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Abstract. A Qk(Rn) -valued function is essentially a rule assigning k unordered and non
necessarily distinct elements of Rn to each element of its domain set A ⊆ Rm . For a Qk(R) -
valued function f we construct a decomposition into k branches that naturally inherit the regu-
larity properties of f . Next we prove that a measurable Qk(Rn) -valued function admits a decom-
position into k measurable branches. An example of a Lipschitzian Q2(R

2) -valued function that
does not admit a continuous decomposition is also provided and we state a selection result about
multiple-valued functions defined on intervals. We finally give a new proof of Rademacher’s theo-
rem for multiple-valued functions. This proof is mainly based on the decomposition theory and it
does not use Almgren’s bi-Lipschitzian correspondence between Qk(Rn) and a cone Q∗ ⊂ RP (n)k .

1. Introduction

In his big regularity paper [1], F. J. Almgren introduced the machinery of
multiple-valued functions to study the partial regularity of area-minimizing inte-
gral currents. He proved that any m -dimensional mass-minimizing integral current
is regular except on a set of Hausdorff dimension at most m − 2. His regularity
theory relies on a scheme of approximation of Dirichlet-minimizing multiple-valued
functions. The success of Almgren’s regularity theory raises the need of further
studying multiple-valued functions and of making his work more accessible.

A multiple-valued function f : A ⊆ Rm → Qk(Rn) is essentially a rule as-
signing k unordered and non necessarily distinct elements of Rn to each element
of its domain. Such maps are studied in complex analysis (see Appendix 5 in [8]).
Indeed in complex function theory one often speaks of the “two-valued function
f(z) = z1/2 ”. This is better considered as a function from R2 to Q2(R

2).
In Chapter 1 of [1], Almgren proved that the metric space Qk(Rn) is in

explicit bi-Lipschitzian correspondence with a finite polyhedral cone Q∗ included
in a higher dimensional Euclidean space and his analysis is mainly based on this
correspondence. In the present paper, we put this correspondence aside and we
approach multiple-valued functions by selection arguments. For a Qk(Rn)-valued
function f , we construct a decomposition into k particular branches f1, . . . , fk:
Rm → Rn and we study the properties of the branches such as continuity in
accordance with those of f . For n = 1, we prove in Proposition 4.1 that f admits
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Lipschitzian (respectively Hölder continuous, continuous, measurable) branches if
f is Lipschitzian (respectively Hölder continuous, continuous, measurable). For
n > 1, we show in Proposition 5.1 that f can be split into measurable branches if
f is measurable and we complete this result by a Lusin type theorem for multiple-
valued functions. We also provide an example of a Lipschitzian Q2(R

2)-valued
function that does not admit a continuous decomposition and state a selection
result already proved in [1] and [3] about multiple-valued functions defined on
closed intervals.

We finally recall what is meant by “differentiability” in the context of multiple-
valued functions. Essentially a multiple-valued function f is said to be affinely
approximable at a ∈ Rm if it is possible to approach f near a by a multiple-
valued function admitting an affine decomposition. We suggest an original proof
of Rademacher’s theorem based on the selection theory:

Theorem. Let f : Rm → Qk(Rn) be a Lipschitzian multiple-valued function.

Then f is strongly affinely approximable at L m almost all points of Rm .

We close our paper by using the 1-dimensional selection result to show that
these affine approximations control the variation of f :

Theorem. Let f : Rm → Qk(Rn) be a Lipschitzian multiple-valued function

and [a, b] := {a + t(b − a) | t ∈ [0, 1]} where a, b ∈ Rm such that a 6= b . If f is

affinely approximable at H 1 almost all points of [a, b] then

F
(
f(a), f(b)

)
≤

∫

[a,b]

‖Af(x)‖ dH
1(x).

2. Preliminaries

The scalar product of two vectors x, y ∈ Rn is denoted (x|y), and the Eu-
clidean norm of x ∈ Rn is denoted |x| . For a fixed space X with a metric d ,
let

B(a, r) = {x ∈ X | d(a, x) ≤ r}, U(a, r) = {x ∈ X | d(a, x) < r}

be the closed and open balls with center a ∈ X and radius r > 0. If L: Rm → Rn

is a linear mapping, we set ‖L‖ = sup{|L(x)| | x ∈ Rm with |x| ≤ 1} . For
each point xi ∈ Rn , [[xi]] denotes the Dirac measure at xi . Denote Qk(Rn) =
{∑k

i=1[[xi]] | xi ∈ Rn
}

, where xi and xj are not necessarily distinct for i 6= j
and the integer k is already fixed. We can define a topology on Qk(Rn) by the
equivalent metrics G and F :

G

( k∑

i=1

[[xi]],
k∑

j=1

[[yj ]]

)

= min

{( k∑

i=1

|xi − yσ(i)|
2

)1/2

∣
∣
∣ σ is a permutation of {1, . . . , k}

}

,
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F

( k∑

i=1

[[xi]],

k∑

j=1

[[yj]]

)

= min

{ k∑

i=1

|xi − yσ(i)| | σ is a permutation of {1, . . . , k}

}

.

We easily prove that
(
Qk(Rn), G

)
is a complete separable metric space.

A map f : A ⊆ Rm → Qk(Rn) will be called a multiple-valued function or a
Qk(Rn)-valued function. Let us note that a Q1(R

n)-valued function is nothing
else than a classical function since Q1(R

n) is in bijection with Rn .
To begin with, let us pay attention to a problem that will make it pos-

sible for us to reduce significantly the size of the coming proofs. Considering
f1, . . . , fk: A ⊆ Rm → Rn , we can define the following Qk(Rn)-valued function

(1) f :=

k∑

i=1

[[fi]]

and wonder if f inherits the regularity properties of f1, . . . , fk . We can then easily
check Proposition 2.1.

Proposition 2.1. Let f1, . . . , fk: A ⊆ Rm → Rn and f defined by (1). The

following assertions are checked:

(1) If f1, . . . , fk are Lipschitzian on B ⊆ A then f is Lipschitzian on B and

Lip(f) ≤
(∑k

i=1 Lip2(fi)
)1/2

.

(2) If f1, . . . , fk are continuous on B ⊆ A then f is continuous on B .

To end this section, we will define what is meant by measurable Qk(Rn)-
valued function and prove a proposition which is similar to Proposition 2.1. As
in [4] and [5], we call measure what is usually called outer measure.

Definition 2.1. Let µ be a measure on Rm . A multiple-valued function
f : A ⊆ Rm → Qk(Rn) is called µ -measurable if for all open G ⊆ Qk(Rn),
f−1(G) is µ -measurable.

Proposition 2.2. Let f1, . . . , fk: A ⊆ Rm → Rn and f defined by (1). If

f1, . . . , fk are µ -measurable then f is µ -measurable.

Proof. Since Qk(Rn) is separable it is enough to show that f−1(U) is µ -

measurable for all open balls U ⊂ Qk(Rn). Let v =
∑k

i=1[[xi]] ∈ Qk(Rn) and
r > 0. We note that

f−1
(
U(v, r)

)
=

{

y ∈ A
∣
∣
∣ G

(

v,

k∑

i=1

[[fi(y)]]

)

< r

}

=
⋃

σ

{

y ∈ A
∣
∣
∣

k∑

i=1

|xi − fσ(i)(y)|2 < r2

}

=
⋃

σ

⋃

r1,...,rk
rational

r2
1
+···+r2

k
<r2

k⋂

i=1
f−1

σ(i)

(
B(xi, ri)

)
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so f is µ -measurable.

3. Canonical decomposition

The central idea in this section consists in decomposing multiple-valued func-
tions in the most efficient possible way. If one has a Qk(Rn)-valued function
defined on A ⊆ Rm , it is easy to find maps f1, . . . , fk: A → Rn such that
f =

∑k
i=1[[fi]] on A . However we will be concerned with the existence of branches

which preserve some properties of f such as measurability, continuity . . . . We
start by defining some necessary tools to this study.

For all n, k ∈ N0 , we define the functions

β(n,k),1: Qk(Rn) → Rn : v 7→ min
(
spt(v)

)

where Rn is endowed with a total order. For k ∈ N0 and v ∈ Qk(Rn) fixed,
we will define by induction with respect to i ∈ {1, . . . , k} a sequence of pairs
(
vi, β(n,k),i(v)

)
where vi ∈ Qk−i+1(R

n) and β(n,k),i(v) ∈ Rn . Let us assume that
v1 = v and that the sequence is defined until the index i , we then set successively

vi+1 := vi − [[β(n,k),i(v)]] and β(n,k),i+1(v) := β(n,k−i),1(vi+1).

By this process, we have just built the functions

(2) β(n,k),i: Qk(Rn) → Rn

for i = 1, . . . , k associated to a total order on Rn and such that

(3) v =
k∑

i=1

[[β(n,k),i(v)]]

for all v ∈ Qk(Rn). Consequently, if we consider a multiple-valued function

f : A ⊆ Rm → Qk(Rn), an immediate consequence of (3) is that f =
∑k

i=1[[fi]]
with

(4) fi := β(n,k),i ◦ f

for i = 1, . . . , k . Subsequently, we will study the properties of the selection defined
by (4), assuming that Rn is endowed with the lexicographical order.



A selection theory for multiple-valued functions 301

4. Decomposition properties for n = 1

Lemma 4.1. For all k ∈ N0 , Lip(β(1,k),i) ≤ 1 for i = 1, . . . , k .

Proof. Let k ∈ N0 and v =
∑k

j=1[[xj ]] , w =
∑k

j=1[[yj ]] ∈ Qk(R) such that
x1 ≤ · · · ≤ xk and y1 ≤ · · · ≤ yk . By the first part of the proof of Theorem 1.2 in
[1], it is clear that

G
2(v, w) =

k∑

j=1

|xj − yj |
2 ≥ |xi − yi|

2 = |β(1,k),i(v) − β(1,k),i(w)|2

for i = 1, . . . , k .
We can then state Proposition 4.1 which immediately ensues from (4) and

Lemma 4.1.

Proposition 4.1. Let f : A ⊆ Rm → Qk(R) be a multiple-valued function.

Then there exist f1, . . . , fk: A ⊆ Rm → R such that f =
∑k

i=1[[fi]] on A and the

following assertions hold:

(1) If f is continuous and ωf,x denote the modulus of continuity of f at x i.e.

ωf,x(δ) = sup
{
G (f(x), f(y)) | y ∈ A and |x − y| ≤ δ

}

then f1, . . . , fk are continuous and ωfi,x ≤ ωf,x for i = 1, . . . , k and for all

x ∈ A where ωfi,x denotes the modulus of continuity of fi at x i.e.

ωfi,x(δ) = sup
{
|fi(x) − fi(y)| | y ∈ A and |x − y| ≤ δ

}
.

(2) If f is µ -measurable then f1, . . . , fk are µ -measurable.

This last proposition is useful as it can help us to easily prove a few theorems
that are not obvious at first sight. Nevertheless, this proposition only settles when
n = 1. Can we hope the same for n > 1? The next section will attempt to answer
this question. In order to illustrate the interest of Proposition 4.1, we mention two
extension theorems for Qk(R)-valued functions.

Theorem 4.1. If A ⊂ Rm is closed and f : A → Qk(R) is continuous, then

f has a continuous extension f̄ : Rm → Qk(R) .

Proof. This follows from Proposition 4.1, Tietze’s extension theorem and
Proposition 2.1.

Theorem 4.2. If A ⊂ Rm and f : A → Qk(R) is Lipschitzian, then f has

a Lipschitzian extension f̄ : Rm → Qk(R) with Lip(f̄) ≤ k1/2 Lip(f) .

Proof. This follows from Proposition 4.1, Kirszbraun’s extension theorem and
Proposition 2.1.
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5. Decomposition properties for n > 1

As shown earlier, studying the hypothetical properties of the selection defined
by (4) boils down to studying the properties of the functions (2). For n = 1, we
showed that these maps are Lipschitzian. For n > 1, we will prove that they are
merely Borelian. Let e1, . . . , en denote the standard basis vectors of Rn . This
notation will only be used in Lemma 5.1. Recall that Rn is endowed with the
lexicographical order.

Lemma 5.1. For all k ∈ N0 and n ∈ N0\{1} , β(n,k),i is Borelian for

i = 1, . . . , k .

Proof. Let k ∈ N0 and n ∈ N0\{1} . We will partition Qk(Rn) into a
countable union of closed sets so that the restrictions of the functions β(n,k),i to
these closed sets are continuous. It will then be clear that the functions β(n,k),i

are Borelian.
It is obvious that

Qk(Rn) =
∞⋃

a=1
Ka

where

Ka = Qk(Rn) ∩

{ k∑

i=1

[[xi]]
∣
∣if (xi|el) 6= (xj|el) for l ∈ {1, . . . , n}

then |(xi|el) − (xj |el)| ≥ 1/a

}

.

Let us show that the sets Ka are closed and that the restrictions of the functions
β(n,k),i to these sets are continuous.

Fix a ∈ N0 . We take a sequence (vq =
∑k

i=1[[xi,q]])q∈N ⊂ Ka such that
vq → v as q → ∞ and we will show that v ∈ Ka . Let us consider any subsequence
of (vq)q∈N still denoted by (vq)q∈N . Since (vq)q∈N converges, it is bounded; hence

there exists M > 0 such that G 2(vq, k[[0]]) =
∑k

i=1 |xi,q|
2 < M for all q ∈ N .

Consequently the sequence (xi,q)q∈N is bounded for i = 1, . . . , k . Therefore there
exist q1 < q2 < · · · and x1, x2, . . . , xk ∈ Rn such that for all i ∈ {1, . . . , k} ,
the subsequence (xi,qr

)r∈N converges to xi as r → ∞ . Then the subsequence

(vqr
)r∈N converges to

∑k
i=1[[xi]] as r → ∞ ; hence v =

∑k
i=1[[xi]] . If (xi|el) 6=

(xj |el) for l ∈ {1, . . . , n} then there exists p ∈ N such that (xi,qr
|el) 6= (xj,qr

|el)
for all r ≥ p ; hence |(xi,qr

|el) − (xj,qr
|el)| ≥ 1/a . By taking the limit, we deduce

that |(xi|el) − (xj|el)| ≥ 1/a ; hence v ∈ Ka .
It only remains to prove that the functions β(n,k),i restricted to Ka are con-

tinuous. For i, j ∈ {1, . . . , k} such that i 6= j , we state the following important
remarks:
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(1) If (xi|el) = (xj |el) for l ∈ {1, . . . , n} then there exists p ∈ N such that for all
r ≥ p , we have (xi,qr

|el) = (xj,qr
|el). Otherwise, there exist qr1

< qr2
< · · ·

such that (xi,qrs
|el) 6= (xj,qrs

|el) for all s ∈ N ; hence

|(xi,qrs
|el) − (xj,qrs

|el)| ≥ 1/a

which on letting s → ∞ implies the contradiction |(xi|el) − (xj |el)| ≥ 1/a .

(2) If (xi|el) < (xj |el) for l ∈ {1, . . . , n} then there exists p ∈ N such that for all
r ≥ p , we have (xi,qr

|el) < (xj,qr
|el). Otherwise, there exist qr1

< qr2
< · · ·

such that (xi,qrs
|el) ≥ (xj,qrs

|el) for all s ∈ N which on letting s → ∞
implies the contradiction (xi|el) ≥ (xj |el).

(3) If (xi|el) > (xj |el) for l ∈ {1, . . . , n} then there exists p ∈ N such that for all
r ≥ p , we have (xi,qr

|el) > (xj,qr
|el). Otherwise, there exist qr1

< qr2
< · · ·

such that (xi,qrs
|el) ≤ (xj,qrs

|el) for all s ∈ N which on letting s → ∞
implies the contradiction (xi|el) ≤ (xj |el).

Consequently, if x1, . . . , xk are ordered in a certain way then there exists p ∈ N

such that x1,qr
, . . ., xk,qr

are ordered in the same way for all r ≥ p . Therefore
β(n,k),i(vqr

) → β(n,k),i(v) for i = 1, . . . , k .

The following result is a consequence of (4) and Lemma 5.1.

Proposition 5.1. Let µ be a measure on Rm and f : A ⊆ Rm → Qk(Rn)
be a µ -measurable multiple-valued function. Then there exist µ -measurable func-

tions f1, . . . , fk: A ⊆ Rm → Rn such that f =
∑k

i=1[[fi]] on A .

The following theorem is nothing else than an adaptation of Lusin’s theorem
to multiple-valued functions.

Theorem 5.1. Let µ be a Borel regular measure on Rm and f : Rm →
Qk(Rn) be a µ -measurable multiple-valued function. Assume A ⊂ Rm is µ -

measurable and µ(A) < ∞ . Fix ε > 0 . Then there exists a compact set C ⊂ A
and f1, . . . , fk: Rm → Rn such that

(1) f =
∑k

i=1[[fi]] on Rm ,

(2) µ(A\C) < ε ,

(3) fi|C is continuous for i = 1, . . . , k , and

(4) f |C is continuous.

Proof. By Proposition 5.1, there exist µ -measurable functions f1, . . . , fk: Rm

→ Rn such that f =
∑k

i=1[[fi]] on Rm . We then infer from Lusin’s theorem that
for i = 1, . . . , k , there exists a compact set Ci ⊂ A such that µ(A\Ci) < ε/k and

fi|Ci
is continuous. We set C :=

⋂k
i=1 Ci ⊂ A which is compact. Then it is clear

that µ(A\C) < ε and f |C is continuous by Proposition 2.1.
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To end this section, we show that a continuous Qk(Rn)-valued function does
no necessarily admit a continuous decomposition if n > 1. We consider the Lip-
schitzian Q2(R

2)-valued function

f :S1 ⊂ R2 → Q2(S
1):

x = (cos θ, sin θ) 7→ f(x) =

[[(

cos
θ

2
, sin

θ

2

)]]

+

[[(

− cos
θ

2
,− sin

θ

2

)]]

where S1 := {(cos θ, sin θ) | θ ∈ [0, 2π)} is the unit circle centered on the origin,
and we study the following selection problem: can one select for all x ∈ S1 , a
point g(x) ∈ spt

(
f(x)

)
in such a way that g is continuous on S1? Assume that

such a function exists. We introduce the mapping

h: S1 → S1 : x = (cos θ, sin θ) 7→ h(x) = (cos 2θ, sin 2θ)

and it is obvious that h is continuous and that its topological degree, written
deg(h), is 2. On the other hand, h ◦ g = idS1 so that deg(h ◦ g) = 1 and
the topological degree of g is necessarily an integer which refutes the equality
deg(h ◦ g) = deg(h) deg(g).

Consequently, a continuous Qk(Rn>1)-valued function does not necessarily
admit a continuous decomposition. This also proves that there is no order on
Rn>1 so that the functions defined by (2) are continuous.

Nevertheless, we can prove that every continuous multiple-valued function f
defined on a closed interval can be split into single branches which inherit the
modulus of continuity of f .

Proposition 5.2. Let f : [a, b] ⊂ R → Qk(Rn) be a continuous multiple-

valued function and ωf denote the modulus of continuity of f . Then there exist

continuous functions f1, . . . , fk: [a, b] ⊂ R → Rn such that f =
∑k

i=1[[fi]] on [a, b]
and

ωfi
≤ n1/2kωf

where ωfi
denotes the modulus of continuity of fi for i = 1, . . . , k .

Proof. We will only prove that if f is Lipschitzian then f admits a Lip-
schitzian selection f1, . . . , fk such that Lip(fi) ≤ Lip(f) for i = 1, . . . , k since it
is the unique result we will need later. For a general argument, see the original
Proposition 1.10 in [1] or Theorem 1.1 in [3].

We will construct multiple-valued functions f j: [a, b] → Qk(Rn) and func-

tions f j
1 , . . . , f j

k : [a, b] → Rn with f j =
∑k

i=1[[f
j
i ]] for each j = 1, 2, . . . such

that (passing to a subsequence of the j ’s) one obtains Lipschitzian functions

fi = limj→∞ f j
i with f =

∑k
i=1[[fi]] .
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For fixed j ∈ N0 and for each l = 0, 1, . . . , j we set tl = a + l∆t where
∆t = (b − a)/j . Then we choose f j: [a, b] → Qk(Rn) subject to the requirement
that for each l = 1, . . . , j and t ∈ [tl−1, tl]

f j(t) =

k∑

i=1

[[
tl − t

∆t
pi +

t − tl−1

∆t
qi

]]

corresponding to some choice of p1, . . . , pk, q1, . . . , qk such that f(tl−1) =
∑k

i=1[[pi]] ,

f(tl) =
∑k

i=1[[qi]] and G
(
f(tl−1), f(tl)

)
=
(∑k

i=1 |pi − qi|
2
)1/2

. One readily veri-

fies the existence of piecewise affine continuous functions f j
1 , . . . , f j

k : [a, b] → Rn

such that f j =
∑k

i=1[[f
j
i ]] . We choose and fix such functions for each j . We

can then easily prove that f(x) = limj→∞ f j(x) for all x ∈ [a, b] . Let us fix
j ∈ N0 and u ∈ {1, . . . , k} . We will now prove that f j

u is in fact Lipschitzian
with Lip(f j

u) ≤ Lip(f). Suppose a ≤ c < d ≤ b and r, s ∈ {1, . . . , j} such that
c ∈ [tr−1, tr] and d ∈ [ts−1, ts] . We consider two cases.

(1) Suppose that r = s . We obtain that

|f j
u(c) − f j

u(d)| ≤

( k∑

i=1

∣
∣
∣
∣

tr − d

∆t
pi +

d − tr−1

∆t
qi −

tr − c

∆t
pi −

c − tr−1

∆t
qi

∣
∣
∣
∣

2)1/2

=

( k∑

i=1

∣
∣
∣
∣

c − d

∆t
pi −

c − d

∆t
qi

∣
∣
∣
∣

2)1/2

=
d − c

∆t

( k∑

i=1

|pi − qi|
2

)1/2

=
d − c

∆t
G
(
f(tr−1), f(tr)

)
≤ Lip(f)(d − c).

(2) Suppose that r < s . We obtain that

|f j
u(c) − f j

u(d)| ≤ |f j
u(c) − f j

u(tr)| + |f j
u(tr) − f j

u(tr+1) + · · ·

+ |f j
u(ts−2) − f j

u(ts−1)| + |f j
u(ts−1) − f j

u(d)|

≤ Lip(f)
(
(tr − c) + (tr+1 − tr) + · · ·

+ (ts−1 − ts−2) + (d − ts−1)
)

= Lip(f)(d − c).

We conclude that the sequences {f j
1}j∈N, . . . , {f j

k}j∈N belong to the following
closed, bounded and equicontinuous family

Ω =
{

y ∈ C([a, b],Rn)
∣
∣ |y(x)− y(x̄)| ≤ Lip(f)|x− x̄| for all x, x̄ ∈ [a, b] and

|y(a)| ≤ max
{
|v|
∣
∣ v ∈ spt

(
f(a)

)
}
}

.

By Arzela–Ascoli’s theorem, there exist j1 < j2 < · · · and f1, . . . , fk ∈ Ω such that
{f jl

i }l∈N converges uniformly to fi as l → ∞ for i = 1, . . . , k . It is immediate

that f = liml→∞ f jl = liml→∞

∑k
i=1[[f

jl

i ]] =
∑k

i=1[[fi]] .
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6. Rademacher’s theorem for multiple-valued functions

Before presenting a theorem for multiple-valued functions identical to Ra-
demacher’s theorem, we will define the meaning of “differentiability” and “ap-
proximative differentiability” for multiple-valued functions in the way they were
originally expressed by Almgren in [1].

Definition 6.1. A multiple-valued function f : Rm → Qk(Rn) is said to
be affine if and only if there exist affine maps g1, . . . , gk: Rm → Rn such that
f =

∑k
i=1[[gi]] .

One can check that if f =
∑k

i=1[[gi]] is such an affine function, then the
functions g1, . . . , gk are uniquely determined up to order.

Definition 6.2. Let A ⊆ Rm be an open set and f : A → Qk(Rn). One
says that f is affinely approximable at a ∈ A if and only if there is an affine
multiple-valued function g: Rm → Qk(Rn) such that for all ε > 0 there exists
δ > 0 such that

G
(
f(x), g(x)

)
≤ ε|x − a| for all x ∈ B(a, δ) ∩ A.

Definition 6.3. Let A ⊆ Rm be an open set and f : A → Qk(Rn). One
says that f is approximately affinely approximable at a ∈ A if and only if there
is an affine multiple-valued function g: Rm → Qk(Rn) satisfying

ap lim
x→a

G
(
f(x), g(x)

)

|x − a|
= 0.

In other words, for any ε > 0,

lim
r→0

L m
(
B(a, r) ∩

{
x | G

(
f(x), g(x)

)
> ε|x − a|

})

L m
(
B(a, r)

) = 0.

In case f is affinely approximable (respectively approximately affinely ap-
proximable) at a , the affine multiple-valued function g is seen to be uniquely
determined and is denoted Af(a) (respectively apAf(a)). We set ‖Af(a)‖ =
∑k

i=1 ‖gi−gi(0)‖ , where g1, . . . , gk are the unique affine functions such that Af(a)

=
∑k

i=1[[gi]] .

Definition 6.4. Let A ⊆ Rm be an open set and f : A → Qk(Rn). One
says that f is strongly affinely approximable (respectively strongly approximately
affinely approximable) at a ∈ A if and only if f is affinely approximable (respec-
tively approximately affinely approximable) at a and if g1, . . . , gk: Rm → Rn are
affine maps such that

Af(a) =
k∑

i=1

[[gi]] (respectively apAf(a) =
k∑

i=1

[[gi]]),

then gi(a) = gj(a) implies gi = gj for all i, j ∈ {1, . . . , k} .
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We now state two useful and analogous characterizations for the coming
proofs.

Proposition 6.1. Let a ∈ A ⊆ Rm and f : A → Qk(Rn) such that f =
∑k

i=1[[fi]] where fi: A → Rn is differentiable at a for i = 1, . . . , k . Then f is

affinely approximable at a .

Proof. For i = 1, . . . , k and for all x ∈ Rm , we define gi(x) := fi(a) +

Dfi(a)(x − a) and we set g :=
∑k

i=1[[gi]] which is obviously an affine multiple-
valued function. Let ε > 0 and i ∈ {1, . . . , k} . Since fi is differentiable at a ,
there exists δi > 0 such that x ∈ A and |x − a| ≤ δi implies |fi(x) − gi(x)| ≤
(ε/k1/2)|x − a| . We then choose δ := min{δ1, . . . , δk} > 0 because x ∈ A and
|x − a| ≤ δ implies

G
(
f(x), g(x)

)
≤

( k∑

i=1

|fi(x) − gi(x)|2
)1/2

≤

( k∑

i=1

ε2

k
|x − a|2

)1/2

= ε|x − a|.

Proposition 6.2. Let a ∈ A ⊆ Rm and f : A → Qk(Rn) such that f =
∑k

i=1[[fi]] where fi: A → Rn is approximately differentiable at a for i = 1, . . . , k .

Then f is approximately affinely approximable at a .

Proof. For i = 1, . . . , k and for all x ∈ Rm , we define

(5) gi(x) := fi(a) + apDfi(a)(x − a)

and we set

(6) g :=
k∑

i=1

[[gi]]

which is obviously an affine multiple-valued function. Let ε > 0 and r > 0. We
easily check that

L m
(
B(a, r) ∩

{
x ∈ Rm | G

(
f(x), g(x)

)
> ε|x − a|

})

L m
(
B(a, r)

)

=
L m

(
B(a, r) ∩

{
x ∈ Rm | G

(
f(x), g(x)

)
≤ ε|x − a|

}c)

L m
(
B(a, r)

)

≤
L m

(
B(a, r) ∩

{
x ∈ Rm

∣
∣
∑k

i=1 |fi(x) − gi(x)|2 ≤ ε2|x − a|2
}c)

L m
(
B(a, r)

)

≤

L m

(

B(a, r) ∩

(
k⋂

i=1

{
x ∈ Rm

∣
∣ |fi(x) − gi(x)|2 ≤ ε2k−1|x − a|2

}
)c)

L m
(
B(a, r)

)
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=

L m

(

B(a, r) ∩

(
k⋃

i=1

{
x ∈ Rm

∣
∣ |fi(x) − gi(x)|2 > ε2k−1|x − a|2

}
))

L m
(
B(a, r)

)

≤
k∑

i=1

L m
(
B(a, r) ∩

{
x ∈ Rm

∣
∣ |fi(x) − gi(x)| > εk−1/2|x − a|

})

L m
(
B(a, r)

)

and the right-hand side converges to zero as r → 0.

Theorem 6.1. Let f : Rm → Qk(R) be a Lipschitzian multiple-valued func-

tion. Then f is strongly affinely approximable at L m almost all points of Rm .

Proof. According to Proposition 4.1, there exist Lipschitzian functions f1, . . . ,
fk: Rm → R such that f =

∑k
i=1[[fi]] . We then deduce from the classical

Rademacher’s theorem that there exists B ⊂ Rm such that L m(B) = 0 and
fi is differentiable on Bc for i = 1, . . . , k . Proposition 6.1 implies that f is
affinely approximable on Bc with Af(a) =

∑k
i=1[[fi(a) + Dfi(a)( · − a)]] for all

a ∈ Bc . For all i, j ∈ {1, . . . , k} , we define Zij = {a ∈ Bc | fi(a) = fj(a)} and
we deduce from Corollary 1 in Section 3.1 of [4] that Dfi(a) = Dfj(a) for L m

almost all a ∈ Zij .
The proof of Rademacher’s theorem is no longer easy when n > 1 because

a Lipschitzian multiple-valued function does not necessarily admit a Lipschitzian
decomposition. The first proof was suggested by Almgren in [1] and is based on
the existence of a bi-Lipschitzian correspondence between Qk(Rn) and a cone
Q∗ ⊂ RP (n)k where P (n) is an integer depending on n . The following proof does
not use this correspondence.

Lemma 6.1. Let A ⊆ Rm and a ∈ A . Suppose that f1, . . . , fk: A → Rn

are continuous at a . Then there exists 0 < r(a) ≤ ∞ such that

min
σ

{ k∑

i=1

|fi(x) − fσ(i)(a)|2
}

=

k∑

i=1

|fi(x) − fi(a)|2 for all x ∈ U
(
a, r(a)

)
∩ A.

Proof. We define ε := min{|fi(a) − fj(a)| | i, j ∈ {1, . . . , k} and fi(a) 6=
fj(a)} . Let i ∈ {1, . . . , k} . By the continuity of fi at a , there exists δi > 0
such that x ∈ A and |x − a| < δi implies |fi(x) − fi(a)| < 1

2ε . We choose
r(a) := min{δ1, . . . , δk} > 0. Indeed for i ∈ {1, . . . , k} , σ a permutation of
{1, . . . , k} and x ∈ U

(
a, r(a)

)
∩ A , we obtain the two following cases:

(1) If fσ(i)(a) = fi(a) then |fi(x) − fσ(i)(a)| = |fi(x) − fi(a)| .

(2) If fσ(i)(a) 6= fi(a) then it is clear that fσ(i)(a) /∈ U
(
fi(a), ε

)
. It ensues that

|fi(x)− fσ(i)(a)| ≥ |fi(x)− fi(a)| , otherwise we have the following contradic-
tion

ε ≤ |fi(a)−fσ(i)(a)| ≤ |fi(x)−fσ(i)(a)|+|fi(x)−fi(a)| < 2|fi(x)−fi(a)| < ε.
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Theorem 6.2. Let f : Rm → Qk(Rn) be a Lipschitzian multiple-valued

function and A ⊂ Rm be an L m -measurable set such that L m(A) < ∞ . Fix

ε > 0 . Then there exists a compact set C ⊂ A such that f is strongly affinely

approximable at L m almost all points of C and L m(A\C) < ε .

Proof. f is L m -measurable since f is Lipschitzian. By Theorem 5.1, there
exist a compact set C ⊂ A and f1, . . . , fk: Rm → Rn such that f =

∑k
i=1[[fi]] ,

L m(A\C) < ε and fi|C is continuous for i = 1, . . . , k .
Let a ∈ C . By Lemma 6.1, there exists r(a) > 0 such that x ∈ U

(
a, r(a)

)
∩C

implies
k∑

i=1

|fi(x) − fi(a)|2 = G
2
(
f(x), f(a)

)
≤ Lip2(f)|x − a|2.

Consequently we get that

(7) |fi(x) − fi(a)| ≤ Lip(f)|x− a|

for i = 1, . . . , k and for all x ∈ U
(
a, r(a)

)
∩ C . Let

Z :=

{

a ∈ C
∣
∣
∣ lim

r→0

L m
(
B(a, r) ∩ C

)

L m
(
B(a, r)

) = 1

}

,

so that L m(C\Z) = 0 according to the Lebesgue density theorem. Notice also
that

1 = lim
r→0

L m
(
B(a, r) ∩ C

)

L m
(
B(a, r)

) = lim
r→0

L m
(
B(a, r) ∩ Z

)

L m
(
B(a, r)

) + lim
r→0

L m
(
B(a, r) ∩ (C\Z)

)

L m
(
B(a, r)

)

︸ ︷︷ ︸

=0

for all a ∈ Z . Let ā ∈ Z and i ∈ {1, . . . , k} . Let us set

h(x) :=
|fi(x) − fi(ā)|

|x − ā|

for all x ∈ Rm and show that

ap lim sup
x→ā

h(x) := inf

{

t ∈ R | lim
r→0

L m
(
B(ā, r

)
∩ {x ∈ Rm | h(x) > t}

)

L m
(
B(ā, r)

) = 0

}

≤ Lip(f).(8)

Assume that t > Lip(f) and r < r(ā). Observe that (7) implies

L m

({

x ∈ Rm
∣
∣
∣
|fi(x) − fi(ā)|

|x − ā|
> t

}

∩ B(ā, r)

)

L m
(
B(ā, r)

) ≤
L m

(
B(ā, r)\C

)

L m
(
B(ā, r)

) .
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Since ā ∈ Z , the right-hand side converges to zero as r → 0 so that the state-
ment (8) is proved. For i = 1, . . . , k , we deduce from Theorem 3.1.8 1 of [5]
that fi is approximately differentiable on Zi ⊆ Z with L m(Z\Zi) = 0. We fix

Z∗ :=
⋂k

i=1 Zi so that the functions fi are approximately differentiable on Z∗

and L m(Z\Z∗) = 0. Let a∗ ∈ Z∗ . Proposition 6.2 implies that f is approxi-
mately affinely approximable at a∗ by the affine multiple-valued function defined
by (5) and (6). Let us show that f is in fact affinely approximable at a∗ by the
same affine multiple-valued function. Take note that the following argument is an
adaptation of Lemma 3.1.5 of [5]. Let γ > 0. We choose 0 < β < 1 such that

β

(

1 +
Lip(f) + β +

(
∑k

i=1 ‖apDfi(a
∗)‖2

)1/2

1 − β

)

< γ

and we define the set W :=
{
x ∈ Rm | G

(
f(x), g(x)

)
≤ β|x − a∗|

}
. Since

f is approximately affinely approximable at a∗ , there exists δ > 0 such as, if
0 < r < δ , then

L m
(
B(a∗, r) ∩ W c

)

L m
(
B(a∗, r)

) < βm.

Let us fix x ∈ U
(
a∗, δ(1− β)

)
and regard r := (|x − a∗|)/(1 − β). It is clear that

r < δ and B(x, βr) ⊆ B(a∗, r). On the other hand, we remark that B(x, βr) ∩
W 6= ∅ for otherwise we obtain the following contradiction

(βr)mα(m) = L
m
(
B(x, βr)

)
= L

m
(
B(x, βr) ∩ W c

)

≤ L
m
(
B(a∗, r) ∩ W c

)
< βm

L
m
(
B(a∗, r)

)
= βmrmα(m).

where α(m) is the Lebesgue measure of the unit Euclidean ball in Rm . Let
z ∈ B(x, βr) ∩ W . We successively have

G
(
f(x), g(x)

)
≤ G

(
f(x), f(z)

)
+ G

(
f(z), g(z)

)
+ G

(
g(z), g(x)

)

≤ Lip(f)|x− z| + β|z − a∗| +

( k∑

i=1

|gi(z) − gi(x)|2
)1/2

1 This theorem indicates that an approximate local growth condition on f suffices to guarantee

that f is the union of a countable family of Lipschitzian functions.
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≤ Lip(f)βr + β(|z − x| + |x − a∗|) +

( k∑

i=1

|apDfi(a
∗)(z − x)|2

)1/2

≤ Lip(f)βr + β(βr + |x − a∗|) + |z − x|

( k∑

i=1

‖apDfi(a
∗)‖2

)1/2

≤ Lip(f)βr + β(βr + |x − a∗|) + βr

( k∑

i=1

‖apDfi(a
∗)‖2

)1/2

= β|x − a∗|

(

1 +
Lip(f) + β +

(
∑k

i=1 ‖apDfi(a
∗)‖2

)1/2

1 − β

)

.

We thus obtain that G
(
f(x), g(x)

)
< γ|x − a∗| so f is affinely approximable

at a∗ . Thus f is affinely approximable on Z∗ . For all i, j ∈ {1, . . . , k} , we define
Z∗

ij = {a ∈ Z∗ | fi(a) = fj(a)} and we deduce from Theorem 3 in Section 6.1 of
[4] that apDfi(a) = apDfj(a) for L m almost all a ∈ Z∗

ij . Consequently f is
strongly affinely approximable at L m almost all points of C .

Theorem 6.3. Let f : Rm → Qk(Rn) be a Lipschitzian multiple-valued

function. Then f is strongly affinely approximable at L m almost all points

of Rm .

Proof. Let us show that there exist disjoint, compact sets {Ci}
∞

i=1 ⊂ Rm

such that

L
m

((
∞⋃

i=1

Ci

)c)

= 0

and for each i = 1, 2, . . .

f is strongly affinely approximable at L
m almost all points of Ci.

For each positive integer n , set Bn = B(0, n). By Theorem 6.2, there exists a
compact set C1 ⊂ B1 such that L m(B1\C1) ≤ 1 and f is strongly affinely
approximable L m almost everywhere on C1 . Assume now C1, . . . , Cn have
been constructed, there exists a compact set Cn+1 ⊂ Bn+1\

⋃n
i=1 Ci such that

L m(Bn+1\
⋃n+1

i=1 Ci) ≤ 1/(n + 1) and f is strongly affinely approximable at L m

almost all points of Cn+1 . Consequently the starting assertion is confirmed. For
all i ∈ N0 , we define the set Ai := {a ∈ Ci | f is strongly affinely approximable
at a} and note that L m(Ci\Ai) = 0. It is clear that L m

((⋃
∞

i=1 Ai

)c)
= 0 so f

is strongly affinely approximable at L m almost all points of Rm .

Theorem 6.4. Let f : Rm → Qk(Rn) be a Lipschitzian multiple-valued

function and [a, b] := {a + t(b − a) | t ∈ [0, 1]} where a, b ∈ Rm such that a 6= b .
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If f is affinely approximable at H 1 almost all points of [a, b] then

F
(
f(a), f(b)

)
≤

∫

[a,b]

‖Af(x)‖ dH
1(x).

Proof. By a standard argument applied to Proposition 5.2, there exist Lip-
schitzian functions f1, . . . , fk: [a, b] → Rn such that f |[a,b] =

∑k
i=1[[fi]] . We

introduce the map ϕ: [0, 1] → [a, b]: t 7→ a + t(b − a) and the direction u =
(b − a)/(|b − a|). We then obtain

F
(
f(b), f(a)

)
≤

k∑

i=1

|fi(b) − fi(a)| =

k∑

i=1

∣
∣fi

(
ϕ(1)

)
− fi

(
ϕ(0)

)∣
∣

=
k∑

i=1

∣
∣
∣
∣

∫ 1

0

(fi ◦ ϕ)′(t) dt

∣
∣
∣
∣
≤

k∑

i=1

∫ 1

0

∣
∣Dufi

(
ϕ(t)

)∣
∣ |ϕ′(t)| dt

=
k∑

i=1

∫

[a,b]

|Dufi(x)| dH
1(x).

So it remains to prove the following assertion:

Claim. Let x ∈]a, b[ such that f is affinely approximable at x and Dufi(x)

exists for i = 1, . . . , k . Then
∑k

i=1 |Dufi(x)| ≤ ‖Af(x)‖ .

Since f is affinely approximable at x , it is clear that Af(x)(x) = f(x) =
∑k

i=1[[fi(x)]] so that

Af(x)( · ) =

k∑

i=1

[[fi(x) + Li(x)( · − x)]]

where L1(x), . . . , Lk(x): Rm → Rn are linear maps. Let

T = {t ∈ R | x + tu ∈ [a, b]}.

For all t ∈ T , let σt be any permutation which attains the following minimum:

min
σ

k∑

i=1

∣
∣fσ(i)(x + tu) − fi(x) − tLi(x)(u)

∣
∣.

We will now prove that there exists δ > 0 such that fσt(i)(x) = fi(x) for i =
1, . . . , k and for all t ∈ T satisfying |t| < δ .
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Fix j ∈ {1, . . . , k} . By contradiction, let (tl)l∈N ⊂ T be a sequence converg-
ing to 0 such that fσtl

(j)(x) 6= fj(x) for all l ∈ N . Using the continuity of every

fq satisfying fq(x) 6= fj(x), we have that there exists ε > 0 such that, for l large
enough,

|fj(x) − fσtl
(j)(x + tlu)| > ε.

Hence, for l large enough,

minσ

∑k
i=1 |fσ(i)(x + tlu) − fi(x) − tlLi(x)(u)|

|tl|

≥
|fσtl

(j)(x + tlu) − fj(x) − tlLj(x)(u)|

|tl|

≥
|fσtl

(j)(x + tlu) − fj(x)|

|tl|
−

|tlLj(x)(u)|

|tl|
≥

ε

|tl|
− ‖Lj(x)‖.

Consequently,

lim
l→∞

minσ

∑k
i=1

∣
∣fσ(i)(x + tlu) − fi(x) − tlLi(x)(u)

∣
∣

|tl|
= ∞

which contradicts the fact that f is affinely approximable at x by Af(x). Then,
there exists δj > 0 such that fσt(j)(x) = fj(x) if t ∈ T and |t| < δj . If we set
δ = min{δj | j = 1, . . . , k} then fσt(i)(x) = fi(x) for i = 1, . . . , k and for all t ∈ T
such that |t| < δ .

Fix ε̄ > 0. Since f is affinely approximable at x by Af(x), there exists
γ > 0 such that if t ∈ T and 0 < |t| < γ then

k∑

i=1

∣
∣
∣
∣

fσt(i)(x + tu) − fi(x)

t
− Li(x)(u)

∣
∣
∣
∣
< ε̄.

On the other hand, if t ∈ T and 0 < |t| < min{δ, γ} then

k∑

i=1

∣
∣
∣
∣

fσt(i)(x + tu) − fσt(i)(x)

t
− Li(x)(u)

∣
∣
∣
∣
< ε̄;

hence

min
σ

k∑

i=1

∣
∣
∣
∣

fσ(i)(x + tu) − fσ(i)(x)

t
− Li(x)(u)

∣
∣
∣
∣
< ε̄.

Consequently,

lim
t→0

F

( k∑

i=1

[[
fi(x + tu) − fi(x)

t

]]

,

k∑

i=1

[[Li(x)(u)]]

)

= 0.
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Finally, by the triangular inequality, we obtain for all t 6= 0 that

F

( k∑

i=1

[[Dufi(x)]],

k∑

i=1

[[Li(x)(u)]]

)

≤ F

( k∑

i=1

[[Dufi(x)]],

k∑

i=1

[[
(
fi(x + tu) − fi(x)

)
/t]])

+ F

( k∑

i=1

[[
(
fi(x + tu) − fi(x)

)
/t]],

k∑

i=1

[[Li(x)(u)]]

)

where the right-hand side converges to zero as t → 0. Therefore, there exists a
permutation σ such that Dufi(x) = Lσ(i)(x)(u) for i = 1, . . . , k ; hence

k∑

i=1

|Dufi(x)| =

k∑

i=1

|Li(x)(u)| ≤
k∑

i=1

‖Li(x)‖ = ‖Af(x)‖.
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