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Abstract. We study the number of sign changes of S¢(t) (related to Hecke L-functions
attached to holomorphic cusp forms of even positive integral weight with respect to the full modular
group) over shorter intervals.

1. Introduction

Let
St)=n"1 arg ¢ (5 + it),

where the argument is obtained by continuous variation along the straight lines
joining 2, 241t and % +1t, starting with the value zero. When t is equal to the
imaginary part of any zero of ((s), we put

S(t) = lim 3{S(t +¢) + S(t — )}

As for Atle Selberg’s comment on a deep result of Littlewood on S(¢), A. Ghosh
established that (see Theorem 1 of [5] and also the paper of Selberg [16]) S(t)
changes its sign at least

T(log T) exp(—A(6)(loglog T') (loglog log T') _(1/2)+5)

times in the interval (7,27). Here ¢ is any arbitrarily small positive constant,
and A(d) > 0 depending only on §. In fact, he proved this result over shorter
intervals.

Let f(z) = >_o7, ane*™™* be a holomorphic cusp form of even integral weight

k > 0 with respect to the full modular group I' = SL(2,Z). We define the
associated Hecke L-function

(1.1) L(s) =) ann*
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for Res > (k + 1)/2. Throughout this paper, we assume that f(z) is a Hecke
eigenform with a; = 1. It is known (see [7]) that L;(s) admits analytic continu-
ation to C as an entire function and it satisfies the functional equation

(1.2) (2m) T (8) Ly (s) = (=1)F/2(2m)~ =)D (k — s) L (k — 5).
L¢(s) has an Euler-product representation (for Res > (k+1)/2)
(1.3) L¢(s) = H(l —app”*® +pk_1p_28)_1.

p

The non-trivial zeros of L¢(s) lie within the critical strip (k —1)/2 < Res <
(k+1)/2. These zeros are located symmetrically to the real axis and they are also
symmetrical about the line Re s = k£/2. The Riemann hypothesis in this situation
asserts that all the non-trivial zeros are on the critical line Res = k/2. From
Deligne’s proof of Ramanujan—Petersson’s conjecture (see [1] and [2]), we have the
bound for the coefficients

(1.4) |an| < d(n)n*=1/2,

Several interesting deep results about the Hecke L-functions have been established
lately. As a sample, a certain average growth of these L-functions in the weight
aspect on the critical line has been investigated in the papers of Peter Sarnak (see
[15]) and of Matti Jutila and Yoichi Motohashi (see [9]).

Let Nf(T') denote the number of zeros 5+iy of Ls(s) for which 0 <~ < T.
If T is equal to the ordinate of any zero, then we define

(1.5) Ny(T) := ;ix%%{Nf(T+e)+Nf(T—g)}.
Now, one can show that (following Theorem 9.3 of [18])

T T T 1
1. Ni(T)=—log———+1 T —
(1.6) (1) = Thog T -~ 14811 +0( 7).
where

1 k.

(1.7) S¢(t) = —arg Ly 5 + it |.

The argument is obtained by a continuous variation along the straight lines joining
the points 1k+1, 1k-+1+it and k+it, starting with the value 3(k — 1). Hence
the variation of S¢(t) is closely connected with the distribution of the imaginary
parts of the zeros of Ly (s).

We now define, for 0 > k/2, T>1and H<T,

(1.8) Ny(o,T,T+H)=#{B+iv: Ly(B+iv)=0, B3>0, T<y<T+H}.

In [14], we proved the following two theorems:
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)

Theorem A. For t > 2, 2 < x <2, we have

1 Ay ¢(n)sin(tlogn) Az ¢(n)

n<x3 n<z3

+ O((04, — k/2)logt),

where
opt =k/2+2max(0 — k/2,2/logzx),

0 = @ + iy running over those zeros for which
[t =] < &P+ log ) 7,

and Ay ¢(n) is as in (2.6).
As corollaries we obtained (by choosing = = /logt )

S¢(t) = O(logt)

unconditionally, and assuming the Riemann hypothesis for L¢(s), we got

B logt
Sslt) = O(loglogt)'

Theorem A’. Let B be any fixed small positive constant. Let

_ 19 13505
20 5
and B’ <o <1. Then for T* < H <T, we have

B’ B

i \ ~(B/A=B))(0c—k/2)
) logT

uniformly for k/2 <o < (k+1)/2.

As an application to the above Theorems A and A’, the object of this paper
is now to prove

Main theorem. Let B’ be the constant as in Theorem A’. Let B’ < o < 1.
If (T+1)* < H<T and ¢ > 0 is an arbitrarily small real number, there is an
A= A(a,0) >0 and a Ty = Tp(e,0) > 0 such that when T > Ty, S¢(t) changes
its sign at least

H(log T) exp(—A(loglog T') (log log log T)_(1/2)+5)

times in the interval (T, T + H).
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Remark 1. This main theorem is an analogous result of the theorem in the
case of S(t) related to the ordinary Riemann zeta-function, which was established
by A. Ghosh (see Theorem 1 of [5]). In the case of S(t), B’ can be replaced by %
(or even by a better positive constant).

Remark 2. If we assume the Riemann hypothesis for L(s), then the main
theorem is true with 0 < aa < 1.

The proof requires asymptotic formulae for integrals of the type

T+H
[ s
T

and

T+H
/ 1Sy, 7 (t+h) — Sy s (t)* at,
T

where .
Sy () = / S (u) du
0

with the error terms uniform in integers [ > 1 and h > 0 with a suitable value
of h. It should be mentioned that the asymptotic formulae for higher moments
of S(t) over shorter intervals have been extensively studied earlier in [3], [4], [5]
and [6].

In fact, first we establish the following theorems from which the main theorem
follows. The constants B and B’ occurring in the sequel are as in Theorem A’,
which we do not mention hereafter.

Theorem 1. Let B’ < o < 1. If T* < H < T, then there is an absolute
positive constant A; = Aj(«) such that for any integer | satisfying

1 <1< (loglogT)'/3,

we have

g 21 <2l)' 1 . l Lgl—(1/2 1—(1/2
/ Sy (8)* dt = = <_27T) H(loglog T)' +0 (AL 1'=(/? H(log log T)=(1/2)),
T !

where the implied constants depend at most on «.

Theorem 2. Let B' < a < 1. If (T +h)® < H < T, then there is an
absolute positive constant As = As(«) such that for any integer [, with

1 <1< (loglogT)'/3,
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and any h satisfying
1
(logT)'/? < h™! < —logT,

101
we have
T+H 21 ' h 21 B
/T 1S1.7(t+h) — Sy (1)) dt = (l—')(%) H(logh™1)!

+ O (ALY HR (loglog T) = 1/2)).

Remark 3. Theorems 1 and 2 are analogous results of Theorems 2 and 3
of [5]. However, here the range of | as well as the error terms have been improved.
In fact, Theorems 2 and 3 of [5] hold with this range of [ as well as with this error
term, which can be easily noticed from our arguments.

As a consequence of Theorems 1 and 2, we obtain

Theorem 3. Let B’ <a<1. If T* < H < T, then for any given § > 0, we
have

t)| dt = loglog T
/ 1Sy (@)l dt = —= 5 (loglog T)

+ Os (H((log log T')(log log log T)_(1/2)+5) (1/2)),
where the implied constants depend on o and 6.

Theorem 4. Let B’ < a < 1. If (T 4+ h)® < H < T, then for any given
0 > 0 and any h satisfying

log T’
log T)Y/? < b1 = R
( 0g ) < <é loglogTv
for some suitable constant €1 = ¢1(a) > 0, we have
i 2 Hh
t+h)— S p(t)dt = —=——(logh™')'/?
| St h) = sy 0]de = = 52 ogh )

+ O(Hh((loglog T)(loglog log T) ~(1/2)+9) 1/2) ,
where the implied constants depend on « and .

Remark 4. We prove Theorems 1 and 2 in detail adapting the approach
of [5] to our situation. However, we need an asymptotic estimate for the quan-
tity Ep<$ az logp/p*~! which is proved in Section 4 using Shimura’s split of the
Rankin—Selberg L-function into the ordinary Riemann zeta-function and the sym-
metric square L-function associated to a Hecke eigenform f for the full modular
group. Apart from this, Theorem A’ plays a crucial role (on the whole) particu-
larly in proving the main theorem over shorter intervals.

Acknowledgement. The author wishes to thank the anonymous referee for the
careful reading of the manuscript and for valuable comments.
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2. Notation and preliminaries

Throughout the paper, the implied constants A are effective absolute positive
constants and they need not be the same at each occurrence. When £k is even, it is
known that a, s are real. In fact, they are totally real algebraic numbers. Hence a,,
is real from (1.1) and (1.3). By Deligne’s estimate, we also have |a,| < 2p(F=1)/2.
We define a real number A7 such that a, = 2A;p(k_1)/2, and hence, |A7] < 1.
Let Oé; and Oz_; be the roots of the equation x? — 2A;x 4+ 1 =0 and we note that
|ag,| = 1. Therefore, from the Euler product of Ly(s), we can write

(2.1) Li(s) = [J(1 = app™) (1 —app™*)

p

with || = p*~1/2 and a, = a, + @,. Taking the logarithm and differentiating
both sides of (2.1) with respect to s, we find that

(2.2) L) > (e +a,™)p ™ (logp)
Ly(s) &7 "
Now we define
(2.3) Ap(n) = (ap" +a@,")(logp) if n=p™; 0 otherwise.

Hence we obtain

Llf(s) = N ~% (in Res
(2.4) I —;Af(n)n (in Res > (k+1)/2).
Note that
(2.5) As(n) < 2(logn)ntF—1/2,

For z > 1, we define

(Ag(n), if1<n<auz,
3 2 B . x_g 2
(2.6) Ag(n) = At { (l g(gn )2>2(logjc)(21 g< )) } fzsn<ot
| As(m) <l(;i(<);x))2) for 22 < n < 2%,
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3. Some lemmas

Lemma 3.1. Let 7 be a real positive number and suppose that d(n) are
complex numbers satisfying

b(n)] < C

for some fixed constant C' > 0. Then, for any integer | > 1, we have

S= 3 e ddlg) - dla)

(P pq--@)”

P15 <Y,
q1, 591 <Y,
Pl p=4q1qp

(g ) o) ()

<y <y <y

Proof. See, for example, Lemma 1 of [5]. o

For x > 2, t > 0, we define the number o, by
0zt = k/2+ 2max(8 — k/2,2/logz),
where ¢ = 3+ iy runs over all zeros of L¢(s) for which
[t =] < 299 F /2 (log ) .

Lemma 3.2. Suppose that T < H < T, where B’ < o« <1 and = > 2,
1<éE<a¥, 2362 < (H/TB/)1/4. Then, for 0 < v < 81, we have

I — e _k ’ 7ui—(k/2) g Al
1 = Ozt 9 5 t K< (log.'lj)l’

log T 4 vl
Al HlogT !

+ (V)!lo;x <10g(;/TB/))V)>.

Proof. The proof follows using Theorem A’ at the appropriate place of the
proof of Lemma 12 of [16]. o

Lemma 3.3. Let H >1,1>1 and 1 <y < H'Y'. Suppose that Bp are
complex numbers satisfying

log p
3.1 B1—=2 .
(3.3.1) Byl < Nogy OTP<Y
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Then, we have

(3.3.2) /0 !

and if |(B,| < B1, then we have

H .
(3.3.3) /O > Bt

p<y
Proof. See, for example, Lemma 3 of [5]. o

21
dt < (ABI)'H

Zﬁpp—(l/Z)—it

<y

21
dt < (AB#)'H

Remark. It should be mentioned here that a general mean-value theorem
for the Dirichlet polynomial with a better error term is also available, for which
we refer to [10].

Lemma 3.4. Let BB <a <1, T*<H<T and z = T(a=B")/(60]) Then,
for T <t<T+ H, we have

Sf(t) + % Z (ap + a_p) Sin<t logp)

ph/2
< )
p<x3
Ay ¢ (p?) _ i
2 : ,f( )p 24t

k
0| 2 S |) - ol((oee=3) vs)
pearse PU10BP

n O((am _ g)xm,t—(k/z)) / < /2 3 Ax,f(pzi?tg(wp) ’ do_).
k)2

p<x3 p
Proof. From Theorem A (stated in the introduction), we obtain

p<x3

T As(p) — Ay s (p) it
pk/2logp

Sp(t) = 1 Z Ag p(p)sin(tlogp) 1 S Ay £(p?) sin(t log p?)

p<x3 O'oc t logp p2<$3 pQO'x,t (logpQ)
Ax
o242
po'm,t+1t
p<x3
+0 <0 o ) 7Ax’f(p2> )
x 20,1 +2it
(3.4.) 2

p") sin(tlog p™)
prow.t <1ng )

Aw,f(pr>

prU%t +rit

+
)

|
)vof o )

10<oc

<
( r>2
rof(et) 5

p T<xd

>2
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Note that o, > 3k and
[As,p(n)] < |Af(n)] < 2(logn)n*—172,

Now, it is easy to see that

(3.4.2) 3 Aws ") sin(tlosp’) _ gy _ 0((% - ﬁ) logT),

pro=t(logp") 2

pr<ax3

r>2
S A7) |
. prax,t—kmt

k
Ox,t — 5
pT<w

(3.4.3) r>2

and

Z Aey(P®) |
(3.4.4) A PR

Now, we write the first four terms on the right-hand side of
manner, namely,

1 (o + @) sin(tlog p)
Y (ot T

T As(p) — As s (p) it
pk/2logp

)

Z Az r(p) (1 _p(k/g)—am,t)p—it

)

+0

k Ay p(p)
(3.4.5) + O((Uﬂc,t - 5) Z poetit
p<x3
Aot (02) o
+O< Z k,{(p )p—21t>
p<zd/? prlogp
A, (PQ) k—2 —2i
+O< of 1_p U%tp ot
2 gy

k
(nyt — 5) log T).
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We note that

A, ¢ (p? B iy
Q= Z k,f< )(1 _pk QUQCJ)p 24t
a2 P log p
2(log p)p" ! ko2
< ——=— (1 —p" =)
(3.4.6) p<§/2 pklogp
4(oy ¢ k)logp
< Z ( 2 ) —O((O'w’t—%k) logT),
p<583/2 p
since
S 4
Tet =3 log =

and 1 — e * < x. Further, we have

Az y(p) - i
— x, 1— (k/2)—0g4,t it
Q2 ZB pk:/2 1ng( b )p
p<z
(3.4.7) o A, 1 (p) - A 5 (p)
[0y S < [ ]S Sl ao
k12 ) os p k/2 ) s p

If %k <o’ <o, then

As 1 (P)
Z pa’f—‘,—g

/ o A, 1
— g —(k/Z)/ p(k/2)—0 Z £ (p)(log zp) da‘

, pa—‘,—it
3 23
(348 . s \ |
gx%,t—(m)/ /200 3 w,f(Pg)J(rggﬂ?P)'dg,
k/2 p<a’ p

and therefore, from (3.4.7) and (3.4.8), we get

(3.4.9) Q2 < (%’t — E)xam,t—(k/z)/ p(k/2)—0
2 k/2

A, log x
£ (p)(log zp) do.
o+t

5 b

p<x

Now, the lemma follows from (3.4.5), (3.4.6) and (3.4.9). o

Lemma 3.5. Let B’ < o < 1 and suppose that T < H < T. Put
x =T B)/60D)  Then, for | < logT', we have

T+H 1 N\ . tl 21
/ ‘Sf(t) =D (A 1 @) sin(tlogp) ' dt < AUH.

k/2
T m p<z? p
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Proof. Let
(op + @) sin(t logp)
(3.5.1) (t) := ,
21: ,;3 T
Ap(p) —Aay(p) _i
(3.5.2) Bi(t) = : it
(*) Z 7 Tog p
A, 1(P?) o,
(3.5.3) By(t) = Y 7pk’{§§p>p 2it,
p<a3/2
(3.5.4) Es(t) := (am’t — %k) log T,
and

(3.5.5) Ey(t) := (gm _ %k)x(am,t—(k/z))/ p(k/2)—o
k)2

A
3 x,f(p)iéf(wp) ' .
3 pO' VA

p<x

Now, clearly from Lemma 3.4, we have

(3.5.6) ’ () + 7t Z

If we take

<< A(IB1 P + B2 + [Bs () + [Ea()*').

Ar(p) = Aa s (p)
p=1/2logp

ﬁp =
then from the definition of A¢(n) and A, f(n), we easily find that

Bp=0 for2<p<ux,

1 S
|ﬂp|§2<ogp—1) < 98P for x < p < a2,

log x log
and |
1Bp| < 6 98D for 42 <p<ad
Therefore,
lo
8,1 < BBl for p < o
log

with some absolute positive constant B;. Similarly, if we take

Ag f(p?)

B, = :
p pk—l logp
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then from the definition of A, ¢(n), we find that

A s (p*) < 9p" (logp),

and so we get |3,| < Bz with some absolute positive constant By. Therefore,
from Lemma 3.3, ((3.3.2), (3.3.3), respectively), we obtain

T+H
(3.5.7) / B ()2 dt < (Al)'H
T
and
T+H
(3.5.8) / Bx(8)2 dt < (AL)'H.
T

Note that we have fixed z = T(@=B)/(60) = From Lemma 3.2, with ¢ =1 and
v =2l, we get

T+H
(3.5.9) / | B3 ()| dt < AH(1(20) + P H < AN(20)* ' H < AP H,

T
since,
(3.5.10A) (20)! < (20)*71 forl>1,
(3.5.10B)
log T 4 vl 1 4 v
Sy := HlogT ! !
2 o8 <(U) log x <log(H/TB’)) +) log x <log(H/TB')) )
<! H
(log z)(log T)» 1
and
5.1 AP,
(3.5.10C) (log )" <
Now, we notice that
T+H
(3.5.11) / |E4(t)]* dt < Q3Qq
T

where
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T+H o
o ([ ([
T k/2

From Lemma 3.2, (with ¢ = 2* | v = 41), we obtain

and

> Az, s (p)(log zp) ‘ da) ! dt) 1/2.

pa—l—it

p<xz3

(3.5.12) Qs < (A'(IY + 1(4)) H(log T) ™) ? < AU HY2(log T) 2.

By Holder’s inequality, we get

T+H 00 41—-1
Qi < / </ z(k/2)=e da)
Jr k)2

0 41
% (/ x(k/Q)—O' Z Aw,f(p)(logxp)' dO‘) dt
k/2

o+it
(3.5.13) peet P

< toga)' ([ atirae
k

/2
T+H A 41
z.f(p)(log xp)
(| A ) ao ).
T p<z’ p

By taking
g, = Aws()(logap)
p p(k—l)/Q(logm)Q’

we observe that |5, < 10log p/logz. Now, by (3.3.2), we obtain

(3.5.14) / o

T

A 1 4]
> et DUBZD) |7 0y 4 B2 E (10g )™

pa—l—it

p<x3
Therefore, we get from (3.5.13) and (3.5.14)
(3.5.15) Q% < (AB?1)* H(logz)™.

From (3.5.11), (3.5.12) and (3.5.15), with our choice of x, we get

T+H
(3.5.16) / |Ea(t)*! dt < A'P'H? (log T) = (AB}I) H'/?(log )
5. :

< AYN'H.

This proves the lemma. o

225
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Lemma 3.6. Let B' < a <1 and T® < H <T. Then, if | > 1 is an integer
and
.'I/'S — T(Ot—B/)/(QOl) S 2 S I{l/l7

we have

T+H N 21
_ 1 (o + @) sin(t log p) 1121
(3.6.1) Qs .:/T ‘Sf(t) + §< 2 dt < A'I*°H.
p<z

Proof. We clearly have

T+H N\ 21
1 a, + o) sin(tlogp
Q5<<4’/ ‘Sf(t)+;z(p ’;))k/Q( &P\ g
T 3
p<az
(3.6.2) — ol
+4z/ S optasitl gy
T 3<p<z
From Lemma 3.5, we observe that
T+H . 21
1 + tl
(3.6.3) /T S+ (2 O";j:;f( 8P |" 4t < Al

p<x3

From (3.3.2) (with By = O(1)), we have

T+H _
(3.6.4) / S /-

T r3<p<z

21
dt < AY'H.

In the notation of Lemma 3.3,

g 1= log p log z log p
P log z log p log 2z

so that (3.3.1) is satisfied with z in place of y. This proves the lemma. o

4. Prime number theorem related to the Dirichlet series > -, a2 /n®

We know that

- we=TI(-3) () -5
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is an entire function, |a,| = ph—1)/2 a,a, = p*~1 and a, = o, +@,. Now, let
(4.2) Lya(s) =) =
n=1
and
o2\ 1 a7 a2\ !
aa e =I0-5) (-57) (-5)

p

where the symbol ® in (4.3) denotes the Rankin—Selberg convolution. The im-
portant relation between (4.2) and (4.3) is given by (see [12], [11], [17] and [13])

(4.4) C(s—k+1)Lygs(s) = C(25 — 2k + 2) Ly (s),

where ((s) is the ordinary Riemann zeta-function. It has been proved by Rankin
(see [12]) that Ly2(s) has a simple pole at s = k with residue ka (« is a certain
constant). Therefore, the series — (L’ (k —1+s))/(Ly2(k — 1+ 5)) has a simple
pole at s =1 with residue 1.

We define
(4.5)
(0™ + "™ + (ap@p)™ + (=1)™ (apa,)™) logp _om
A*(n) = (eT) , ifn=p™,
0, otherwise.

We have the usual von Mangoldt’s function, namely,

(4.6) A(n) = {})Ogl% ifn =p™,

otherwise.

We also define W%, (x) and Ws2(x) by

(4.7) f2(z) = Y A*(n)(x —n)
and

(4.8) p2(z) = / W p2 (u) du = / U p2 (u) du.
0 1
It is obvious that

(4.9) Upo(z) =Y A*(n).

n<x

The aim of this section is to prove:
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Theorem 4.1. For x > xy, we have
Upo(z) =2+ O(xe_cv log ).

To prove this theorem, we need the following lemmas.

Lemma 4.1. There exists a positive constant C (> 0) such that

C

Lp(k—1 [ l— ——.
72 ( +s)#0ino > og (1] 7 2)

Proof. See, for example, [8]. o
Lemma 4.2. Suppose that Ly2(s) has no zeros in the domain
o >1-—n(t]),

where 1(t), for t > 0, a decreasing function, has a continuous derivative ' (t) and
satisfies

(i) 0<n@) <3,
(i) n'(t) =0 as t— oo,
1
(iii) 0@ =0O(logt) as t— o0

Let o be a fixed number satisfying 0 < oy < 1. Then,

Ly (s)

“Ep(s) T O (log?(|#]))

uniformly in the region o > 1 — o/n(|t]) as t — +oc.

Proof. Since we have an Euler-product representation for L2(s) from (4.3)
and (4.4), the proof of this lemma follows in a similar fashion to that of Theorem 20
of [8]. o

Lemma 4.3. Under the conditions of Lemma 4.2, we have

5a(z) = 1a? + O(2%e 1)

as x — 0o, where w(z) is the minimum of n(t)logx + logt for t > 1.
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Proof. First of all, we note that (for C' > 1)

(4.3.1)
L1 O et Li(k—1+s)
PO =50 Jo S5 1) (‘sz<k—1+s>>d5
_L C+ioo st L/fz(k?—l-i-S) C/(QS) C/(QS) p
i ), S5ED) (_sz(k;—HS) T2 g(23)> s
_ Lo e (_L}®f<k—1+s>_<'<s>+<'<2s>)d
T2 Jomise s+ Lyap(k—1+s)  C(s)  ((25) )
B 1 C+ioco STl L/Jc®f(k—1+8) Q/(S) 7/4
=2 Jooin s<s+1>(‘Lf®f<kr—1+s> c@)dsw(m )
since

1 C+ioco s+l (_ CI(QS)) e — L /C+iT st ) <_ C/(QS)) s

% C—ioco S(3+]—) C(QS)

Now, by moving the line of integration to ¢ = %, we see that the horizontal

portions contribute an error which is in the absolute value at most O(z®¢*!/T),
and the vertical portion contributes at most O(z"/*). We can choose C =1 +¢
(e is a small positive constant) and 7' = x'/2. From (4.3.1), we get
(4.3.2)
Vi) 1 / - (‘ Ligs(k—1+5) ¢(s)
BT 2 Jomie SGHDN Lar(i—1%5) (9

) ds + O(z~1/%).

Now, we move the line of integration of the integral appearing on the right-hand
side of (4.3.2) to 0 =1 — a)n(|t]). Therefore, this lemma follows when applying
Lemmas 4.1 and 4.2.

Now, from Lemma 4.3, Theorem 4.1 follows by standard arguments (see, for
example, [8]). o

5. Proof of Theorem 1

We fix z = T2/ | Notice that oy, +0g, = ap. Let us write

(5.1) AL(t) == Alt) := Sf(t)—i_%ZW‘
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Then, from the binomial theorem, we have

. 21
(s = (5 3 )

p<z

(5.2) N Z (2[) NI )< 71TZ ap si;it/iogp))%—j

J

j=1 p<z

= Qs + Q7, say.
We observe that

Z a, sin(t log p)

Qr < ALAMI( [A@® ! + e
pk/

p<z

Therefore, we obtain (using Holder’s inequality)

T+H . 1 T+H

2

Q= [ ISP -
T T

Z a, sin(tlog p) 2l

L

p<z

T+H T+H
< Al/ NG dt+Al/ |A(t)]
T T

T+H
< Al / |A(t)[* dt
T

+ Al (/TT+H INGI& dt)w (/TT+H >

p<z

k/2
p<z p

(5.3)

a, sin(tlog p)
pr/2

Let nmy :=m(t) := >, app~ ¥/~ and hence,

(5.4) I;Za pp~ /% sin(tlog p) = %(m — 7).

Therefore, from the binomial expansion, we obtain

T+H 21
Q= |
T p<z

dt
21 2l T+H
1 (21
N (5) ZH)J(a‘)/T e

(5.5) §=0

T+H
. Ef,“/ (1)

Z a, sin(t log p)

RE

! 21 e o (21—7)
4~ ; . M dt| |.
Jj= 01

Z ap sin(tlog p)

2l—1)

dt

201
dt

21 1—(1/21)
dt) .
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We note that the integral in the error term of (5.5) is

o 2222
q1 - 4q(21—j)

We note that |a,| < 2p*~1/2 and 2z = T*/6D | Since

(5.7) mmG%) < log(%)‘

for any two distinct positive integers a and b, from (5.6) and (5.7) (for j #1), we
get,

—1

Apy "+ Qp;Aqy * " Qggy_ )
(5.6) <
pl,..z,:pj<z (p1-- "Pjqr - 'Q(Ql—j)>k/2

q1,---s q(2l—j)<z

T+H . 21
(5.8) / 29 dt < 2*! (Z |ap|p_k/2) < A < A'H.
T

p<z
Therefore, the error term in (5.5) is
(5.9) < A'H.
Now,
T+H
Iy = / |771(t)|2l dt
T
_ Z Op, ***Ap, Qg """ Qg
o < (pl...plql...ql)k/Q
(5.10) <

a o e a a o e a
P1 P91 qi
ps
P1

..... <= (plplqlql>

Arguments similar to (5.6) yield the error term in (5.10) as
(5.11) < A'H.

Since |a,| < 2p*~1/2 we have |§(p)| := |a,/p* /2| < 2. Therefore, choosing
C=2and 7= % in Lemma 3.1, we obtain the first term on the right-hand side
of (5.10) as

(5.12) = Hl!(z ;—fz)l +O<H22ll!<2p_1)l_2 (Zp_2>).

p<z p<z p<z
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We note that (from Theorem 4.1),

2]
(5.13) pa(w) = 3 A" () = 3" 2L L 012 10g ) = w4 O(we V1T,

p*

n<x p<z

and hence, using Abel’s identity, we obtain
2

a
(5.14) Z — =loglog z + O(1) = loglog T — log(51) + O(1).

p<z

Hence, from (5.10), (5.11), (5.12) and (5.14), we get
T+H
(5.15) / Im (t)|*" dt = I!H (loglog T')" + O (A'l!(log 1) H (loglog T)" ).
T

Therefore, from (5.5), (5.9) and (5.15), we find that

T+H
/;

(5.16) pes

Z a, sin(t log p) 2t

(20)!
T2 dt = =247 "H(loglog T)!

l!

+ O (A (logl)H (loglog T)'™1)
< A''H (loglog T)',
since 1 <1< (loglogT)'/?. Note that we have used
(20)! 21 ol
— = < 27
(N2 1)~
From Lemma 3.6 and (5.16), we see that the right-hand side of (5.3) is

(5.17) < (AD)2H + AHY? (AU H (loglog T)') ' /Y

since (for [ > 1) we have

(5.18) <t

Therefore, the right-hand side of (5.17) becomes the total error, which is
(5.19) < (AN H + A=Y H(loglog T) (/2.

Note that

<« ll_(l/Q)(log logT)l_(l/z) provided | < (loglog T)(l_(l/z))/(H(l/Q)),

_(l—3 , 1 1
min T | = min 1— ] =3
>1 \ [ + 5 >1 [+ 5 3
Hence, Theorem 1 holds with this error term
O(A=0/2 H(loglog T)'~1/2)),
provided 1 <1 < (loglogT)'/?. This proves Theorem 1.

and
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6. Proof of Theorem 2

First, we write

ap sin(tlogp) sin(t log p)

AL(t):=At):=8 Yy R Spt)+7 1> (1)
p<z 2
Then,
t+h t+h t+h
Sif(t+h) =51 ¢(t) = / S¢(u)du = —7'('_1/ Z(u) du + A(u) du.
t t 5 t
Therefore,
t+h 21 1 t+h 21
/ S¢(u)du| = o / Z(u) du
t 2
t+h 21
(6.1) +0 (Al A(u) du )
t
t+h t+h 20-1
+0 (Al / A(u) du / Z(u) du )
t t >

exactly as in (5.3). We notice that

t+h t+h
/ Alu)du| < B2 / A2 du,
t t

and hence, by Holder’s inequality, we get

Q10 3—/TT+H /t+h5 (u) du

T+H

21

21
dt

du dt

7r2l

T—|—H
(6.2) + 0<Alh21 1/ / (u)]?! du)
T+H 1/21
<Al <h2l 1/ / |2l dUdt)
T+H 21 1—(1/21)
( dt) )

u) du
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We notice that

T+H T+u+H
(6.3) / / (u)[* du dt = / du/ (t)|? dt,
T+u

and hence, by Lemma 3.6, with (T + h)* < H<T, B <a <1 and
(T+h)(a—B’)/(20l) <z < Hl/l,

we have

T+H
(6.4) /T AP dt < (A1)

With these restrictions, we have

(6.5)
t+h
/ S¢(u) du

T+H
Qo = /
T

T+H

21
dt

du dt

7T2l

T+H
+0 <(Al)2lh2lH + A%Hl/?lh(/
T

t+h 20\ 1—(1/21)
/ Z(u) du dt) ) .
t 2

Now, the main term on the right-hand side of (6.5) (apart from the constant 7—2!)
1s

ap(cos((t + h)logp) — cos(tlogp)) ?

T+H
(6.6) /T I; o "
We put
(6.7) Ny = ma(t) = Z app_(k/Q)_”(logp)—l(p—ih o,
p<z
so that
(6.8) Z ap(cos((t + h)logp) — cos(tlogp)) et %.

k/2 -
et p*/?logp 2

The integral in (6.6) becomes equal to

(6.9) 2_”% /T T+H|772(t)|2ldt+0(4‘l 3 (21)

j=0,1,...,21 J
J#l

T+H '
/ mie Y dtD :
T
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Now, (for j #1)

T+H '
Q11 2:/ M2 dt
T

QApy "+ Qp;Qqy ~ " Aoy jy
< ) e
(Pl Piqa Q(Ql—j))

1og( pLcop; )
q1 - - q(21—35)

(6.10) 20—5 | in 1 -1

since |a,| < 2p*~1/2 and

p" -1l =2

sin(hlggp) ' < hlogp.

Hence, the error term in (6.9) is
(6.11) < A'W2H,

by taking z = 7%/ 60
Now, we have

T+H
Qur = / (1) dt

T
- H Z Apy " GpQgy """ Qg
(6.12) e (o @)k
qls---» ql<z

P11 P;=41-"q]

ﬁ (v = (g™ - 1) N

O(A'R?' H),
iy (logp;)(logg;) ( )

in the exact way as we obtained (5.10) and (5.11). Now, by Lemma 3.1, with
iy
Qp; (p§h —-1)
pgk_l)/z(logpj)
Qp; (pj_ih —1)

pg_k:—l)/Z (log py)

for 1 <j <lI,
6(pj) =

forl4+1<j5<2I,
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and C' = 2h, the main term in (6.12) becomes equal to

| a§|P"h—1\2 : 217 217 1 2

p<z p<z
(6.13) :l!H<4Za_}2,(Sin(%hlogp))2)l
v log p

+ O(A'h*' H(loglog T')'?).

Now, assuming that 1 < h™ < logT/(10l) < log z, we write the sum on the
right-hand side of (6.13) as

(6.14) <Z + ) )%(—Sm(%hbgp)f.

lo
p<el/h  el/h<p<z &P

The first sum in (6.14) is

h? 0 2 Gy o 2 h? 1 2
(6.15) T Z ﬁ+0(h Z —-h*(logp) ) = —logh " + O(h?),

4
p<el/h p<61/h
since
a2
(6.16) Z p—Z =loglogz + O(1)
p<w
as in (5.14), and in the error term, we have used af, < 4p*~! and
logp)?
(6.17) Z (logp)” = O((logz)?).
psw b
The second sum in (6.14) is
1 o0
(6.18) < > % <</ v dv < 2.
s p(logp) 1/h
Hence, we obtain from (6.14), (6.15) and (6.18)
a2 (sin(shlogp) 2 p2
1 L2277 ) = —logh! h?).
o SR e o

p<z
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Therefore, from (6.12), (6.13) and (6.19), we get

T+H
(6.20) / 2 ()% dt = LHR? (log h~" + O(1))' + O(A''h* H (loglog T)'~2).
T

Substituting (6.11) and (6.20) in (6.5) and using the inequality ! < !=1 for [ > 1,

we arrive at
T+H| pt+h
Q10 1:/ / S¢(u)du
T t

21
(6:21) e <£) H(logh™") + O(A'? W' H)

21
dt

2T
+ O(Athmll_(l/Z)(log log T)l_(1/2))

from which Theorem 2 follows.

7. Completion of the proof of the main theorem

The proofs of Theorems 3 and 4 are verbatim the same as in [5] (see Section 5
and 6 of [5]). Hence, the proof of the main theorem follows from the arguments
similar to those in Section 7 of [5].
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