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Abstract. Let f be a nonconstant entire function, a a finite complex number, k and m
two distinct positive integers, and (k, m) the greatest common divisor of k and m . If f , f (k)

and f (m) share a CM, then

f(z) =
c − 1

c
a +

q
∑

j=1

Cje
λjz ,

where q is a positive integer with q ≤ (k, m) , c and Cj for 1 ≤ j ≤ q are nonzero constants, and
λj for 1 ≤ j ≤ q , are distinct nonzero constants satisfying (λj )

k = (λj)
m = c , for a 6= 0, and

(λj )
k = c , (λj)

m = d , for a = 0, where d is a nonzero constant. This answers a question of Yang
and Yi [14] for entire functions, and extends a result of Csillag [2].

1. Introduction and main results

Let f and g be two nonconstant meromorphic functions in the complex plane,
and let a be a finite complex number. If f(z) − a and g(z) − a have the same
zeros with the same multiplicities, then we say that f and g share a CM.

In 1986, Jank–Mues–Volkmann [8] proved

Theorem A. Let f be a nonconstant meromorphic function and a a nonzero

finite complex number. If f , f ′ and f ′′ share a CM, then f ≡ f ′ .

By Theorem A, the following question was posed.

Question 1 (see [6], [7], [13], [14]). Let f be a nonconstant meromorphic

function, a a nonzero finite complex number, and k , m two distinct positive

integers. Suppose that f , f (k) and f (m) share a CM. Can we get f ≡ f (k) ?

The following example [12] shows that the answer to Question 1 is, in general,
negative.
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Example 1. Let k , m be positive integers satisfying m > k+1, b a nonzero
constant such that bk = bm 6= 1 and a = bk . Set

f(z) = ebz + a − 1.

Then f , f (k) and f (m) share a CM. But f 6≡ f (k) .

In Example 1, f is an entire function, and f , f (k) and f (m) share a CM.
Although f 6≡ f (k) , we have f (k) ≡ f (m) .

Naturally, we pose the following question.

Question 2. Let f be a nonconstant meromorphic function, a a nonzero

finite complex number and k , m two distinct positive integers. Suppose that f ,

f (k) and f (m) share a CM. Can we get f (k) ≡ f (m) ?

In this paper, we give an affirmative answer to Question 2 for entire functions.
In fact, we have proved the following more general result.

Theorem 1. Let f be a nonconstant entire function, a a finite complex

number, k and m two distinct positive integers, and (k, m) the greatest common

divisor of k and m . If f , f (k) and f (m) share a CM, then

(1.1) f(z) =

(

1 −
1

c

)

a +

q
∑

j=1

Cje
λjz,

where q is a positive integer with q ≤ (k, m) , c and Cj , 1 ≤ j ≤ q , are nonzero

constants, and λj , 1 ≤ j ≤ q , are distinct nonzero constants satisfying

(1.2) (λj)
k = (λj)

m = c, for a 6= 0;

and

(1.3) (λj)
k = c, (λj)

m = d, for a = 0,

where d is a nonzero constant.

By Theorem 1, we can easily obtain the following results.

Corollary 2. Let f be a nonconstant entire function, a a nonzero finite

complex number, and k , m two distinct positive integers. Suppose that f , f (k)

and f (m) share a CM. Then f (k) ≡ f (m) .

Corollary 2 gives an affirmative answer to Question 2 for entire functions.

Corollary 3 ([10, Theorem 1]). Let f be a nonconstant entire function, a
a nonzero finite complex number and k a positive integer. If f , f (k) and f (k+1)

share a CM, then f ≡ f ′ .
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Corollary 4 ([10, Theorem 2]). Let f be a nonconstant entire function, a
a nonzero finite complex number and k ≥ 2 a positive integer. If f , f ′ and f (k)

share a CM, then

(1.4) f(z) =

(

1 −
1

c

)

a + Cecz ,

where C and c are nonzero constants with ck−1 = 1 .

Corollary 5 (Csillag [2], cf. [4, p. 67]). Let f be a nonconstant entire

function, and k and m two distinct positive integers. If ff (k)f (m) 6= 0 , then

f = eAz+B , where A (6= 0) and B are constants.

Let f be a nonconstant meromorphic function in the complex plane. Through-
out this paper, we use the basic results and notations of Nevanlinna theory (cf. [3],
[4], [11], [14]). In particular, S(r, f) denotes any function satisfying

S(r, f) = o{T (r, f)},

as r → +∞ , possibly outside of a set of finite linear measure, where T (r, f) is
Nevanlinna’s characteristic function.

As usual, the order %(f) of f is defined as

%(f) = lim sup
r→∞

log T (r, f)

log r
.

2. Some lemmas

We will use Pd[f ] to denote a differential polynomial in f of degree ≤ d with
constant coefficients which may be different at different occurrence. We denote
the set of differential polynomials in f with constant coefficients by P[f ] .

Lemma 1 (Clunie [1], cf. [4, p. 68]). Let f be a nonconstant meromorphic

function, n be a positive integer, P [f ] and Q[f ] two differential polynomials in f
with constant coefficients, and P [f ] 6≡ 0 . If the degree of P [f ] is at most n and

fnQ[f ] = P [f ],

then

m(r, Q[f ]) = S(r, f).

Lemma 2 (cf. [9, p. 29–34]). Let f be a nonconstant entire function, n be a

positive integer and aj , 0 ≤ j ≤ n , meromorphic functions with an 6≡ 0. Suppose

that

(2.1) anfn + an−1f
n−1 + · · ·+ a1f + a0 ≡ 0.

Then

(2.2) T (r, f) ≤ O

(

1 +

n
∑

j=0

T (r, an)

)

.

The following result is an instant corollary of Lemma 2.
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Lemma 3. Let f be a nonconstant entire function, n a positive integer and

aj , 0 ≤ j ≤ n , meromorphic functions satisfying T (r, aj) = S(r, f) . If

anfn + an−1f
n−1 + · · ·+ a1f + a0 ≡ 0,

then aj ≡ 0 for j = 0, 1, . . . , n .

Lemma 4 ([3, Lemma 3.12]). Let fj(z) (6≡ 0) , j = 1, 2, . . . , n , be n mero-

morphic functions which are linearly independent such that

(2.3) f1(z) + f2(z) + · · · + fn(z) ≡ 1.

Then for every j , 1 ≤ j ≤ n ,

(2.4) T (r, fj) ≤
n
∑

k=1

N

(

r,
1

fk

)

+ N(r, fj) + N(r, D) + S(r),

where D = W (f1, f2, . . . , fn) is the Wronskian, and S(r) is a function which

satisfies

S(r) = o
(

max
1≤k≤n

T (r, fk)
)

as r → ∞ , possibly outside a set of finite linear measure.

Lemma 5 ([3, Lemma 5.1]). Let aj(z) , j = 0, 1, . . . , n , be entire and of finite

order ≤ % (< ∞) . Let gj(z) , j = 1, . . . , n , be also entire such that each of the

functions gi − gj , i 6= j , is a transcendental function or a polynomial of degree

greater than % . If

(2.5)
n
∑

j=1

aj(z)egj(z) ≡ a0(z),

then

(2.6) aj(z) ≡ 0, j = 0, 1, . . . , n.

Lemma 6. Let f and α be nonconstant entire functions, a a finite complex

number and k a positive integer. Suppose that

(2.7) f (k) = a + eαf.

Then for any positive integer j , 1 ≤ j ≤ k − 1 , we have

(2.8) f (k+j) = γ0,jf + γ1,jf
′ + · · · + γj,jf

(j),
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and γi,j are entire functions satisfying

(2.9)







γ0,j

...

γj,j






=







A0,1,je
α

...

Aj,1,je
α







where

(2.10)

Ai,1,j =
j!

i!(j − i)!
e−α(eα)(j−i)

=
j!

i!(j − i)!

(

(α′)j−i + Pj−i−1[α
′]
)

, 0 ≤ i ≤ j,

are differential polynomials in α′ with constant coefficients. In particular, Aj,1,j ≡
1 for 1 ≤ j ≤ k − 1 . Here Pd[α

′] ≡ 0 for d ≤ 0 .

Proof. We prove this lemma by mathematical induction on j . By (2.7), we
have f (k+1) = α′eαf + eαf ′ , so that (2.8)–(2.10) are true for j = 1. Now suppose
that (2.8)–(2.10) are true for j ≤ k − 2. Thus by (2.8), we get

(2.11)

f (k+j+1) = γ′
0,jf + γ′

1,jf
′ + · · · + γ′

j,jf
(j)

+ γ0,jf
′ + · · ·+ γj−1,jf

(j) + γj,jf
(j+1)

= γ0,j+1f + γ1,j+1f
′ + · · · + γj,j+1f

(j) + γj+1,j+1f
(j+1),

where

γ0,j+1 = γ′
0,j,(2.12)

γ1,j+1 = γ′
1,j + γ0,j,

...

γi,j+1 = γ′
i,j + γi−1,j,(2.13)

...

γj,j+1 = γ′
j,j + γj−1,j,

γj+1,j+1 = γj,j.(2.14)

By (2.11)–(2.14), we know that (2.8)–(2.10) are true for j + 1. Thus (2.8)–(2.10)
are true for j = 1, 2, . . . , k − 1. Lemma 6 is proved.

Lemma 7. Let f and α be nonconstant entire functions, a a finite complex

number and k a positive integer. Suppose that

(2.15) f (k) = a + eαf.
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Then for any positive integer j (≥ k) j = sk + l , s ≥ 1 , 0 ≤ l ≤ k − 1 , we have

(2.16) f (k+j) = γ−1,j + γ0,jf + γ1,jf
′ + · · · + γk−1,jf

(k−1),

and γi,j are entire functions satisfying

(2.17)

























γ−1,j

γ0,j

...

γl,j

γl+1,j

...

γk−1,j

























=

























aA−1,1,je
α + a

∑s−1
t=2 A−1,t,j(e

α)t + aA−1,s,j(e
α)s

A0,1,je
α +

∑s
t=2 A0,t,j(e

α)t + A0,s+1,j(e
α)s+1

...

Al,1,je
α +

∑s
t=2 Al,t,j(e

α)t + Al,s+1,j(e
α)s+1

Al+1,1,je
α +

∑s−1
t=2 Al+1,t,j(e

α)t + Al+1,s,j(e
α)s

...

Ak−1,1,je
α +

∑s−1
t=2 Ak−1,t,j(e

α)t + Ak−1,s,j(e
α)s

























,

where Ai,t,j (∈ P[α′]) satisfy

(2.18)





























A−1,s,j

A0,s+1,j

...

Al−1,s+1,j

Al,s+1,j

Al+1,s,j

...

Ak−1,s,j





























=





























C−1,s,j(α
′)l + Pl−1[α

′]
C0,s+1,j(α

′)l + Pl−1[α
′]

...

Cl−1,s+1,jα
′ + P0[α

′]
1

Cl+1,s,j(α
′)k−1 + Pk−2[α

′]
...

Ck−1,s,j(α
′)l+1 + Pl[α

′]





























,

and Ci,s+1,j , −1 ≤ i ≤ l − 1 , and Ci,s,j , l + 1 ≤ i ≤ k − 1 , are positive integers,

and

(2.19) Ai,1,j =
j!

i!(j − i)!
e−α(eα)(j−i) =

j!

i!(j − i)!

(

(α′)j−i + Pj−i−1[α
′]
)

.

Here Pd[α
′] ≡ 0 for d ≤ 0 .

Proof. We prove this lemma by mathematical induction on j . First we prove
that (2.16)–(2.19) are true for j = k . By Lemma 6, we have

(2.20) f (2k−1) = γ0,k−1f + γ1,k−1f
′ + · · · + γk−1,k−1f

(k−1).

This together with (2.15) yields

(2.21)

f (2k) = (f (2k−1))′

= γ′
0,k−1f + γ′

1,k−1f
′ + · · ·+ γ′

k−1,k−1f
(k−1)

+ γ0,k−1f
′ + · · · + γk−2,k−1f

(k−1) + aγk−1,k−1 + eαγk−1,k−1f

= γ−1,k + γ0,kf + γ1,kf ′ + · · ·+ γk−1,kf (k−1).



On entire functions that share a value with their derivatives 271

By Lemma 6, we get

γ−1,k = aγk−1,k−1 = aeα,(2.22)

γ0,k = γ′
0,k−1 + eαγk−1,k−1

= (eα)(k) + (eα)2,(2.23)

γi,k = γ′
i,k−1 + γi−1,k−1

=
(k − 1)!

i!(k − 1 − i)!
(eα)(k−i) +

(k − 1)!

(i − 1)!(k − i)!
(eα)(k−i)

=
k!

i!(k − i)!
(eα)(k−i), i = 1, . . . , k − 1.(2.24)

Thus (2.16)–(2.19) are true for j = k .

Now we assume that this lemma is true for a given j = sk + l with s ≥ 1 and
0 ≤ l ≤ k − 1. Next we show that this lemma is true for j + 1. First by (2.15)
and (2.16), we get

f (k+j+1) = γ′
−1,j + γ′

0,jf + γ′
1,jf

′ + · · · + γ′
k−1,jf

(k−1)

+ γ0,jf
′ + · · ·+ γk−2,jf

(k−1) + aγk−1,j + eαγk−1,jf.

It follows that (2.16) is true for j + 1 with

γ−1,j+1 = γ′
−1,j + aγk−1,j,(2.25)

γ0,j+1 = γ′
0,j + eαγk−1,j ,(2.26)

γi,j+1 = γ′
i,j + γi−1,j, i = 1, 2, . . . , k − 1.(2.27)

Thus for l ≤ k − 2, by the assumptions,

γ−1,j+1 =

(

aA−1,1,je
α + a

s−1
∑

t=2

A−1,t,j(e
α)t + aA−1,s,j(e

α)s

)′

+ a

(

Ak−1,1,je
α +

s−1
∑

t=2

Ak−1,t,j(e
α)t + Ak−1,s,j(e

α)s

)

(2.28)

= a(A′
−1,1,j + α′A−1,1,j + Ak−1,1,j)e

α

+ a

s−1
∑

t=2

(A′
−1,t,j + tα′A−1,t,j + Ak−1,t,j)(e

α)t + aA−1,s,j+1(e
α)s,
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where A−1,s,j+1 = A′
−1,s,j + sα′A−1,s,j + Ak−1,s,j ,

(2.29)

γ0,j+1 =

(

A0,1,je
α +

s
∑

t=2

A0,t,j(e
α)t + A0,s+1,j(e

α)s+1

)′

+ eα

(

Ak−1,1,je
α +

s−1
∑

t=2

Ak−1,t,j(e
α)t + Ak−1,s,j(e

α)s

)

= A0,1,j+1e
α +

s
∑

t=2

(A′
0,t,j + tα′A0,t,j + Ak−1,t−1,j)(e

α)t

+ A0,s+1,j+1(e
α)s+1,

where A0,1,j+1 = A′
0,1,j + A0,1,jα

′ , A0,s+1,j+1 = A′
0,s+1,j + (s + 1)α′A0,s+1,j +

Ak−1,s,j , and for 1 ≤ i ≤ l ,

(2.30)

γi,j+1 = γ′
i,j + γi−1,j

=

(

Ai,1,je
α +

s
∑

t=2

Ai,t,j(e
α)t + Ai,s+1,j(e

α)s+1

)′

+ Ai−1,1,je
α +

s
∑

t=2

Ai−1,t,j(e
α)t + Ai−1,s+1,j(e

α)s+1

= Ai,1,j+1e
α +

s
∑

t=2

(A′
i,t,j + tα′Ai,t,j + Ai−1,t,j)(e

α)t

+ Ai,s+1,j+1(e
α)s+1,

where Ai,1,j+1 = A′
i,1,j+α′Ai,1,j+Ai−1,1,j , Ai,s+1,j+1 = A′

i,s+1,j+(s+1)α′Ai,s+1,j

+Ai−1,s+1,j , and for i = l + 1,

(2.31)

γl+1,j+1 = γ′
l+1,j + γl,j

=

(

Al+1,1,je
α +

s−1
∑

t=2

Al+1,t,j(e
α)t + Al+1,s,j(e

α)s

)′

+ Al,1,je
α +

s
∑

t=2

Al,t,j(e
α)t + Al,s+1,j(e

α)s+1

= Al+1,1,j+1e
α +

s
∑

t=2

(A′
l+1,t,j + tα′Al+1,t,j + Al,t,j)(e

α)t

+ Al+1,s+1,j+1(e
α)s+1,

where Al+1,1,j+1 = A′
l+1,1,j + α′Al+1,1,j + Al,1,j , Al+1,s+1,j+1 = Al,s+1,j , and for

l + 2 ≤ i ≤ k − 1,

γi,j+1 = γ′
i,j + γi−1,j
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=

(

Ai,1,je
α +

s−1
∑

t=2

Ai,t,j(e
α)t + Ai,s,j(e

α)s

)′

+ Ai−1,1,je
α +

s−1
∑

t=2

Ai−1,t,j(e
α)t + Ai−1,s,j(e

α)s(2.32)

= Ai,1,j+1e
α +

s−1
∑

t=2

(A′
i,t,j + tα′Ai,t,j + Ai−1,t,j)(e

α)t + Ai,s,j+1(e
α)s,

where Ai,1,j+1 = A′
i,1,j +α′Ai,1,j +Ai−1,1,j , Ai,s,j+1 = A′

i,s,j +sα′Ai,s,j +Ai−1,s,j .
By (2.28)–(2.32), we know that (2.16)–(2.19) are true for j+1 when j = sk+l

with 0 ≤ l ≤ k − 2. Similarly, we can prove (2.16)–(2.19) are true for j + 1 when
j = sk + k − 1. We omit the details here. Thus Lemma 7 is proved.

Lemma 8. Let

(2.33) ∆j =









γ0,j γ0,j+1 · · · γ0,j+k−1

γ1,j γ1,j+1 · · · γ1,j+k−1

...
...

. . .
...

γk−1,j γk−1,j+1 · · · γk−1,j+k−1









,

where γi,j are entire functions defined in Lemmas 6–7 (for 1 ≤ j ≤ k−1 and i > j
set γi,j = 0) . Denote the determinant of ∆j by det(∆j) . Then for j = sk + l
(≥ 1) with s ≥ 0 , 0 ≤ l ≤ k − 1 , we have

(2.34)

det(∆j) =
(

(α′)kj + Pkj−1[α
′]
)

(eα)k

+

(s+1)k+l−1
∑

t=k+1

At,j(e
α)t + (−1)l(k−l)(eα)(s+1)k+l,

where At,j ∈ P[α′] .

Proof. Obviously, by Lemmas 6–7, we have

(2.35) det(∆j) =

ν
∑

t=k

At,j(e
α)t

with ν ≥ k and At,j ∈ P[α′] . Thus we need only to show that

(2.36) ν = (s + 1)k + l, Aν,j = (−1)l(k−l),

and

(2.37) Ak,j = (α′)kj + Pkj−1[α
′].
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First we prove (2.36). By Lemmas 6–7, we have

M1 =









γ0,j γ0,j+1 · · · γ0,j+k−1−l

γ1,j γ1,j+1 · · · γ1,j+k−1−l

...
...

. . .
...

γl−1,j γl−1,j+1 · · · γl−1,j+k−1−l









l×(k−l)

= (polynomials in eα of degrees ≤ s + 1)l×(k−l),

M2 =









γ0,j+k−l γ0,j+k−l+1 · · · γ0,j+k−1

γ1,j+k−l γ1,j+k−l+1 · · · γ1,j+k−1

...
...

. . .
...

γl−1,j+k−l γl−1,j+k−l+1 · · · γl−1,j+k−1









=









1 A0,s+2,j+k−l+1 · · · A0,s+2,j+k−1

0 1 · · · A1,s+2,j+k−1

...
...

. . .
...

0 0 · · · 1









l×l

(eα)s+2

+ (polynomials in eα of degrees ≤ s + 1)l×l

= Al×l(e
α)s+2 + (polynomials in eα of degrees ≤ s + 1)l×l,

M3 =









γl,j γl,j+1 · · · γl,j+k−1−l

γl+1,j γl+1,j+1 · · · γl+1,j+k−1−l

...
...

. . .
...

γk−1,j γk−1,j+1 · · · γk−1,j+k−1−l









(k−l)×(k−l)

=









1 Al,s+1,j+1 · · · Al,s+1,j+k−1−l

0 1 · · · Al+1,s+1,j+k−1−l

...
...

. . .
...

0 0 · · · 1









(k−l)×(k−l)

(eα)s+1

+ (polynomials in eα of degrees ≤ s)(k−l)×(k−l)

= B(k−l)×(k−l)(e
α)s+1 + (polynomials in eα of degrees ≤ s)(k−l)×(k−l),

M4 =









γl,j+k−l γl,j+k−l+1 · · · γl,j+k−1

γl+1,j+k−l γl+1,j+k−l+1 · · · γl+1,j+k−1

...
...

. . .
...

γk−1,j+k−l γk−1,j+k−l+1 · · · γk−1,j+k−1









(k−l)×l

=









Al,s+1,j+k−l Al,s+1,j+k−l+1 · · · Al,s+1,j+k−1

Al+1,s+1,j+k−l Al+1,s+1,j+k−l+1 · · · Al+1,s+1,j+k−1

...
...

. . .
...

Ak−1,s+1,j+k−l Ak−1,s+1,j+k−l+1 · · · Ak−1,s+1,j+k−1









(k−l)×l

(eα)s+1



On entire functions that share a value with their derivatives 275

+ (polynomials in eα of degrees ≤ s)(k−l)×l

= C(k−l)×l(e
α)s+1 + (polynomials in eα of degrees ≤ s)(k−l)×l,

where Al×l, B(k−l)×(k−l), C(k−l)×l are matrices whose elements are differential
polynomials in α′ . In particular, Al×l and B(k−l)×(k−l) are upper triangular
matrices whose principal diagonal elements equal 1. Thus by (2.33) we get

det(∆j) =

∣

∣

∣

∣

M1 M2

M3 M4

∣

∣

∣

∣

=

∣

∣

∣

∣

0 A
B C

∣

∣

∣

∣

(eα)(s+1)k+l + (terms of degree ≤ (s + 1)k + l − 1)

= (−1)l(k−l) det(A) det(B)(eα)(s+1)k+l + (terms of degree ≤ (s + 1)k + l − 1)

= (−1)l(k−l)(eα)(s+1)k+l + (terms of degree ≤ (s + 1)k + l − 1),

where 0 = 0l×(k−l) is the zero matrix, A = Al×l , B = B(k−l)×(k−l) , C = C(k−l)×l .
This proves (2.36).

Next we prove (2.37). By Lemmas 6–7, we have

Ak,j =

∣

∣

∣

∣

∣

∣

∣

∣

A0,1,j A0,1,j+1 · · · A0,1,j+k−1

A1,1,j A1,1,j+1 · · · A1,1,j+k−1

...
...

. . .
...

Ak−1,1,j Ak−1,1,j+1 · · · Ak−1,1,j+k−1

∣

∣

∣

∣

∣

∣

∣

∣

(2.38)

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 · · · 1
(

j
1

) (

j+1
1

)

· · ·
(

j+k−1
1

)

...
...

. . .
...

(

j
i

) (

j+1
i

)

· · ·
(

j+k−1
i

)

...
...

. . .
...

(

j
k−1

) (

j+1
k−1

)

· · ·
(

j+k−1
k−1

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(α′)kj + Pkj−1[α
′],

where
(

j

i

)

=
j!

i!(j − i)!

are the binomial coefficients. Since
(

x

i

)

=
x(x − 1) · · · (x − i + 1)

i!

is a polynomial in x of degree i , by the calculating properties of determinant
and the well-known Vandermonde’s determinant, we see that Ak,j = C(α′)kj +
Pkj−1[α

′] , where C is a nonzero constant which is equal to

k−1
∏

s=1

1

s!

∏

1≤i<t≤k

(t − i) = 1.

This proves (2.37). Thus Lemma 8 is proved.
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3. Proof of Theorem 1

By the assumptions, there exist two entire functions α(z) and β(z) such that

f (k)(z) − a

f(z) − a
= eα(z),(3.1)

f (m)(z) − a

f(z) − a
= eβ(z).(3.2)

Next we consider two cases.

Case 1. Either α or β is a constant. Without loss of generality, we assume
that α is a constant. Set eα = c . Then by (3.1), we get

(3.3) f (k) − cf = (1 − c)a.

Solving (3.3), we get

(3.4) f(z) =

(

1 −
1

c

)

a +

q
∑

j=1

Cje
λjz,

where q (≤ k ) is a positive integer, and Cj , λj are nonzero constants satisfying
(λj)

k = c and λi 6= λj , i 6= j . By (3.4) and (3.2), it follows that %(eβ) ≤ 1, where
% (eβ) is the order of eβ , so that eβ = deµz , where d (6= 0) and µ are constants.
Thus by (3.2) and (3.4), we get

(3.5) −a +

q
∑

j=1

(λj)
mCje

λjz = −
da

c
eµz +

q
∑

j=1

Cjde(λj+µ)z.

Applying Lemma 5 to (3.5), we deduce that µ = 0 and (λj)
m = d . Further, if

a 6= 0, then c = d .
By (λj)

k = c , (λj)
m = d and the fact that λj , 1 ≤ j ≤ q , are distinct, we

know that q ≤ (k, m), where (k, m) is the greatest common divisor of k and m .
In fact, by Euclidean division algorithm, there exist integers k0 and m0 such that
(k, m) = k0k + m0m . Thus (λj)

(k,m) =
[

(λj)
k]k0 [(λj)

m
]m0

= ck0dm0 . Hence by
the fact that λj , 1 ≤ j ≤ q , are distinct, it follows that q ≤ (k, m).

Case 2. Both α and β are not constants.
We will prove that this case cannot occur. Without loss of generality, we

assume k < m . Let

(3.6) F (z) = f(z) − a.
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Then by (3.1) and (3.2), we have

F (k) = a + eαF,(3.7)

F (m) = a + eβF.(3.8)

Set

(3.9) φ =
F (m) − F (k)

F
.

Then by (3.7) and (3.8), we get

(3.10) φ = eβ − eα.

Next we consider two subcases.

Case 2.1: φ ≡ 0. Then by (3.10), we get

(3.11) eβ = eα.

Thus by (3.1), (3.2) and (3.11), we get

(3.12) f (m) − f (k) = 0.

Solving (3.12), we get

(3.13) f(z) = b(z) +
s
∑

j=1

Cje
λjz,

where b is a polynomial with deg b ≤ k − 1, s ≤ m − k is a positive integer, and
Cj , λj are nonzero constants with (λj)

m−k = 1 and λi 6= λj , i 6= j . By (3.1)
and (3.13), we know that %(eα) ≤ 1. This together with that α is nonconstant
yields that eα = Cecz , where C and c are nonzero constants. Thus by (3.1) and
(3.13), we get

(3.14) −a +

s
∑

j=1

Cj(λj)
keλjz = C[b(z) − a]ecz +

s
∑

j=1

CCje
(λj+c)z.

Applying Lemma 5 to (3.14), we get that c = 0, a contradiction.

Case 2.2: φ 6≡ 0. Then by the logarithmic derivative lemma, it follows from
(3.9) that

(3.15) m(r, φ) = S(r, F ).
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By (3.10), φ is an entire function. Thus by (3.15), we get

(3.16) T (r, φ) = S(r, F ).

Since φ 6≡ 0, by (3.10), we get

(3.17)
eβ

φ
= 1 +

eα

φ
.

Thus by (3.16), (3.17) and the second fundamental theorem we deduce that

(3.18)

T

(

r,
eβ

φ

)

≤N

(

r,
eβ

φ

)

+N

(

r,
φ

eβ

)

+N

(

r,
1

eβ

φ
− 1

)

+ S

(

r,
eβ

φ

)

≤N

(

r,
eβ

φ

)

+N

(

r,
φ

eβ

)

+N

(

r,
1
eα

φ

)

+ S

(

r,
eβ

φ

)

≤ S(r, F ) + S

(

r,
eβ

φ

)

.

This together with (3.16) yields that T (r, eβ) = S(r, F ). It follows from (3.10)
and (3.16) that T (r, eα) = T (r, eβ − φ) = S(r, F ). Thus we get

(3.19) T (r, eα) + T (r, eβ) = S(r, F ).

Now, for 0 ≤ j ≤ k − 1, set

(3.20) pi,j = γi,m−k+j , i = −1, 0, 1, . . . , k − 1,

where γi,j are defined as in Lemmas 6–8. Then by Lemmas 6–7, we have

F (m+j) = F (k+m−k+j)

= p−1,j + p0,jF + p1,jF
′ + · · ·+ pk−1,jF

(k−1), j = 0, 1, . . . , k − 1.(3.21)

On the other hand, by (3.8) and Lemma 6, for 1 ≤ j ≤ k − 1, we have

(3.22) F (m+j) = q0,je
βF + q1,je

βF ′ + · · · + qj,je
βF (j),

where qi,j , i ≤ j , are differential polynomials in β′ with constant coefficients. In
particular, qj,j ≡ 1 for j = 1, 2, . . . , k − 1. Thus by (3.8), (3.21) and (3.22), we
get

(3.23) (F, F ′, . . . , F (k−1) ) (eβQ − P ) = Γ,
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where

(3.24) P =









p0,0 p0,1 · · · p0,k−1

p1,0 p1,1 · · · p1,k−1

...
...

. . .
...

pk−1,0 pk−1,1 · · · pk−1,k−1









,

(3.25) Q =









1 q0,1 · · · q0,k−1

0 1 · · · q1,k−1

...
...

. . .
...

0 0 · · · 1









,

(3.26) Γ = ( p−1,0 − a, p−1,1, . . . , p−1,k−1 ) .

By (3.23) and the theory of linear equations, we get

(3.27) det(eβQ − P )F = det(T ),

where T is a matrix whose first line is Γ and the other lines are the same as those
of eβQ − P .

Thus by (3.19) and (3.27), we know that

(3.28) det(eβQ − P ) = 0.

This yields that

(3.29) det(eβI − R) = 0,

where I = Ik×k is the k th unit matrix, R = Q−1P and Q−1 is the inverse
matrix of Q . Obviously, the matrix Q−1 is also an upper triangular matrix whose
elements are differential polynomial in β′ . By (3.29), we get

(3.30) (eβ)k − a1(e
β)k−1 + · · ·+ (−1)tat(e

β)k−t + · · · + (−1)kak = 0,

where at is the sum of all the principle minors of order t of R . In particular,
ak = det(R) = det(P ). Here, for a matrix

A = (ai,j) =









a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n

...
...

. . .
...

an,1 an,2 · · · an,n









,
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and t integers 1 ≤ i1 < i2 < · · · < it ≤ n , we call

∣

∣

∣

∣

∣

∣

∣

∣

ai1,i1 ai1,i2 · · · ai1,it

ai2,i1 ai2,i2 · · · ai2,it

...
...

. . .
...

ait,i1 ait,i1 · · · ait,it

∣

∣

∣

∣

∣

∣

∣

∣

a principle minor of order t of A .
Obviously, by (3.24), (3.25) and the definition of at , at , 1 ≤ t ≤ k , are

polynomials in eα whose coefficients are differential polynomials in α′ and β′

with constant coefficients.
Next we consider the degrees of these polynomials at . Since m > k , there

exist integers s ≥ 1 and 0 ≤ l ≤ k − 1 such that

(3.31) m = sk + l.

It is obvious that if l = 0 then s > 1. We claim that for l ≥ 1,

(3.32) deg(at) ≤ ts + l − 1, t = 1, 2, . . . , k − 1,

and for l = 0,

(3.33) deg(at) ≤ ts, t = 1, 2, . . . , k − 1.

and

(3.34) deg(ak) = m = ks + l.

In order to prove (3.32)–(3.34), we first consider the degree of the elements of
R = (ri,j) which are polynomials in eα . By (3.20), we see that for 0 ≤ j ≤ k−1−l ,
pi,j = γi,(s−1)k+j+l , while for k − l ≤ j ≤ k − 1, pi,j = γi,sk+j+l−k . Thus by
Lemmas 6–7, for 0 ≤ i, j ≤ k − 1,

(3.35) deg(pi,j) ≤











s if 0 ≤ j ≤ k − 1 − l, 0 ≤ i ≤ j + l,
s − 1 if 0 ≤ j ≤ k − 1 − l, j + l + 1 ≤ i ≤ k − 1,
s + 1 if k − l ≤ j ≤ k − 1, 0 ≤ i ≤ j + l − k,
s if k − l ≤ j ≤ k − 1, j + l − k + 1 ≤ i ≤ k − 1.

By (3.25), we may assume that

(3.36) Q−1 =











1 q∗0,1 · · · q∗0,k−1

0 1 · · · q∗1,k−1

...
...

. . .
...

0 0 · · · 1











,
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where q∗i,j , 0 ≤ i < j ≤ k − 1, are differential polynomials in β′ with constant

coefficients. Thus by (ri,j) = R = Q−1P , we get

(3.37) ri,j = pi,j + q∗i,i+1pi+1,j + q∗i,i+2pi+2,j + · · ·+ q∗i,k−1pk−1,j .

Thus by (3.35) and (3.37), we see that for 0 ≤ i, j ≤ k − 1,

(3.38) deg(ri,j) ≤











s if 0 ≤ j ≤ k − 1 − l, 0 ≤ i ≤ j + l,
s − 1 if 0 ≤ j ≤ k − 1 − l, j + l + 1 ≤ i ≤ k − 1,
s + 1 if k − l ≤ j ≤ k − 1, 0 ≤ i ≤ j + l − k,
s if k − l ≤ j ≤ k − 1, j + l − k + 1 ≤ i ≤ k − 1.

Now let

Li1,i2,...,it
=

∣

∣

∣

∣

∣

∣

∣

∣

ri1,i1 ri1,i2 · · · ri1,it

ri2,i1 ri2,i2 · · · ri2,it

...
...

. . .
...

rit,i1 rit,i2 · · · rit,it

∣

∣

∣

∣

∣

∣

∣

∣

be a principle minor of order t ≤ k−1 of R , where 0 ≤ i1 < i2 < · · · < it ≤ k−1.
By (3.38), for the case of l = 0, the degrees of all ri,j are at most s , so

that the degree of Li1,i2,...,it
is at most ts . It follows that the degree of at is at

most ts . This proves (3.33).
Next we consider the case of 1 ≤ l ≤ k− 1. By the definition of determinant,

we have
Li1,i2,...,it

=
∑

δj1,j2,...,jt
ri1,j1ri2,j2 · · · rit,jt

,

where the sum takes over all the permutations of (i1, i2, . . . , it), and δj1,j2,...,jt
=

±1 according to the permutation (j1, j2, . . . , jt) of (i1, i2, . . . , it) is even or odd.
Let

Lt = ri1,j1ri2,j2 · · · rit,jt
.

For t ≤ l − 1, by (3.38), the degree of Lt is at most t(s + 1) ≤ ts + l − 1.
For t ≥ l , if there exist x ≤ l − 1 polynomials in ri1,j1 , ri2,j2 , . . . , rit,jt

with
degree s+1, then by (3.38), the degree of Lt is at most x(s+1)+(t−x)s = ts+x ≤
ts + l− 1. If there exist l polynomials in ri1,j1 , ri2,j2 , . . . , rit,jt

with degree s + 1,
then by (3.38), {0, 1, . . . , l−1} ⊂ {i1, i2, . . . , it} . It follows that there exists at least
one of ri1,j1 , ri2,j2 , . . . , rit,jt

whose degree is s − 1 (for otherwise, we must have
{l, . . . , k−1} ⊂ {i1, i2, . . . , it} . This together with {0, 1, . . . , l−1} ⊂ {i1, i2, . . . , it}
yields that t ≥ k , which contradicts t ≤ k− 1). Hence the degree of Lt is at most
l(s+1)+(s−1)+(t−l−1)s = ts+l−1. It follows that deg(Li1,i2,...,it

) ≤ ts+l−1.
Thus (3.32) is proved.

Next we prove (3.34). In fact, it can be seen from (3.20), (3.24) and Lemma 8
that

(3.39)

ak = det(P ) = det(∆m−k)

=
(

(α′)k(m−k) + Pk(m−k)−1[α
′]
)

(eα)k

+
m−1
∑

t=k+1

At,m−k(eα)t + (−1)l(k−l)(eα)m.
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Thus we get (3.34).
By (3.32)–(3.34), we see that for 1 ≤ t ≤ k − 1, deg(at) < deg(ak). Thus by

(3.30) and Lemma 2, it follows that

T (r, eβ) = O
(

T (r, eα)
)

+ S(r, eβ),

T (r, eα) = O
(

T (r, eβ)
)

+ S(r, eα).

Hence we get

(3.40) S(r, eα) = S(r, eβ) = S(r) (say).

Next we prove the following claims.

Claim I. For any rational number θ = ν/µ with ν ∈ Z and µ ∈ N ,

(3.41) T (r, eβ−θα) 6= S(r).

Suppose on the contrary that there exists a rational number θ = ν/µ such that

(3.42) T (r, eβ−θα) = S(r).

Let

(3.43) b(z) = eβ−θα.

Then b(z) 6= 0 is entire and T (r, b) = S(r). By (3.43),

(3.44) eβ = b(z)eθα = b(z)(eα/µ)ν .

On the other hand, by (3.20), (3.24) and Lemmas 6–7, we have

(3.45) P = (eα)s+1P0 + (eα)sP1 + · · ·+ (eα)Ps,

where Pj are k × k matrices whose elements are differential polynomials in α′ .
In particular, det(Ps) ≡ Ak,m−k , where Ak,m−k is defined by (2.38). By (3.28),
(3.44) and (3.45), we get

(3.46) det
(

b(eα/µ)νQ − (eα)s+1P0 − (eα)sP1 − · · · − (eα)Ps

)

= 0.

If ν > µ , then by (3.46), we get

(3.47) det
(

b(eα/µ)ν−µQ − (eα/µ)sµP0 − · · · − (eα/µ)µPs−1 − Ps

)

= 0.

Since the left side of (3.47) is a polynomial in eα/µ whose “constant” term is
det(−Ps) = (−1)kAk,m−k , by Lemma 3, we get Ak,m−k = 0. Thus by (2.10),
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(2.19) and the fact that α is nonconstant, α′ is nonconstant. For otherwise, let
α′ = c . Then c 6= 0, and by (2.10), (2.19), we have

Ai,1,j =

(

j

i

)

(c)j−i,

so that by (2.38), it follows that Ak,m−k = (c)k(m−k) 6= 0, which contradicts
Ak,m−k = 0. Hence α′ is nonconstant. Thus by (2.37) and Lemma 1, we deduce
that T (r, α′) = m(r, α′) = S(r, α′), a contradiction.

If ν < µ , then by (3.46), we get

det
(

bQ − (eα/µ)(s+1)µ−νP0 − (eα/µ)sµ−νP1 − · · · − (eα/µ)µ−νPs

)

= 0.

Using the same argument as that in case ν > µ , we deduce that det(bQ) = 0.
Thus by det(Q) = 1, we get that b = 0, a contradiction.

If ν = µ , then eβ = b(z)eα . Thus by (3.32)–(3.34), we see that the left side
of (3.30) is a polynomial in eα whose leading term is ε(eα)m , where ε = ±1 is a
constant. Thus applying Lemma 2 to (3.30), we get a contradiction: T (r, eα) =
S(r).

Hence Claim I is proved.

Claim II. We have

(3.48) H =
k−1
∑

t=1

(−1)tat(e
β)k−t ≡ 0.

Suppose that H 6≡ 0. Then by the fact that at are polynomials in eα , we can
rewrite H as

(3.49) H =
∑

(t,i)∈T×I

at,ie
(k−t)β+iα,

where T ⊂ {1, . . . , k − 1} and I are finite index sets, at,i 6≡ 0 are differential
polynomials in α′ and β′ such that all the functions at,ie

(k−t)β+iα , (t, i) ∈ T × I
are linearly independent.

By (3.39), we rewrite ak as

(3.50) (−1)kak =
∑

i∈J

ak,ie
iα,

where J ⊃ {m} is a finite index set, and ak,i ( 6≡ 0), i ∈ J , are differential
polynomials in α′ .

Hence by (3.30), (3.48)–(3.50), we get

(3.51) ekβ +
∑

(t,i)∈T×I

at,ie
(k−t)β+iα +

∑

i∈J

ak,ie
iα = 0.
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By (3.51), we get

(3.52)
∑

(t,i)∈T×I

(−at,i)e
−tβ+iα +

∑

i∈J

(−ak,i)e
−kβ+iα = 1.

If the functions (−at,i)e
−tβ+iα , (t, i) ∈ T × I and (−ak,i)e

−kβ+iα , i ∈ J are
linearly independent, then by Lemma 4 and the fact that m ∈ J , we get

T
(

r, (−ak,m)e−kβ+mα
)

= S(r),

so that
T (r, e−kβ+mα) = S(r),

which contradicts Claim I.
Hence the functions (−at,i)e

−tβ+iα , (t, i) ∈ T × I and (−ak,i)e
−kβ+iα , i ∈ J

are linearly dependent. That is, there exist constants Ct,i, (t, i) ∈ T × I and Ck,i ,
i ∈ J , at least one of them is not equal to 0, such that

∑

(t,i)∈T×I

Ct,iat,ie
−tβ+iα +

∑

i∈J

Ck,iak,ie
−kβ+iα = 0,

so that

(3.53)
∑

(t,i)∈T×I

Ct,iat,ie
(k−t)β+iα +

∑

i∈J

Ck,iak,ie
iα = 0.

By Lemma 3, at least one of Ct,i, (t, i) ∈ T × I is not equal to 0. Set T1 × I1 =
{

(t, i) ∈ T × I : Ct,i 6= 0
}

. Then T1 × I1 6= ∅(empty set). By the assumption that

at,ie
(k−t)β+iα , (t, i) ∈ T × I are linearly independent, at least one of Ck,i, i ∈ J

is not equal to 0. Set J1 =
{

i ∈ J : Ck,i 6= 0
}

. Then J1 6= ∅ . Let i1 ∈ J1 . Then
by (3.53), we get

∑

(t,i)∈T1×I1

−Ct,iat,i

Ck,i1ak,i1

e(k−t)β+(i−i1)α +
∑

i∈J1\{i1}

−Ck,iak,i

Ck,i1ak,i1

e(i−i1)α = 1.

If the functions

(3.54)

−Ct,iat,i

Ck,i1ak,i1

e(k−t)β+(i−i1)α, (t, i) ∈ T1 × I1 and

−Ck,iak,i

Ck,i1ak,i1

e(i−i1)α, i ∈ J1 \ {i1}

are linearly independent, then by Lemma 4, we get for (t0, i0) ∈ T1 × I1 ,

T

(

r,
Ct0,i0at0,i0

Ck,i1ak,i1

e(k−t0)β+(i0−i1)α

)

= S(r),
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so that
T
(

r, e(k−t0)β+(i0−i1)α
)

= S(r),

which again contradicts Claim I. Thus the functions showed in (3.54) are linearly
dependent. Thus there exist constants Dt,i, (t, i) ∈ T1 × I1 and Dk,i, i ∈ J1 \ {i1} ,
at least one of them is not equal to 0, such that

∑

(t,i)∈T1×I1

Dt,iat,i

Ck,i1ak,i1

e(k−t)β+(i−i1)α +
∑

i∈J1\{i1}

Dk,iak,i

Ck,i1ak,i1

e(i−i1)α = 0,

so that

(3.55)
∑

(t,i)∈T1×I1

Dt,iat,ie
(k−t)β+iα +

∑

i∈J1\{i1}

Dk,iak,ie
iα = 0.

By Lemma 3, we see that at least one of Dt,i, (t, i) ∈ T×I is not equal to 0, so that
T2 × I2 =

{

(t, i) ∈ T1 × I1 : Dt,i 6= 0
}

6= ∅ . By the assumption that at,ie
(k−t)β+iα ,

(t, i) ∈ T ×I are linearly independent, at least one of Dk,i, i ∈ J \{i1} is not equal
to 0, so that J2 =

{

i ∈ J1 \ {i1} : Dk,i 6= 0
}

6= ∅ . Let i2 ∈ J2 . Then using an
argument similar to that in the above step, there exist constants Et,i, (t, i) ∈ T2×I2

and Ek,i, i ∈ J2 \ {i2} , at least one of them is not equal to 0, such that

∑

(t,i)∈T2×I2

Et,iat,ie
(k−t)β+iα +

∑

i∈J2\{i2}

Ek,iak,ie
iα = 0.

Step by step, it follows that J is an infinite set. It is impossible. Hence we have
proved Claim II.

Next we continue to prove Theorem 1. By (3.30), (3.50) and Claim II, we get

ekβ +
∑

i∈J

ak,ie
iα = 0,

so that

(3.56)
∑

i∈J

(−ak,i)e
iα−kβ = 1.

If the functions (−ak,i)e
iα−kβ , i ∈ J , are linearly independent, then by Lemma 3,

we get
T (r, ak,memα−kβ) = S(r),

so that
T (r, emα−kβ) = S(r).

This contradicts Claim I.
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Hence the functions (−ak,i)e
iα−kβ , i ∈ J , are linearly dependent. Thus there

exist constants Ci , i ∈ J , at least one of them is not equal to 0, such that
∑

i∈J

Ciak,ie
iα−kβ = 0,

so that
∑

i∈J

Ciak,ie
iα = 0.

This contradicts Lemma 3.
The proof of Theorem 1 is complete.
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