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Abstract. We use an old multilinear generalization of Grothendieck’s inequality (for which
we give a new proof and a non-commutative version) to show that the Schatten space Sp is a
Q -algebra with the Schur product for 1 ≤ p ≤ 2 .

1. Introduction and notation

In [10], Grothendieck stated what he called “the fundamental theorem of the
metric theory of tensor products”, to be known later as Grothendieck’s theorem or
Grothendieck’s inequality. In [14], Lindenstrauss and Pe lczyński gave a detailed
proof of this result and stated some of its consequences and equivalent formu-
lations, making use of the theory of Lp -spaces and using also the p -summing
operators recently introduced in [18]. Since then, several equivalent formulations,
extensions and different proofs have been obtained, together with innumerable
applications. One of these extensions is the ‘non-commutative’ version given by
Pisier (the interested reader can consult [13] or [22] for two recent applications).
[8], [9] and [21] provide excellent expositions on this and related topics.

Grothendieck’s theorem can be seen as a matrix inequality associated to cer-
tain bilinear operators. In the late 70’s, several authors investigated multilinear
extensions of Grothendieck’s matrix inequality (see, for instance, [3], [5], [24] and
the references therein). Here, in Theorem 2.2, we give an elementary proof of one
of these extensions (other proofs can be seen in [5] or [24]). In Corollary 2.3 we
apply it to obtain that the Schatten space Sp , with 1 ≤ p ≤ 2 is a Q -algebra
with the Schur product, answering (at least partially) an old problem that goes
back to the work of Varopoulos in the 70’s. We refer to [16] for the history of the
problem and the solution in the case 2 ≤ p ≤ 4. Let us just say here that the case
4 ≤ p ≤ ∞ is still open. Motivated by this application, we give a non-commutative
extension of Theorem 2.2 in the line of Pisier’s result.

The notation and terminology used along the paper are standard in Banach
space theory, as for instance in [8] or [9]. These books are also our main references
for basic facts, definitions and unexplained notation. However, before going any
further, we shall establish some terminology. All along this paper all the operators
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are supposed to be continuous. Given X , Y Banach spaces, L (X, Y ) will denote
the Banach space of linear (and continuous) operators between them. X∗ will
be the dual of X and BX its unit ball. For a finite sequence (xi)

m
i=1 ⊂ X and

1 ≤ p < ∞ , we will write ‖(xi)
m
i=1‖ω

p to denote

sup

{( m
∑

i=1

|x∗(xi)|p
)1/p

: x∗ ∈ BX∗

}

.

A linear operator u: X −→ Y is said to be absolutely summing if there exists
a constant K > 0 such that

∑m
i=1 ‖u(xi)‖ ≤ K‖(xi)

m
i=1‖ω

1 for each finite sequence
(xi)

m
i=1 ⊂ X . π1(u) will be the least of such constants K . We will use the fact

that u: X −→ Y is absolutely summing if and only if there exists a constant
K > 0 such that, for every m ∈ N , ‖ idlm

1
⊗u: lm1 ⊗ε X −→ lm1 ⊗π Y ‖ ≤ K ,

where ε and π denote the injective and projective tensor norms respectively [8,
Proposition 11.1]. If so, π1(u) is again the least of such constants. Grothendieck’s
theorem tells us that there exists a constant K > 0 such that for every m ∈ N and
for every u: lm1 −→ lm2 , we have that π1(u) ≤ K‖u‖ . The Grothendieck constant
KG is the least of them.

More generally, given s, r1, . . . , rn ∈ [1,∞) such that

1

s
≤ 1

r1
+ · · · +

1

rn
,

we say that a multilinear operator T : X1 × · · · × Xn −→ Y is (s; r1, . . . , rn)-
summing if there exists a constant K > 0 such that

( m
∑

i=1

‖T (x1
i , . . . , x

n
i )‖s

)1/s

≤ K

n
∏

j=1

‖(xj
i )m

i=1‖ω
rj

for every choice of sequences (xj
i )m

i=1 ⊂ Xj . Again ‖T‖(s;r1,...,rn) will denote the
least of such constants.

Let λ > 1. A Banach space X is said to be an L∞,λ -space if, for every finite-
dimensional subspace E ⊂ X there exists another finite-dimensional subspace F ,
with E ⊂ F ⊂ X and such that there exists an isomorphism v: F −→ ldim F

∞ with
‖v‖ ‖v−1‖ < λ . As basic examples we have that, for every compact Hausdorff space
K and for every measure space (Ω, Σ, µ), C(K) and L∞(µ) are L∞,λ -spaces for
every λ > 1.

A Banach algebra is said to be a uniform algebra if it is isometrically iso-
morphic (as Banach algebra) to a closed subalgebra of C(K) for some compact
Hausdorff space K . By a Q -algebra we mean a commutative Banach algebra that
is isomorphic (as Banach algebra) to C/I , where C is a uniform algebra and I
a closed ideal of C . It is well known since the 60’s that every Q -algebra is an
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operator algebra, that is, isomorphic to a closed subalgebra of L (H, H) for a
Hilbert space H .

S∞ will be the Banach space of all compact operators on l2 (with the operator
norm). The Schatten space Sp , with 1 ≤ p < ∞ , will be the Banach space of
all compact operators on l2 such that tr |u|p < ∞ , equipped with the norm
‖u‖Sp

= (tr |u|p)1/p .
Finally, we have to define the Schur product in Sp . Using the canonical basis,

any compact operator on l2 can be viewed as an infinite matrix (ak,h)k,h≥1 . The
Schur product ∗ of two such matrices is just the pointwise product, that is

(ak,h)k,h≥1 ∗ (bk,h)k,h≥1 = (ak,hbk,h)k,h≥1.

2. The results

We will need the following

Lemma 2.1. Let n, m ∈ N and let ui ∈ L (lm1 , lm2 ) with ‖ui‖ ≤ 1 , 1 ≤ i ≤
n . We write i: lm1 ↪→ lm2 for the formal inclusion and we write Pn: lm2 × n· · ·×lm2 −→
lm1 for the product operator Pn

(

(x1
i )m

i=1, . . . , (xn
i )m

i=1

)

= (x1
i · · ·xn

i )m
i=1 (and also

for its associate linear operator Pn: lm2 ⊗π · · ·⊗π lm2 −→ lm1 ). If we define vn with

the following diagram

lm1 ⊗ε · · · ⊗ε lm1

u1⊗···⊗un

��

vn // lm2

lm2 ⊗π · · · ⊗π lm2 Pn

// lm1

i

OO

Then π1(vn) ≤ Kn
G .

Proof. We are going to prove it by induction. The case n = 1 is obvious. For
the general case, it is easy to see that the following diagram commutes

(lm1 ⊗ε · · · ⊗ε lm1 ) ⊗ε lm1

vn⊗id

��

vn+1 // lm2

lm2 ⊗π lm1

id⊗un+1

��
lm2 ⊗π lm2 P2

// lm1

i

OO

By the induction hypothesis, π1(vn) ≤ Kn
G . Therefore ‖vn ⊗ id‖ ≤ Kn

G and,
thanks to Grothendieck’s theorem, we obtain that

π1(vn+1) ≤ ‖vn ⊗ id‖ ‖id ⊗ un+1‖ ‖P2‖π1(i) ≤ Kn+1
G .

Now, we can give our elementary proof of the following multilinear Grothen-
dieck’s inequality.
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Theorem 2.2. For every m ∈ N , n ≥ 2 , (ai1···in
)m
ij=1 ⊂ K and x1

i1
, . . . , xn

in

∈ Blm
2

we have

∣

∣

∣

∣

m
∑

ij=1

ai1···in

m
∑

k=1

x1
i1

(k) · · ·xn
in

(k)

∣

∣

∣

∣

≤ Kn−1
G sup

|tij
|≤1

∣

∣

∣

∣

m
∑

ij=1

ai1···in
ti1 · · · tin

∣

∣

∣

∣

.

Proof. Let us write zin
:=

∑m
i1,...,in−1=1 ai1,...,in

ei1⊗· · · ⊗ein−1
∈ lm1 ⊗ε

n−1· · · ⊗ε

lm1 . It is easy to see that:

‖(zin
)m
in=1‖ω

1 = sup

{
∣

∣

∣

∣

m
∑

ij=1

ai1···in
ti1 · · · tin

∣

∣

∣

∣

: |tij
| ≤ 1

}

.

For every j ∈ {1, . . . , n − 1} we define the operator uj : lm1 −→ lm2 , by

uj(eij
) = xj

ij
, (1 ≤ ij ≤ m). Since (eij

) are the extremal points of the ball

of lm1 and since ‖xj
ij
‖ ≤ 1, we have that ‖uj‖ ≤ 1. Applying Lemma 2.1 we get

m
∑

in=1

‖vn−1(zin
)‖ ≤ Kn−1

G ‖(zin
)m
in=1‖ω

1 .

Finally,

m
∑

in=1

‖vn−1(zin
)‖ ≥

∣

∣

∣

∣

m
∑

in=1

〈vn−1(zin
), xn

in
〉
∣

∣

∣

∣

=

∣

∣

∣

∣

m
∑

i1,...,in=1

ai1,...,in

m
∑

k=1

x1
i1

(k) · · ·xn
in

(k)

∣

∣

∣

∣

.

Corollary 2.3. For any 1 ≤ p ≤ 2 , the Schatten space with the Schur

product (Sp, ∗) is a Q -algebra.

Proof. Davie’s criterion (see [7]) tells us that a commutative Banach algebra
A is a Q -algebra if and only if there exists a positive constant K such that

∥

∥

∥

∥

m
∑

i1,...,in=1

ai1,...,in
xi1 · · ·xin

∥

∥

∥

∥

≤ Kn sup
|tij

|≤1

∣

∣

∣

∣

m
∑

i1,...,in=1

ai1···in
ti1 · · · tin

∣

∣

∣

∣

,

for every sequence x1, . . . , xm ∈ A with ‖xi‖ ≤ 1 and for every choice of ai1···in
∈

C . Therefore, it is enough to show that

∥

∥

∥

∥

m
∑

i1,...,in=1

ai1···in
x1

i1
∗ · · · ∗ xn

in

∥

∥

∥

∥

Sp

≤ Kn−1
G sup

|tij
|≤1

∣

∣

∣

∣

m
∑

i1,...,in=1

ai1···in
ti1 · · · tin

∣

∣

∣

∣

,
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for each choice of ai1···in
∈ C and x1

i1
, . . . , xn

in
∈ BSp

.

In fact, Davie’s criterion follows for the particular case in which x1
i = · · · = xn

i

for every 1 ≤ i ≤ m .

So let us choose ai1···in
∈ C and x1

i1
, . . . , xn

in
∈ BSp

. [9, Theorem 4.7(a)] as-

sures that ‖x‖Sp
≤ ∑∞

k,h=1

∣

∣x(k, h)
∣

∣ for each x =
(

x(k, h)
)

k,h≥1
∈ Sp . Therefore,

we have that

∥

∥

∥

∥

m
∑

i1,...,in=1

ai1···in
x1

i1
∗ · · · ∗ xn

in

∥

∥

∥

∥

Sp

≤
∞
∑

k,h=1

∣

∣

∣

∣

m
∑

i1,...,in=1

ai1···in
x1

i1
(k, h) · · ·xn

in
(k, h)

∣

∣

∣

∣

=

∞
∑

k,h=1

εk,h

m
∑

i1,...,in=1

ai1···in
x1

i1
(k, h) · · ·xn

in
(k, h)

for some |εk,h| = 1. Calling x̄1
i (k, h) = εk,hx1

i (k, h) (trivially |x̄1
i (k, h)| = |x1

i (k, h)|
for every k, h) and using Theorem 2.2 for (ai1···in

)m
ij=1 and x̄1

i1
, x2

i2
, . . . , xn

in
we

obtain

∥

∥

∥

∥

m
∑

i1,...,in=1

ai1···in
x1

i1
∗ · · · ∗ xn

in

∥

∥

∥

∥

Sp

≤ Kn−1
G sup

|tij
|≤1

∣

∣

∣

∣

m
∑

i1,...,in=1

ai1···in
ti1 · · · tin

∣

∣

∣

∣

n
∏

j=1

sup
ij

( ∞
∑

k,h=1

|xj
ij

(k, h)|2
)1/2

.

Finally, for each 1 ≤ j ≤ n and each 1 ≤ ij ≤ m , we have that

( ∞
∑

k,h=1

|xj
ij

(k, h)|2
)1/2

= ‖xj
ij
‖S2

≤ ‖xj
ij
‖Sp

≤ 1,

and we are done.

Remark 2.4. The previous corollary proves in fact that lp⊗̂πlq and lp(lq)
are also Q -algebras with the Schur product when 1 ≤ p, q ≤ 2.

In the next corollary, in a completely different direction, we point out how
Theorem 2.2 can be seen as a result concerning absolutely summing multilinear
operators. It improves previous results of Botelho, Meléndez and Tonge in [4]
and [15] and it has been recently used by Pellegrino in [17].

Corollary 2.5. If Xj is an L∞,λj
-space (1 ≤ j ≤ n), then every multi-

linear form T : X1 × · · · × Xn −→ K is (1; 2 . . . , 2) -summing and ‖T‖(1;2,...,2) ≤
Kn−1

G

∏n
j=1 λj‖T‖ holds.
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Proof. The proof is quite standard. Because of the local behavior of the
(1; 2, . . . , 2)-summing multilinear operators, it is enough to prove that if T : lm∞ ×
· · · × lm∞ −→ K is a multilinear form, then for every (xj

r)m
r=1 ⊂ lm∞ such that

‖(xj
r)m

r=1‖ω
2 ≤ 1, the following holds

m
∑

r=1

|T (x1
r, . . . , x

n
r )| ≤ Kn−1

G ‖T‖.

Let us define Ti1,...,in
= T (ei1 , . . . , ein

) and

hr =

m
∑

i1,...,in=1

Ti1···in
x1

r(i1) · · ·xn
r (in), θr =

{ |hr|
hr

, hr 6= 0,

0, hr = 0.

If y1
i1

(r) = θrx
1
r(i1) and yj

ij
(r) = xj

r(ij) for j ≥ 2, we have that

( m
∑

r=1

|yj
ij

(r)|2
)1/2

≤
( m

∑

r=1

|xj
r(ij)|2

)1/2

≤ ‖(xj
r)m

r=1‖ω
2 ≤ 1.

Therefore yj
ij
∈ Blm

2
and so, by Theorem 2.2,

∣

∣

∣

∣

m
∑

i1,...,in=1

Ti1···in

m
∑

r=1

y1
i1

(r) · · ·yn
in

(r)

∣

∣

∣

∣

≤ Kn−1
G ‖T‖.

But
∣

∣

∣

∣

m
∑

i1,...,in=1

Ti1···in

m
∑

r=1

y1
i1(r) · · ·yn

in
(r)

∣

∣

∣

∣

=

∣

∣

∣

∣

m
∑

r=1

θr

m
∑

i1,...,in=1

Ti1···in
x1

r(i1) · · ·xn
r (in)

∣

∣

∣

∣

=
m

∑

r=1

|T (x1
r, . . . , x

n
r )|

and we are done.

Remark 2.6. In [6] the authors use the fact that every n -linear form T : c0×
· · · × c0 −→ K is (1; 1, . . . , 1)-summing to obtain quite easily certain bounds for
polynomials and multilinear forms on c0 , which had been obtained previously and
with different techniques in [1], [2] and [25]. The above result could help to obtain
better bounds along the same lines.

Finally, we are going to extend Theorem 2.2 to the non-commutative setting.
To do that, we are going to use a tricky induction argument of [24] and several
deep results of Haagerup, Pisier and Tomczak-Jaegermann. Though it is not
the standard in the theory of C∗ -algebras, following [21] we will denote |x|2 =
1
2 (xx∗ + x∗x) when x is an element of a C∗ -algebra.

The starting point is the following non-commutative version of Grothendieck’s
theorem:
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Theorem 2.7 ([21, (9.3)]). There exists a universal constant C such that, if

A1 , A2 are C∗ -algebras and T : A1 × A2 −→ C is a bilinear form, we have that

m
∑

i=1

∣

∣T (x1
i , x

2
i )

∣

∣ ≤ C‖T‖
∥

∥

∥

∥

m
∑

i=1

|x1
i |2

∥

∥

∥

∥

1/2∥
∥

∥

∥

m
∑

i=1

|x2
i |2

∥

∥

∥

∥

1/2

.

Remark 2.8. This result was proved for the first time in [20], in the presence
of some approximation condition. The general case is due to Haagerup [11]. The
formulation given in [20] and [11] is slightly different, but equivalent (as it is shown
in [12, Remark 2.10(b)]).

To generalize it to the n -linear case, we need a pair of results. The first one
is a consequence of [21, Theorem 4.1] and [23]. The other can be obtained easily
from [21, Theorem 9.4].

Theorem 2.9. Let A be a C∗ -algebra and Y a finite-dimensional Banach

space. For every linear operator u: A −→ Y there exists a Hilbert space H and

operators v: X −→ H and w: H −→ Y such that u = wv and

‖w‖ ‖v‖ ≤
(

4
√

eC2(Y )
)3/2‖u‖.

Theorem 2.10. Let A be a C∗ -algebra, H a Hilbert space and u: A −→ H
a linear operator. Then

m
∑

i=1

‖u(xi)‖2 ≤ 4‖u‖2

∥

∥

∥

∥

m
∑

i=1

|xi|2
∥

∥

∥

∥

,

for each finite sequence (xi)
m
i=1 ⊂ A .

So let us prove our result:

Theorem 2.11. If A1, . . . , An are C∗ -algebras, every n -linear form T : A1×
· · · × An −→ C satisfies

m
∑

i=1

|T (x1
i , . . . , x

n
i )| ≤ Cn−1‖T‖

∥

∥

∥

∥

m
∑

i=1

|x1
i |2

∥

∥

∥

∥

1/2

· · ·
∥

∥

∥

∥

m
∑

i=1

|xn
i |2

∥

∥

∥

∥

1/2

where C is an universal constant.

Proof. We are going to reason by induction. The case n = 2 is Theorem 2.7.
To prove the general case we can suppose ‖T‖ ≤ 1 and

∥

∥

∥

∥

m
∑

i=1

|xj
i |2

∥

∥

∥

∥

1/2

≤ 1 for every 1 ≤ j ≤ n.
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We consider the following operators:

u: lm2 −→ A1,

v: A1 −→ L
n−1(A2, . . . , An),

w: L
n−1(A2, . . . , An) −→ lm1 ,

i: lm1 ↪→ lm2 ,

u(ei) = x1
i ,

v(x1) = T (x1, · , . . . , · ),
w(S) =

(

S(x2
i , . . . , x

n
i )

)m

i=1
,

i(ei) = ei.

Clearly ‖v‖ ≤ 1 and by the induction hypothesis ‖w‖ ≤ Cn−2 . Now, by
Theorem 2.9 there exists a Hilbert space H and operators ṽ: A1 −→ H , w̃: H −→
lm1 such that w̃ṽ = wv and ‖w̃‖ ≤ Cn−2 , ‖ṽ‖ ≤ C ′ , where C ′ is a universal
constant.

We can now consider ṽu: lm2 −→ H . By Theorem 2.10,

m
∑

i=1

‖ṽu(ei)‖2 =
m

∑

i=1

‖ṽ(x1
i )‖ ≤ 4‖ṽ‖2

∥

∥

∥

∥

m
∑

i=1

|x1
i |2

∥

∥

∥

∥

.

Then, by [9, Corollary 4.8], the Hilbert–Schmidt norm of ṽu satisfies ‖ṽu‖S2

≤ 4C ′ . But, by Grothendieck’s theorem and [9, Theorem 4.10], it is also true that
the Hilbert–Schmidt norm of iw̃: H −→ lm2 satisfies ‖iw̃‖S2

≤ KGCn−2 .
Therefore, by [19, Theorem 15.5.9], the composition iwvu: lm2 −→ lm2 satisfies

that ‖iwvu‖S1
≤ 4KGC ′Cn−2 and so ‖iwvu‖S1

≤ Cn−1 if we choose C greater
than 4KGC ′ and big enough to satisfy the case n = 2.

Using [19, Theorem 15.5.7], we can conclude that

m
∑

i=1

|T (x1
i , . . . , x

n
i )| =

m
∑

i=1

∣

∣

(

iwvu(ei) | ei

)
∣

∣ ≤ ‖iwvu‖S1
≤ Cn−1

where ( · | · ) denotes the scalar product in lm2 .
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