
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We note that

(3.4.6)

Q1 :=

∣

∣

∣

∣

∑

p<x3/2

Λx,f (p2)

pk log p
(1 − pk−2σx,t)p−2it

∣

∣

∣

∣

<
∑

p<x3/2

2(log p)pk−1

pk log p
(1 − pk−2σx,t)

<
∑

p<x3/2

4
(

σx,t − 1
2
k
)

log p

p
= O

((

σx,t − 1
2
k
)

log T
)

,

since

σx,t ≥
k

2
+

4

log x

and 1 − e−x < x . Further, we have

(3.4.7)

Q2 :=

∣

∣

∣

∣

∑

p<x3

Λx,f (p)

pk/2 log p

(

1 − p(k/2)−σx,t
)

p−it

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ σx,t

k/2

∑

p<x3

Λx,f (p)

pσ′+it
dσ′

∣

∣

∣

∣

≤
∫ σx,t

k/2

∣

∣

∣

∣

∑

p<x3

Λx,f (p)

pσ′+it

∣

∣

∣

∣

dσ′.

If 1
2k ≤ σ′ ≤ σx,t , then

(3.4.8)

∣

∣

∣

∣

∑

p<x3

Λx,f (p)

pσ′+it

∣

∣

∣

∣

=

∣

∣

∣

∣

xσ′−(k/2)

∫ ∞

σ′

x(k/2)−σ
∑

p<x3

Λx,f (p)(logxp)

pσ+it
dσ

∣

∣

∣

∣

≤ xσx,t−(k/2)

∫ ∞

k/2

x(k/2)−σ

∣

∣

∣

∣

∑

p<x3

Λx,f (p)(logxp)

pσ+it

∣

∣

∣

∣

dσ,

and therefore, from (3.4.7) and (3.4.8), we get

(3.4.9) Q2 ≤
(

σx,t −
k

2

)

xσx,t−(k/2)

∫ ∞

k/2

x(k/2)−σ

∣

∣

∣

∣

∑

p<x3

Λx,f (p)(logxp)

pσ+it

∣

∣

∣

∣

dσ.

Now, the lemma follows from (3.4.5), (3.4.6) and (3.4.9).

Lemma 3.5. Let B′ < α ≤ 1 and suppose that T α ≤ H ≤ T . Put

x = T (α−B′)/(60l) . Then, for l � log T , we have

∫ T+H

T

∣

∣

∣

∣

Sf (t) +
1

π

∑

p<x3

(αp + αp) sin(t log p)

pk/2

∣

∣

∣

∣

2l

dt � All2lH.
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Proof. Let

∑

1

(t) :=
∑

p<x3

(αp + αp) sin(t log p)

pk/2
,(3.5.1)

E1(t) :=
∑

p<x3

Λf (p) − Λx,f (p)

pk/2 log p
p−it,(3.5.2)

E2(t) :=
∑

p<x3/2

Λx,f (p2)

pk log p
p−2it,(3.5.3)

E3(t) :=
(

σx,t − 1
2
k
)

log T,(3.5.4)

and

(3.5.5) E4(t) :=
(

σx,t − 1
2k
)

x(σx,t−(k/2))

∫ ∞

k/2

x(k/2)−σ

∣

∣

∣

∣

∑

p<x3

Λx,f (p) log(xp)

pσ+it

∣

∣

∣

∣

dσ.

Now, clearly from Lemma 3.4, we have

(3.5.6)

∣

∣

∣

∣

Sf (t) + π−1
∑

1

(t)

∣

∣

∣

∣

2l

� Al
(

|E1(t)|2l + |E2(t)|2l + |E3(t)|2l + |E4(t)|2l
)

.

If we take

βp =
Λf (p) − Λx,f (p)

p(k−1)/2 log p
,

then from the definition of Λf (n) and Λx,f (n), we easily find that

βp = 0 for 2 ≤ p ≤ x,

|βp| ≤ 2

(

log p

log x
− 1

)2

≤ 2
log p

log x
for x ≤ p ≤ x2,

and

|βp| ≤ 6
log p

log x
for x2 ≤ p ≤ x3.

Therefore,

|βp| ≤ B1
log p

log x
for p ≤ x3

with some absolute positive constant B1 . Similarly, if we take

β′
p =

Λx,f (p2)

pk−1 log p
,
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then from the definition of Λx,f (n), we find that

Λx,f (p2) ≤ 9pk−1(log p),

and so we get |β′
p| < B2 with some absolute positive constant B2 . Therefore,

from Lemma 3.3, ((3.3.2), (3.3.3), respectively), we obtain

(3.5.7)

∫ T+H

T

|E1(t)|2l dt � (Al)lH

and

(3.5.8)

∫ T+H

T

|E2(t)|2l dt � (Al)lH.

Note that we have fixed x = T (α−B′)/(60l) . From Lemma 3.2, with ξ = 1 and
ν = 2l , we get

(3.5.9)

∫ T+H

T

|E3(t)|2l dt � Al
(

l(2l)! + l2l
)

H � All(2l)2l−1H � All2lH,

since,

(3.5.10A) (2l)! ≤ (2l)2l−1 for l ≥ 1,

(3.5.10B)

S2 := H log T

(

(ν)!
log T

logx

(

4

log
(

H/T B′
)

)ν+1

+ (ν)!
1

log x

(

4

log
(

H/T B′
)

)ν
)

� ν!
H

(log x)(logT )ν−1

and

(3.5.10C)
H

(log x)ν
� All2lH.

Now, we notice that

(3.5.11)

∫ T+H

T

|E4(t)|2l dt ≤ Q3Q4

where

Q3 :=

(
∫ T+H

T

(

σx,t − 1
2
k
)4l

x4l(σx,t−(k/2)) dt

)1/2
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and

Q4 :=

(
∫ T+H

T

(
∫ ∞

k/2

x(k/2)−σ

∣

∣

∣

∣

∑

p<x3

Λx,f (p)(log xp)

pσ+it

∣

∣

∣

∣

dσ

)4l

dt

)1/2

.

From Lemma 3.2, (with ξ = x4l , ν = 4l ), we obtain

(3.5.12) Q3 �
(

Al(l4l + l(4l)!)H(logT )−4l
)1/2 � All2lH1/2(log T )−2l.

By Hölder’s inequality, we get

(3.5.13)

Q2
4 ≤

∫ T+H

T

(
∫ ∞

k/2

x(k/2)−σ dσ

)4l−1

×
(
∫ ∞

k/2

x(k/2)−σ

∣

∣

∣

∣

∑

p<x3

Λx,f (p)(log xp)

pσ+it

∣

∣

∣

∣

4l

dσ

)

dt

≤ (log x)1−4l

(
∫ ∞

k/2

x(k/2)−σ

×
(
∫ T+H

T

∣

∣

∣

∣

∑

p<x3

Λx,f (p)(log xp)

pσ+it

∣

∣

∣

∣

4l

dt

)

dσ

)

.

By taking

βp =
Λx,f (p)(logxp)

p(k−1)/2(log x)2
,

we observe that |βp| ≤ 10log p/log x . Now, by (3.3.2), we obtain

(3.5.14)

∫ T+H

T

∣

∣

∣

∣

∑

p<x3

Λx,f (p)(log xp)

pσ+it

∣

∣

∣

∣

4l

dt � (AB2
1 l)2lH(log x)8l.

Therefore, we get from (3.5.13) and (3.5.14)

(3.5.15) Q2
4 � (AB2

1 l)2lH(log x)4l.

From (3.5.11), (3.5.12) and (3.5.15), with our choice of x , we get

(3.5.16)

∫ T+H

T

|E4(t)|2l dt � All2lH1/2(log T )−2l(AB2
1 l)lH1/2(log x)2l

� AlllH.

This proves the lemma.



226 A. Sankaranarayanan

Lemma 3.6. Let B′ < α ≤ 1 and T α ≤ H ≤ T . Then, if l ≥ 1 is an integer

and

x3 = T (α−B′)/(20l) ≤ z ≤ H1/l,

we have

(3.6.1) Q5 :=

∫ T+H

T

∣

∣

∣

∣

Sf (t) +
1

π

∑

p<z

(αp + αp) sin(t log p)

pk/2

∣

∣

∣

∣

2l

dt � All2lH.

Proof. We clearly have

(3.6.2)

Q5 � 4l

∫ T+H

T

∣

∣

∣

∣

Sf (t) +
1

π

∑

p<x3

(αp + αp) sin(t log p)

pk/2

∣

∣

∣

∣

2l

dt

+ 4l

∫ T+H

T

∣

∣

∣

∣

∑

x3≤p<z

p−(1/2)−it

∣

∣

∣

∣

2l

dt.

From Lemma 3.5, we observe that

(3.6.3)

∫ T+H

T

∣

∣

∣

∣

Sf (t) +
1

π

∑

p<x3

(αp + αp) sin(t log p)

pk/2

∣

∣

∣

∣

2l

dt � All2lH.

From (3.3.2) (with B1 = O(1)), we have

(3.6.4)

∫ T+H

T

∣

∣

∣

∣

∑

x3≤p<z

p−(1/2)−it

∣

∣

∣

∣

2l

dt � AlllH.

In the notation of Lemma 3.3,

βp = 1 =
log p

log z

log z

log p
� log p

log z

so that (3.3.1) is satisfied with z in place of y . This proves the lemma.

4. Prime number theorem related to the Dirichlet series
∑∞

n=1 a2
n/ns

We know that

(4.1) Lf (s) =
∏

p

(

1 − αp

ps

)−1(

1 − αp

ps

)−1

=

∞
∑

n=1

an

ns
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is an entire function, |αp| = p(k−1)/2 , αpαp = pk−1 and ap = αp + αp . Now, let

(4.2) Lf2(s) :=

∞
∑

n=1

a2
n

ns

and

(4.3) Lf⊗f (s) =
∏

p

(

1 −
α2

p

ps

)−1(

1 − αpαp

ps

)−1(

1 − αp
2

ps

)−1

,

where the symbol ⊗ in (4.3) denotes the Rankin–Selberg convolution. The im-
portant relation between (4.2) and (4.3) is given by (see [12], [11], [17] and [13])

(4.4) ζ(s − k + 1)Lf⊗f (s) = ζ(2s − 2k + 2)Lf2(s),

where ζ(s) is the ordinary Riemann zeta-function. It has been proved by Rankin
(see [12]) that Lf2(s) has a simple pole at s = k with residue kα (α is a certain
constant). Therefore, the series −

(

L′
f2(k − 1 + s)

)

/
(

Lf2(k − 1 + s)
)

has a simple
pole at s = 1 with residue 1.

We define
(4.5)

Λ∗(n) =







(α2m
p + αp

2m +
(

αpαp)
m + (−1)m+1(αpαp)

m
)

log p

pm(k−1)
, if n = pm,

0, otherwise.

We have the usual von Mangoldt’s function, namely,

(4.6) Λ(n) =

{

log p, if n = pm,
0, otherwise.

We also define Ψ∗
f2(x) and Ψf2(x) by

(4.7) Ψ∗
f2(x) =

∑

n≤x

Λ∗(n)(x − n)

and

(4.8) Ψ∗
f2(x) =

∫ x

0

Ψf2(u) du =

∫ x

1

Ψf2(u) du.

It is obvious that

(4.9) Ψf2(x) =
∑

n≤x

Λ∗(n).

The aim of this section is to prove:
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Theorem 4.1. For x ≥ x0 , we have

Ψf2(x) = x + O
(

xe−C
√

log x
)

.

To prove this theorem, we need the following lemmas.

Lemma 4.1. There exists a positive constant C (> 0) such that

Lf2(k − 1 + s) 6= 0 in σ > 1 − C

log(|t| + 2)
.

Proof. See, for example, [8].

Lemma 4.2. Suppose that Lf2(s) has no zeros in the domain

σ > 1 − η(|t|),

where η(t) , for t ≥ 0 , a decreasing function, has a continuous derivative η′(t) and

satisfies

(i) 0 < η(t) < 1
2 ,

(ii) η′(t) → 0 as t → ∞,

(iii)
1

η(t)
= O(log t) as t → ∞.

Let α′
1 be a fixed number satisfying 0 < α′

1 < 1 . Then,

−
L′

f2(s)

Lf2(s)
= O

(

log2(|t|)
)

uniformly in the region σ ≥ 1 − α′
1η(|t|) as t → ±∞ .

Proof. Since we have an Euler-product representation for Lf2(s) from (4.3)
and (4.4), the proof of this lemma follows in a similar fashion to that of Theorem 20
of [8].

Lemma 4.3. Under the conditions of Lemma 4.2, we have

Ψ∗
f2(x) = 1

2
x2 + O

(

x2e−α′
1ω(x)

)

as x → ∞ , where ω(x) is the minimum of η(t) logx + log t for t ≥ 1 .



On the sign changes of Sf (T ) 229

Proof. First of all, we note that (for C > 1)
(4.3.1)

Ψ∗
f2(x) =

1

2πi

∫ C+i∞

C−i∞

xs+1

s(s + 1)

(

−
L′

f2(k − 1 + s)

Lf2(k − 1 + s)

)

ds

=
1

2πi

∫ C+i∞

C−i∞

xs+1

s(s + 1)

(

−
L′

f2(k − 1 + s)

Lf2(k − 1 + s)
− ζ ′(2s)

ζ(2s)
+

ζ ′(2s)

ζ(2s)

)

ds

=
1

2πi

∫ C+i∞

C−i∞

xs+1

s(s + 1)

(

−
L′

f⊗f (k − 1 + s)

Lf⊗f (k − 1 + s)
− ζ ′(s)

ζ(s)
+

ζ ′(2s)

ζ(2s)

)

ds

=
1

2πi

∫ C+i∞

C−i∞

xs+1

s(s + 1)

(

−
L′

f⊗f (k − 1 + s)

Lf⊗f (k − 1 + s)
− ζ ′(s)

ζ(s)

)

ds + O
(

x7/4
)

,

since

1

2πi

∫ C+i∞

C−i∞

xs+1

s(s + 1)

(

−ζ ′(2s)

ζ(2s)

)

ds =
1

2πi

∫ C+iT

C−iT

xs+1

s(s + 1)

(

−ζ ′(2s)

ζ(2s)

)

ds

+ O

(

xC+1

T

)

.

Now, by moving the line of integration to σ = 3
4 , we see that the horizontal

portions contribute an error which is in the absolute value at most O(xC+1/T ),
and the vertical portion contributes at most O(x7/4). We can choose C = 1 + ε
(ε is a small positive constant) and T = x1/2 . From (4.3.1), we get
(4.3.2)

Ψ∗
f2(x)

x2
=

1

2πi

∫ C+i∞

C−i∞

xs−1

s(s + 1)

(

−
L′

f⊗f (k − 1 + s)

Lf⊗f (k − 1 + s)
− ζ ′(s)

ζ(s)

)

ds + O(x−1/4).

Now, we move the line of integration of the integral appearing on the right-hand
side of (4.3.2) to σ = 1 − α′

1η(|t|). Therefore, this lemma follows when applying
Lemmas 4.1 and 4.2.

Now, from Lemma 4.3, Theorem 4.1 follows by standard arguments (see, for
example, [8]).

5. Proof of Theorem 1

We fix z = T α/(5l) . Notice that αp + αp = ap . Let us write

(5.1) ∆z(t) := ∆(t) := Sf (t) +
1

π

∑

p<z

ap sin(t log p)

pk/2
.
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Then, from the binomial theorem, we have

(5.2)

(

Sf (t)
)2l

=

(

1

π

∑

p<z

ap sin(t log p)

pk/2

)2l

+

2l
∑

j=1

(

2l

j

)

∆j(t)

(

− 1

π

∑

p<z

ap sin(t log p)

pk/2

)2l−j

= Q6 + Q7, say.

We observe that

Q7 � 4l l |∆(t)|
(

|∆(t)|2l−1 +

∣

∣

∣

∣

∑

p<z

ap sin(t log p)

pk/2

∣

∣

∣

∣

2l−1)

.

Therefore, we obtain (using Hölder’s inequality)

(5.3)

Q8 :=

∫ T+H

T

|Sf (t)|2l dt − 1

π2l

∫ T+H

T

∣

∣

∣

∣

∑

p<z

ap sin(t log p)

pk/2

∣

∣

∣

∣

2l

dt

� Al

∫ T+H

T

|∆(t)|2l dt + Al

∫ T+H

T

|∆(t)|
∣

∣

∣

∣

∑

p<z

ap sin(t log p)

pk/2

∣

∣

∣

∣

2l−1

dt

� Al

∫ T+H

T

|∆(t)|2l dt

+ Al

(
∫ T+H

T

|∆(t)|2l dt

)1/2l(∫ T+H

T

∣

∣

∣

∣

∑

p<z

ap sin(t log p)

pk/2

∣

∣

∣

∣

2l

dt

)1−(1/2l)

.

Let η1 := η1(t) :=
∑

p<z app
−(k/2)−it , and hence,

(5.4)
∑

p<z

app
−k/2 sin(t log p) =

i

2

(

η1 − η1

)

.

Therefore, from the binomial expansion, we obtain

(5.5)

Q9 :=

∫ T+H

T

∣

∣

∣

∣

∑

p<z

ap sin(t log p)

pk/2

∣

∣

∣

∣

2l

dt

=

(

1

2

)2l 2l
∑

j=0

(−1)j

(

2l

j

)
∫ T+H

T

ηj
1η1

(2l−j) dt

= 2−2l (2l)!

(l!)2

∫ T+H

T

|η1(t)|2l dt

+ O

(

4−l
∑

j=0,1,...,2l
j 6=l

(

2l

j

)
∣

∣

∣

∣

∫ T+H

T

ηj
1η1

(2l−j) dt

∣

∣

∣

∣

)

.
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We note that the integral in the error term of (5.5) is

(5.6) �
∑

p1,···,pj<z

q1,...,q(2l−j)<z

ap1
· · ·apj

aq1
· · ·aq(2l−j)

(p1 · · · pjq1 · · · q(2l−j))k/2

∣

∣

∣

∣

log

(

p1 · · · pj

q1 · · · q(2l−j)

)
∣

∣

∣

∣

−1

.

We note that |ap| ≤ 2p(k−1)/2 and z = T α/(5l) . Since

(5.7) min

(

1

a
,
1

b

)

≤
∣

∣

∣

∣

log

(

a

b

)
∣

∣

∣

∣

for any two distinct positive integers a and b , from (5.6) and (5.7) (for j 6= l ), we
get,

(5.8)

∫ T+H

T

ηj
1η1

(2l−j) dt � z2l

(

∑

p<z

|ap|p−k/2

)2l

� Alz3l � AlH.

Therefore, the error term in (5.5) is

(5.9) � AlH.

Now,

(5.10)

I2 :=

∫ T+H

T

|η1(t)|2l dt

= H
∑

p1,...,pl<z
q1,...,ql<z

p1···pl=q1···ql

ap1
· · ·apl

aq1
· · ·aql

(p1 · · · plq1 · · · ql)k/2

+ O

(

∑

p1,...,pl<z
q1,...,ql<z

p1···pl 6=q1···ql

ap1
· · ·apl

aq1
· · ·aql

(p1 · · · plq1 · · · ql)k/2

∣

∣

∣

∣

log

(

p1 · · · pl

q1 · · · ql

)
∣

∣

∣

∣

−1
)

.

Arguments similar to (5.6) yield the error term in (5.10) as

(5.11) � AlH.

Since |ap| ≤ 2p(k−1)/2 , we have |δ(p)| := |ap/p(k−1)/2| ≤ 2. Therefore, choosing
C = 2 and τ = 1

2
in Lemma 3.1, we obtain the first term on the right-hand side

of (5.10) as

(5.12) = Hl!

(

∑

p<z

a2
p

pk

)l

+ O

(

H22ll!

(

∑

p<z

p−1

)l−2(
∑

p<z

p−2

))

.
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We note that (from Theorem 4.1),

(5.13) Ψf2(x) =
∑

n≤x

Λ∗(n) =
∑

p≤x

a2
p log p

pk−1
+ O

(

x1/2 log x
)

= x + O
(

xe−C
√

log x
)

,

and hence, using Abel’s identity, we obtain

(5.14)
∑

p≤z

a2
p

pk
= log log z + O(1) = log log T − log(5l) + O(1).

Hence, from (5.10), (5.11), (5.12) and (5.14), we get

(5.15)

∫ T+H

T

|η1(t)|2l dt = l!H(log log T )l + O
(

All!(log l)H(log log T )l−1
)

.

Therefore, from (5.5), (5.9) and (5.15), we find that

(5.16)

∫ T+H

T

∣

∣

∣

∣

∑

p<z

ap sin(t log p)

pk/2

∣

∣

∣

∣

2l

dt =
(2l)!

l!
4−lH(log log T )l

+ O
(

All!(log l)H(log log T )l−1
)

� All!H(log log T )l,

since 1 ≤ l � (log log T )1/3 . Note that we have used

(2l)!

(l!)2
=

(

2l

l

)

≤ 22l.

From Lemma 3.6 and (5.16), we see that the right-hand side of (5.3) is

(5.17) � (Al)2lH + AllH1/2l
(

Alll−1H(log log T )l
)1−(1/2l)

,

since (for l ≥ 1) we have

(5.18) l! ≤ ll−1.

Therefore, the right-hand side of (5.17) becomes the total error, which is

(5.19) � (Al)2lH + Alll−(1/2)H(log log T )l−(1/2).

Note that

l2l � ll−(1/2)(log log T )l−(1/2) provided l � (log log T )(l−(1/2))/(l+(1/2)),

and

min
l≥1

(

l − 1
2

l + 1
2

)

= min
l≥1

(

1 − 1

l + 1
2

)

=
1

3
.

Hence, Theorem 1 holds with this error term

O
(

Alll−(1/2)H(log log T )l−(1/2)
)

,

provided 1 ≤ l � (log log T )1/3 . This proves Theorem 1.
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6. Proof of Theorem 2

First, we write

∆z(t) := ∆(t) := Sf (t) + π−1
∑

p<z

ap sin(t log p)

pk/2
:= Sf (t) + π−1

∑

2

(t).

Then,

S1,f (t + h) − S1,f (t) =

∫ t+h

t

Sf (u) du = −π−1

∫ t+h

t

∑

2

(u) du +

∫ t+h

t

∆(u) du.

Therefore,

(6.1)

∣

∣

∣

∣

∫ t+h

t

Sf (u) du

∣

∣

∣

∣

2l

=
1

π2l

∣

∣

∣

∣

∫ t+h

t

∑

2

(u) du

∣

∣

∣

∣

2l

+ O

(

Al

∣

∣

∣

∣

∫ t+h

t

∆(u) du

∣

∣

∣

∣

2l)

+ O

(

Al

∣

∣

∣

∣

∫ t+h

t

∆(u) du

∣

∣

∣

∣

∣

∣

∣

∣

∫ t+h

t

∑

2

(u) du

∣

∣

∣

∣

2l−1)

exactly as in (5.3). We notice that

∣

∣

∣

∣

∫ t+h

t

∆(u) du

∣

∣

∣

∣

2l

≤ h2l−1

∫ t+h

t

|∆(u)|2l du,

and hence, by Hölder’s inequality, we get

(6.2)

Q10 :=

∫ T+H

T

∣

∣

∣

∣

∫ t+h

t

Sf (u) du

∣

∣

∣

∣

2l

dt

=
1

π2l

∫ T+H

T

∣

∣

∣

∣

∫ t+h

t

∑

2

(u) du

∣

∣

∣

∣

2l

dt

+ O

(

Alh2l−1

∫ T+H

T

∫ t+h

t

|∆(u)|2l du

)

+ O

(

Al

(

h2l−1

∫ T+H

T

∫ t+h

t

|∆(u)|2l du dt

)1/2l

×
(
∫ T+H

T

∣

∣

∣

∣

∫ t+h

t

∑

2

(u) du

∣

∣

∣

∣

2l

dt

)1−(1/2l))

.
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We notice that

(6.3)

∫ T+H

T

∫ t+h

t

|∆(u)|2l du dt =

∫ h

0

du

∫ T+u+H

T+u

|∆(t)|2l dt,

and hence, by Lemma 3.6, with (T + h)α ≤ H ≤ T , B′ < α ≤ 1 and

(T + h)(α−B′)/(20l) ≤ z ≤ H1/l,

we have

(6.4)

∫ T+H

T

|∆(t)|2l dt � (Al)2lH.

With these restrictions, we have
(6.5)

Q10 :=

∫ T+H

T

∣

∣

∣

∣

∫ t+h

t

Sf (u) du

∣

∣

∣

∣

2l

dt

=
1

π2l

∫ T+H

T

∣

∣

∣

∣

∫ t+h

t

∑

2

(u) du

∣

∣

∣

∣

2l

dt

+ O

(

(Al)2lh2lH + AllH1/2lh

(
∫ T+H

T

∣

∣

∣

∣

∫ t+h

t

∑

2

(u) du

∣

∣

∣

∣

2l

dt

)1−(1/2l))

.

Now, the main term on the right-hand side of (6.5) (apart from the constant π−2l )
is

(6.6)

∫ T+H

T

∣

∣

∣

∣

∑

p<z

ap

(

cos
(

(t + h) log p
)

− cos(t log p)
)

pk/2 log p

∣

∣

∣

∣

2l

dt.

We put

(6.7) η2 = η2(t) =
∑

p<z

app
−(k/2)−it(log p)−1(p−ih − 1),

so that

(6.8)
∑

p<z

ap

(

cos
(

(t + h) log p
)

− cos(t log p)
)

pk/2 log p
=

η2 + η2

2
.

The integral in (6.6) becomes equal to

(6.9) 2−2l (2l)!

(l!)2

∫ T+H

T

|η2(t)|2l dt + O

(

4−l
∑

j=0,1,...,2l
j 6=l

(

2l

j

)
∣

∣

∣

∣

∫ T+H

T

ηj
2η2

(2l−j) dt

∣

∣

∣

∣

)

.
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Now, (for j 6= l )

(6.10)

Q11 :=

∫ T+H

T

ηj
2η2

(2l−j) dt

�
∑

p1,...,pj<z

q1,...,q(2l−j)<z

ap1
· · ·apj

aq1
· · ·aq(2l−j)

(p1 · · · pjq1 · · · q(2l−j))k/2

×
j
∏

m=1

|pih
m − 1|

(log pm)
×

2l−j
∏

n=1

|qih
n − 1|

(log qn)
×
∣

∣

∣

∣

log

(

p1 · · ·pj

q1 · · · q(2l−j)

)
∣

∣

∣

∣

−1

� A2lz2lh2l

(

∑

p<z

p−1/2

)2l

,

since |ap| ≤ 2p(k−1)/2 and

|pih − 1| = 2

∣

∣

∣

∣

sin

(

h log p

2

)
∣

∣

∣

∣

≤ h log p.

Hence, the error term in (6.9) is

(6.11) � Alh2lH,

by taking z = T α/(5l) .
Now, we have

(6.12)

Q12 :=

∫ T+H

T

|η2(t)|2l dt

= H
∑

p1,...,pl<z
q1,...,ql<z

p1···pl=q1···ql

ap1
· · ·apl

aq1
· · ·aql

(p1 · · ·plq1 · · · ql)k/2

×
l
∏

j=1

(pih
j − 1)(q−ih

j − 1)

(log pj)(log qj)
+ O(Alh2lH),

in the exact way as we obtained (5.10) and (5.11). Now, by Lemma 3.1, with
τ = 1

2 ,

δ(pj) =























apj
(pih

j − 1)

p
(k−1)/2
j (log pj)

for 1 ≤ j ≤ l,

apj
(p−ih

j − 1)

p
(k−1)/2
j (log pj)

for l + 1 ≤ j ≤ 2l,
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and C = 2h , the main term in (6.12) becomes equal to

(6.13)

Q13 := l!

(

∑

p<z

a2
p|pih − 1|2
pk(log p)2

)l

H + O

(

22lh2ll!

(

∑

p<z

p−1

)l−2

H

)

= l!H

(

4
∑

p<z

a2
p

pk

(

sin
(

1
2
h log p

)

log p

)2)l

+ O
(

Alllh2lH(log log T )l−2
)

.

Now, assuming that 1 < h−1 < log T/(10l) < log z , we write the sum on the
right-hand side of (6.13) as

(6.14)

(

∑

p<e1/h

+
∑

e1/h≤p<z

)

a2
p

pk

(

sin
(

1
2h log p

)

log p

)2

.

The first sum in (6.14) is

(6.15)
h2

4

∑

p<e1/h

a2
p

pk
+ O

(

h2
∑

p<e1/h

a2
p

pk
h2(log p)2

)

=
h2

4
log h−1 + O(h2),

since

(6.16)
∑

p≤x

a2
p

pk
= log log x + O(1)

as in (5.14), and in the error term, we have used a2
p ≤ 4pk−1 and

(6.17)
∑

p≤x

(log p)2

p
= O

(

(log x)2
)

.

The second sum in (6.14) is

(6.18) �
∑

e1/h≤p<z

log p

p(log p)3
�
∫ ∞

1/h

v−3 dv � h2.

Hence, we obtain from (6.14), (6.15) and (6.18)

(6.19)
∑

p<z

a2
p

pk

(

sin
(

1
2
h log p

)

log p

)2

=
h2

4
log h−1 + O(h2).
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Therefore, from (6.12), (6.13) and (6.19), we get

(6.20)

∫ T+H

T

|η2(t)|2l dt = l!Hh2l
(

log h−1 + O(1)
)l

+ O
(

Alllh2lH(log log T )l−2
)

.

Substituting (6.11) and (6.20) in (6.5) and using the inequality l! ≤ ll−1 for l ≥ 1,
we arrive at

(6.21)

Q10 :=

∫ T+H

T

∣

∣

∣

∣

∫ t+h

t

Sf (u) du

∣

∣

∣

∣

2l

dt

=
(2l)!

l!

(

h

2π

)2l

H(log h−1)l + O(All2lh2lH)

+ O
(

AlHh2lll−(1/2)(log log T )l−(1/2)
)

from which Theorem 2 follows.

7. Completion of the proof of the main theorem

The proofs of Theorems 3 and 4 are verbatim the same as in [5] (see Section 5
and 6 of [5]). Hence, the proof of the main theorem follows from the arguments
similar to those in Section 7 of [5].
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