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Abstract. The Stern–Stolz theorem states that if the infinite series
∑ |bn| converges, then

the continued fraction K(1 | bn) diverges. On p. 33 of [7], H. S. Wall asks whether just conver-
gence, rather than absolute convergence of

∑

bn is sufficient for the divergence of K(1 | bn) . We
investigate the relationship between

∑ |bn| and K(1 | bn) with hyperbolic geometry and use this
geometry to construct a sequence bn of real numbers for which both

∑

bn and K(1 | bn) converge,
thereby answering Wall’s question.

1. Introduction

An infinite complex continued fraction is a formal expression

a1

b1 +
a2

b2 +
a3

b3 + · · ·

,

where the ai and bj are complex numbers and no ai is equal to 0. This continued
fraction will be denoted by K(an | bn). We define Möbius transformations tn(z) =
an/(bn + z), for n = 1, 2, . . ., and let Tn = t1 ◦ · · · ◦ tn . The continued fraction
is said to converge classically if the sequence T1(0), T2(0), . . . converges, else it is
said to diverge classically. Each of the Möbius transformations Tn acts on the
extended complex plane C∞ and, through identifying C∞ with the boundary
{(x, y, t) : t = 0} ∪ {∞} of three-dimensional hyperbolic space H3 = {(x, y, t) :
t > 0} , the Tn may also be considered to act on H3 (see Section 2 for details).
In this paper we restrict to continued fractions K(1 | bn) for which every an = 1,
and examine the relationship between divergence of the series

∑

|bn| , classical
convergence of Tn and convergence of Tn within H3 . Throughout the rest of this
exposition, tn(z) = 1/(bn + z) and Tn = t1 ◦ · · · ◦ tn , although the ◦ symbol will
in future be omitted from all functional compositions.

The chordal metric σ of C∞ is defined for distinct points z and w in C by

σ(z, w) =
2|z − w|

√

1 + |z|2
√

1 + |w|2
, σ(z,∞) =

2
√

1 + |z|2
.
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This definition is also valid for points z and w in H3 . Let

σ0(f, g) = sup
z∈C∞

σ
(

f(z), g(z)
)

,

for Möbius transformations f and g . This is the metric of uniform convergence
on C∞ , with respect to σ .

In Section 3, we completely classify the behaviour of Tn when
∑

|bn| con-
verges. This section consists of joint work with A. F. Beardon. The following
general theorem is the main result of Section 3.

Theorem 1.1. Suppose that the series
∑

∞

n=1 σ0(sn, s) converges, where

s, s1, s2, . . . are Möbius transformations such that sq is the identity map for some

q ∈ N . Then there is another Möbius map f such that s1s2 · · · snq+r → fsr as

n → ∞ , where 0 6 r < q and the convergence is uniform with respect to the

chordal metric.

We can apply Theorem 1.1 to gain information about continued fractions
K(1 | bn). Let sn(z) = tn(z) = 1/(bn + z) and s(z) = ι(z) = 1/z . The map ι is
an isometry in the chordal metric. Therefore

σ
(

sn(z), s(z)
)

= σ(bn + z, z) ≤ 2|bn|.

Thus if the series
∑ |bn| converges then Theorem 1.1 may be applied with q = 2

to show that T2n → f for some Möbius transformation f , and T2n+1 → fι . Thus
Tn converges only at the fixed points of ι . The behaviour of Tn is thereby fully
understood in the instance when

∑

|bn| < ∞ .
One important aspect of Theorem 1.1 is that it contains a proof of the fol-

lowing well-known classical theorem.

The Stern–Stolz Theorem. Let b1, b2, . . . be complex numbers. If the

infinite series
∑

∞

n=1 |bn| converges then the continued fraction K(1 | bn) diverges

classically.

Using the notation of Theorem 1.1, T2n(0) → f(0) and T2n+1(0) → f(∞) 6=
f(0), therefore Tn(0) does not converge, so that the Stern–Stolz theorem is proven.
H. S. Wall asks on p. 33 of [7], ‘whether or not the simple convergence of the series
∑

bp is sufficient for the divergence of the continued fraction’. In Section 4, we
answer this question by providing an example, motivated by hyperbolic geome-
try, of a sequence of real numbers b1, b2, . . . for which both

∑

bn and K(1 | bn)
converge. The reason Wall’s simple question has gone so long unanswered is not
because the algebra necessary to produce an example is difficult, rather it is be-
cause without the guidance provided by hyperbolic geometry, it is not clear how
one should proceed in constructing such an example.

Whilst the example of Section 4 demonstrates that the converse to the Stern–
Stolz theorem does not hold even for real numbers bn , the Seidel–Stern theorem
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says that the converse does hold when the bn are all positive numbers. In Section 5
we investigate the Seidel–Stern theorem in terms of hyperbolic geometry. The
geometry uncovers more than the classical algebraic analyses and we prove the
next more general theorem (in which j = (0, 0, 1), H = {(x, 0, t) : t > 0} and the
usual notation tn(x) = 1/(bn + x) and Tn = t1 · · · tn are assumed).

Theorem 1.2. Let b1, b2, . . . be non-negative real numbers. The sequence

T1(j), T2(j), . . . converges in the chordal metric to a value ζ in H (closure taken

in R3
∞

). Moreover, the following are equivalent,

(i)
∑

∞

n=1 bn converges;
(ii) ζ ∈ H ;
(iii) K(1 | bn) diverges.

If ζ ∈ ∂H and Tn(j) → ζ as n → ∞ , the Möbius sequence Tn is said
to converge generally to ζ (see [2] for a discussion of general convergence in a
geometric context). Preservation of hyperbolic distance ensures that the choice of
the point j ∈ H in the definition of general convergence to ζ is not important.

Our proof of Theorem 1.2 is not necessarily shorter or simpler than existing
proofs of the Seidel–Stern theorem, but the hyperbolic geometry provides us with
a deeper understanding of the sequence Tn and its orbits, whereas the algebra
conceals the general picture. Theorem 1.2 is an improvement on the Seidel–Stern
theorem in that we also derive conclusions about the orbit of j under Tn . More-
over, the geometric techniques we utilise are not dependent on remaining in two
dimensions; thus our result can easily be generalised to many dimensions. Note
also that we only require the bn not to be negative; they need not necessarily be
positive.

We conclude this introduction by briefly discussing the role of the hyperbolic
plane H (a more detailed treatment is supplied in Section 2). Real Möbius maps
f(x) = (ax + b)/(cx + d) fix the upper half-plane H = {z ∈ C : Im[z] > 0}
if and only if ad − bc > 0 (if f does not fix H , it interchanges H with {z :
Im[z] < 0}). We are working with Möbius maps of the form t(x) = 1/(x + b),
which do not satisfy this criterion, hence we cannot exploit the two-dimensional
hyperbolic geometry of H . To circumvent this problem, we extend the action of
the real Möbius map t , not to C∞ , but to a half-plane H = {(x, 0, t) : t > 0}
in R3

∞
that is perpendicular to C . With this alternative two-dimensional action,

the half-plane H is fixed, because the transformation ι(x) = 1/x fixes j , and it
also fixes H . Since t is a Möbius map, the action on H is isometric with respect
to the hyperbolic metric on H . In fact, the action of t can be extended to the
entire plane Π ∪ {∞} that contains H , where Π = {(x, 0, t) : x, t ∈ R} . We
write points (x, 0, t) of R in the form x + tj to correspond with the usual real
and imaginary part notation for elements of C . This plane Π may be viewed as
another model of the complex plane, and we manipulate it accordingly.
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2. Möbius transformations and hyperbolic geometry

We quickly describe the geometric machinery and notation necessary to im-
plement our methods. Rigorous details can be found in either [1] or [6].

The complex plane may be embedded as the t = 0 plane of R3 . Through this
embedding, known as the Poincaré extension, the Möbius transformation group
M acts on both the extended complex plane C∞ and three-dimensional upper
half-space, H3 = {(x, y, t) : t > 0} . The Möbius action on the latter space
is isometric with respect to the hyperbolic metric %H3 of H3 . We denote the
hyperbolic metric of any suitable space D by %D .

Let φ: R3 → R3 be inversion in the sphere centred on j = (0, 0, 1) of ra-
dius

√
2 . This inversion maps C∞ to the unit sphere S2 and maps S2 to C∞ .

Furthermore, φ is its own inverse and satisfies φ(0) = −j and φ(∞) = j . If f is
a Möbius map fixing C∞ , then f∗ = φfφ is a Möbius map fixing S2 . Likewise
we use the notation 0∗ = φ(0), and more generally z∗ = φ(z), to denote images of
points under φ (this notation is only used at the end of Section 4). The Euclidean
metric restricted to S2 can be transferred via φ to a metric σ on C∞ defined by
σ(z, w) := |φ(z) − φ(w)| . This is the chordal metric introduced in Section 1.

The supremum metric σ0 was also defined in the introduction. The space
(M , σ) is complete. The metric σ0 is right-invariant and satisfies

σ0(hf, hg) ≤ L(h)σ0(f, g),

for a certain positive constant L(h) = exp %H3

(

j, h(j)
)

, although we do not make
use of the exact value of L(h). If fn → f uniformly then,

σ0(f
−1
n , f−1) = σ0(I, f−1fn) ≤ L(f−1)σ0(f, fn),

so that f−1
n → f−1 uniformly. If also gn → g uniformly then

σ0(fngn, fg) ≤ σ0(fngn, fgn) + σ0(fgn, fg) ≤ σ0(fn, f) + L(f)σ0(gn, g),

so that fngn → fg uniformly.
Let f be a real Möbius transformation (a Möbius transformation with real

coefficients) acting on C∞ . This map f fixes the extended real axis R∞ . Now
consider f to act on H3 . It fixes the half-plane H = {(x, 0, t) : t > 0} and this
action is isometric with respect to the two-dimensional hyperbolic metric on H .
Let D = {x+ tj : x2 + t2 < 1} so that φ maps H to D . In fact, φ is an isometry
from (H, %H) to (D, %D), so that f∗ = φfφ is an isometry of (D, %D). We now
have three distinct actions of f on R∞ , H and D , and we make use of all three
of them. The hyperbolic metric on H satisfies the formula,

(2.1) cosh %H(z, w) = 1 + 2 sinh2

(

1

2
%H(z, w)

)

= 1 +
|z − w|2

2(z · j)(w · j) .

This formula can be found in [1], as can the following lemma in hyperbolic
geometry.
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Lemma 2.1. Choose two points a and b on the boundary of the unit disc

D , separated by an angle θ 6 π . Denote the hyperbolic line joining a and b by δ .

Then cosh %D(0, δ) sin(θ/2) = 1 .

Notice that |a − b| = 2 sin(θ/2).

3. Continued fractions K(1 | bn) for which
∑

∞

n=1 |bn| < ∞
The crux of Theorem 1.1 can be found in [2, Theorem 3.7] in which A. F.

Beardon credits an earlier source [5]. The identity map is denoted by I .

Theorem 3.7 from [2]. Let un be a sequence of Möbius transformations for

which
∑

σ0(un, I) converges. Then u1 · · ·un converges uniformly on C∞ to a

Möbius transformation.

The proof of this theorem from [2] is sufficiently short that we reproduce it
here.

Proof of Theorem 3.7 from [2]. Right-invariance of σ0 ensures that for m < n ,

σ0(u
−1
n · · ·u−1

1 , u−1
m · · ·u−1

1 ) = σ0(u
−1
n · · ·u−1

m+1, I).

This latter distance is equal to or less than

σ0(u
−1
n · · ·u−1

m+1, u
−1
n−1 · · ·u−1

m+1)

+ σ0(u
−1
n−1 · · ·u−1

m+1, u
−1
n−2 · · ·u−1

m+1)

+ · · ·
+ σ0(u

−1
m+1, I)

which is equal to

σ0(u
−1
n , I) + σ0(u

−1
n−1, I) + · · ·+ σ0(u

−1
m+1, I).

Since σ0(u
−1
k , I) = σ0(I, uk), this sum can be forced to be arbitrarily small, pro-

vided m and n are restricted to being sufficiently large. Hence the sequence
(u1 · · ·un)−1 = u−1

n · · ·u−1
1 is Cauchy with respect to the σ0 metric, therefore it

converges and hence so does u1 · · ·un .

We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1. Define un = s(n−1)q+1s(n−1)q+2 · · · snq then, again
using right-invariance of σ0 ,

σ0(un, I) = σ0(un, sq)

≤ σ0(un, ss(n−1)q+2 · · · snq) + σ0(ss(n−1)q+2 · · · snq, s
q)

≤ σ0(s(n−1)q+1, s) + L(s)σ0(s(n−1)q+2 · · · snq, s
q−1).
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This argument may be repeated q−2 times with si · · · snq replacing s(n−1)q+1 · · · snq

for (n − 1)q + 1 < i < nq , to obtain

σ0(un, I) ≤ max{1, L(s)q−1}
(

σ0(s(n−1)q+1, s) + · · · + σ0(snq, s)
)

.

Therefore
∑

σ0(un, I) converges so that [2, Theorem 3.7] applies to show that
s1 · · · snq = u1 · · ·un → f for some Möbius map f . Since sn → s uniformly we
also see that s1 · · · snq+r → fsr .

It was demonstrated in the introduction that when sn(z) = tn(z) = 1/(bn+z)
and

∑

|bn| < ∞ , Theorem 1.1 shows that

T2n → f, T2n+1 → fι,

where ι(z) = 1/z . Therefore

T−1
2n → f−1, T−1

2n+1 → ιf−1.

In particular, this accounts for the well-known result that

T−1
n−1(∞)T−1

n (∞) → 1

as n → ∞ .

4. Examples to answer Wall’s question

For each n = 1, 2, . . ., let

(4.1) b̂2n−1 = (−1)n
(√

n −
√

n − 1
)

, b̂2n =
−2(−1)n

√
n

n + 1
.

This sequence shows that absolute convergence of the series
∑

bn is strictly nec-

essary in the Stern–Stolz theorem, as for this particular sequence,
∑

b̂n converges

and so does K(1 | b̂n). That
∑

b̂n converges is clear. The remainder of this sec-
tion consists of a proof that K(1 | bn) converges. Our proof uses the hyperbolic
geometry of H = {x + tj : t > 0} as the real Möbius transformations tn and Tn

are isometries of this plane.
Let γ = {tj : t > 0} denote the hyperbolic line in H that joins 0 and ∞ . It

will be seen that K(1 | bn) converges for any real sequence b1, b2, . . . that satisfies
the two conditions,

(i) b1 < 0, b2 > 0, b3 > 0, b4 < 0, b5 < 0, b6 > 0, b7 > 0, . . .;
(ii) %H

(

T−1
n (j), γ

)

is a positive unbounded increasing sequence.

Our particular sequence b̂n was chosen to satisfy conditions (i) and (ii). That it

satisfies (i) is evident. Before proving rigorously that b̂n gives rise to a sequence
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Tn that satisfies condition (ii), we supply a brief geometric explanation of how the

b̂n were chosen so that %H

(

T−1
n (j), γ

)

→ ∞ .

A horocircle C in H is a line or circle in H that is tangent to the boundary
∂H of H at one point ζ . As a point z in H approaches ζ along C , the hyperbolic
distance %H(z, δ) → ∞ , where δ is any hyperbolic line with one end point at ζ .
We define two particular horocircles in H . The first is a Euclidean line l =
{x + j : x ∈ R} (tangent to ∂H at ∞) and the second is a Euclidean circle
C =

{

x+ tj :
∣

∣x+
(

t− 1
2

)

j
∣

∣ = 1
2

}

(tangent to ∂H at 0). The inversion ι(x) = 1/x

maps l to C and C to l . We choose b̂n so that T−1
n (j) remains on l∪C . Notice

that t−1
n (z) = −b̂n + 1/z and T−1

n (j) = t−1
n T−1

n−1(j). Thus if T−1
n−1(j) ∈ l then

ι
(

T−1
n−1(j)

)

∈ C , and b̂n is chosen to be the unique non-zero real number such

that T−1
n (j) = −b̂n + ι

(

T−1
n−1(j)

)

also lies on C . Similarly, if T−1
n−1(j) ∈ C then

T−1
n (j) ∈ l . The b̂n are suitably fashioned so that the backwards orbits T−1

n (j)
converge to ∞ on l and converge to 0 on C . Since l and C are horocircles and
γ is a hyperbolic line connecting 0 and ∞ , we see that %H

(

T−1
n (j), γ

)

→ ∞ as
n → ∞ .

Condition (ii) will now be verified rigorously for bn = b̂n . It is easily proven
by induction that for this choice of bn ,

T−1
2n−1(j) = −(−1)n

√
n + j, T−1

2n (j) =
(−1)n

√
n

n + 1
+

j

n + 1

for every n . The hyperbolic line (Euclidean half-circle) through a point z ∈ H that
is symmetric about the j axis and hence orthogonal to γ , intersects γ at |z|j . This
is the point in γ of least hyperbolic distance from z , thus %H(z, γ) = %H(z, |z|j).
Using equation (2.1), it is a simple matter of algebra to prove that

cosh %H

(

T−1
n (j), γ

)

= cosh %H

(

T−1
n (j), |T−1

n (j)|j
)

=
√

n + 1 ,

for every n . Condition (ii) has thereby been established for b̂1, b̂2, . . . .
It remains to demonstrate that K(1 | bn) converges for any sequence b1, b2, . . .

satisfying conditions (i) and (ii). A preliminary lemma is required.

Lemma 4.1. Let T1, T2, . . . be a sequence of Möbius transformations arising

from a continued fraction K(1 | bn) that satisfies the above condition (i). The

set R∞\{Tn−1(0), Tn(0)} consists of two open components. The points Tn−2(0)
and Tn+1(0) each lie in one of these open components, and they lie in the same

component if and only if bn and bn+1 differ in sign.

Proof. Observe that tn(∞) = 0, t−1
n (∞) = −bn and tn+1(0) = 1/bn+1 from

which it follows that

(a) Tn(∞) = Tn−1(0);
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(b) Tn(−bn) = Tn−2(0) and Tn(1/bn+1) = Tn+1(0).

Equation (a) shows that the open components separated by Tn−1(0) and
Tn(0) are Tn(R+) and Tn(R−). Equations (b) show that Tn−2(0) and Tn+1(0)
both lie in a component (since the bi are non-zero) and that they lie in the same
component if and only if bn and bn+1 differ in sign.

For the remainder of this section, we make frequent use of the unit disc model
of hyperbolic space described at the end of Section 2. Let θn 6 π be the acute angle
between T ∗

n−1(0
∗) and T ∗

n(0∗) (where θ1 < π is the angle between 0∗ = e−πj/2

and T ∗

1 (0∗) = (1/b1)
∗ ). Using Lemma 2.1 and preservation of hyperbolic distance

under Tn , we see that,

sin(θn/2) = 1/ cosh %H

(

T−1
n (j), γ

)

= 1/ cosh %H

(

j, Tn(γ)
)

,

thus θ1, θ2, . . . is a sequence in (0, π) that decreases towards 0.
We encapsulate the convergence of Tn(0) in a theorem and even obtain an

explicit series formula for Tn(0).

Theorem 4.2. Let T1, T2, . . . be a sequence of Möbius maps arising from a

continued fraction K(1 | bn) satisfying the above conditions (i) and (ii). Then

φ
(

Tn(0)
)

= T ∗

n(0∗) = exp

[(

−π

2
+

n
∑

k=1

εkθk

)

j

]

,

where θn < π is the acute angle between T ∗

n−1(0
∗) ∈ ∂D and T ∗

n(0∗) ∈ ∂D , and

εk =

{

−1 if k = 1, 2 (mod 4),
1 if k = 3, 4 (mod 4).

Hence T1(0), T2(0), . . . converges.

Proof. Let z0 = −j (where −j = e−jπ/2 = 0∗ ) and zn = Tn
∗(0∗), for n > 1.

Since all zn lie on ∂D and the angle between zn−1 and zn is θn < π , there is a
unique sequence η1, η2, η3, . . ., where ηk ∈ {−1, 1} , such that for every n ,

zn = exp

[(

−π

2
+

n
∑

k=1

ηkθk

)

j

]

.

Recall that θn decreases to 0.
We denote the open segment of ∂D of angle θn < π between zn−1 and zn

by In and the other open component of ∂D\{zn−1, zn} by Jn . Notice that were
zn−2 to lie in In , then In−1 ( In , which is impossible as θn−1 > θn . Therefore
zn−2 ∈ Jn . Lemma 4.1 shows that if n is odd then zn+1 ∈ Jn (since bn and bn+1



The hyperbolic geometry of continued fractions K(1 | bn) 323

differ in sign) and if n is even then zn+1 ∈ In (since bn and bn+1 share the same
sign).

We have that
In = {zne−jηnt : 0 < t < θn},

zn+1 = znejηn+1θn+1 and θn+1 6 θn < π . Therefore the point zn+1 lies in In if
and only if ηn+1 = −ηn . Thus

ηn+1 =

{

ηn if n is odd,
−ηn if n is even.

It is easy to check that η1 = η2 = −1, therefore by induction ηn = εn for every n .
Finally, the series

∑

∞

k=1 εkθk must converge, hence T1(0), T2(0), . . . converges
also.

5. The proof of Theorem 1.2

The following observation of A. F. Beardon was used in [2] to prove the Stern–
Stolz theorem. The numbers bn may be complex, although we shortly lose this
generality after Corollary 5.2.

Lemma 5.1. Suppose that bn → 0 as n → ∞ . Given ε > 0 there is an

integer N such that if n > N then

(1 − ε)|bn| 6 %H3

(

j, tn(j)
)

6 (1 + ε)|bn|.

Proof. Since ι(z) = 1/z is a hyperbolic isometry of H3 that fixes j ,

sinh2

(

1

2
%H3

(

j, tn(j)
)

)

= sinh2

(

1

2
%H3(j, bn + j)

)

=
|bn|2

4
,

using equation (2.1). The result follows as sinh x and x are asymptotic as x → 0.

Lemma 5.1 has the following corollary, from which the Stern–Stolz theorem
is easily derived (see [2] for details).

Corollary 5.2. The two series
∑ |bn| and

∑

%H3

(

j, tn(j)
)

either both con-

verge or both diverge.

Observe that %H3

(

Tn−1(j), Tn(j)
)

= %H3

(

j, tn(j)
)

, therefore if bn → 0, we
can use Lemma 5.1 to estimate the hyperbolic distance between the terms Tn−1(j)
and Tn(j). In this section we focus on the significance in terms of hyperbolic geom-
etry of the restraint that each bn is not negative. We shall see that this condition
ensures that %H

(

j, Tn(j)
)

is an increasing sequence (Theorem 5.4). We then show

that the limit of this sequence is finite if and only if
∑

%H

(

j, tn(j)
)

converges
(Theorem 5.5). Only after these theorems do we focus on classical convergence
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and prove Theorem 5.7, which says that for continued fractions K(1 | bn) with
bn > 0, classical and general convergence are equivalent. Finally, Theorem 1.2 is
proven. All results other than those conclusions present in the Seidel–Stern theo-
rem, and all proofs are due to the author (see [4] for an account of the Seidel–Stern
theorem).

For the rest of this section we retain the notation tn(z) = 1/(bn +z), but now
all the bn are required to be non-negative real numbers. None of the theorems in
this section are true when the bn are allowed to be negative. Let L = {x + tj ∈
H : x ≤ 0} and let T−1

n (j) = xn + τnj . We also write %n for %H

(

j, Tn(j)
)

. The
following lemma contains the essential hyperbolic geometry behind Theorem 5.4.

Lemma 5.3. Let b > 0 . If z = u + tj ∈ L then z − b ∈ L and

cosh %(z − b, j)− cosh %(z, j) >
−u

t
b.

Proof. That z − b ∈ L is clear. Using (2.1),

cosh %(z − b, j) − cosh %(z, j) =
|z − b − j|2

2t
− |z − j|2

2t

=
b2 − 2bu

2t

>
−u

t
b.

Theorem 5.4. Each point T−1
n (j) is contained within L and the sequence

%n = %H

(

j, Tn(j)
)

is increasing.

Proof. The first claim is true by induction as certainly j ∈ L , and if xn+τnj =
T−1

n (j) ∈ L then T−1
n+1(j) = −bn+1 + 1/T−1

n (j) ∈ L . To prove the second claim,
observe that

%n = %H

(

T−1
n (j), j

)

= %H

(

ι
(

T−1
n (j)

)

, j
)

and
%n+1 = %H

(

T−1
n+1(j), j

)

= %H

(

−bn+1 + ι
(

T−1
n (j)

)

, j
)

,

then apply Lemma 5.3 to see that

(5.1) cosh %n+1 − cosh %n >
−xn

τn
bn+1 > 0,

from which the claim follows.

Either %n → ∞ , in which case Tn(j) accumulates only on R∞ , or %n →
k where k < ∞ , in which case Tn(j) remains within a compact subset of H .
The next theorem relates the convergence of Tn(j) to convergence of the series
∑

%H

(

j, tn(j)
)

.
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Theorem 5.5. If bn > 0 , then from Theorem 5.4, %H

(

j, Tn(j)
)

↗ k , where

k ∈ (0,∞] . The sum
∑

%H

(

j, tn(j)
)

converges if and only if k < ∞ .

Proof. Suppose that K =
∑

%H

(

j, tn(j)
)

is finite. Since Tn−1 is a %H

isometry, %H

(

j, tn(j)
)

= %H

(

Tn−1(j), Tn(j)
)

. Therefore

%H

(

j, Tn(j)
)

≤ %H

(

j, T1(j)
)

+ %H

(

T1(j), T2(j)
)

+ · · · + %H

(

Tn−1(j), Tn(j)
)

,

and this latter sum is equal to or less than K . Now suppose that k < ∞ . The
points xn+τnj = T−1

n (j) all lie within a compact subset of H so there is a positive
constant M such that |xn/τn| > M for every n . If %n = %n−1 then we see from
equation (5.1) that bn = 0. If %n 6= %n−1 , apply the mean value theorem with the
function cosh and points %n−1 and %n to see that there is a value qn between
%n−1 and %n ≤ k such that

%n − %n−1 =
cosh %n − cosh %n−1

sinh qn
.

Therefore using equation (5.1), whether or whether not %n is equal to %n−1 ,

%n − %n−1 >
−xn−1

τn−1 sinh qn
bn >

M

sinh k
bn.

Summing these equations for values of n from 1 to m we obtain,

%m >
M

sinh k

m
∑

n=1

bn,

therefore
∑

bn converges. Corollary 5.2 shows that
∑

%H

(

j, tn(j)
)

converges.

We must now relate convergence of Tn(j) to convergence of Tn(0). The
following theorem is well known, although the proof is our own.

Theorem 5.6. The sequence T1(0), T3(0), . . . decreases to β > 0 . The

sequence T2(0), T4(0), . . . increases to α > 0 , where α 6 β .

Proof. Let l = [0,∞] denote the closure of the positive real axis within R∞ .
Notice that tn(l) ⊆ l for every n . Hence

l ⊇ T1(l) ⊇ T2(l) ⊇ · · · .
Write Tn(l) = [αn, βn] , then αn increases to a limit α and βn decreases to a
limit β , where α 6 β . Since αn and βn are the end-points of Tn(l), either
αn = Tn(0) and βn = Tn(∞), or βn = Tn(0) and αn = Tn(∞). Suppose the
former situation occurs. Then

Tn+1(∞) = Tn(0) = αn 6 αn+1 < βn+1,

therefore βn+1 = Tn+1(0) and αn+1 = Tn+1(∞). Similarly, if βn = Tn(0) and
αn = Tn(∞) then αn+1 = Tn+1(0) and βn+1 = Tn+1(∞). Since β1 = T1(0) and
α1 = T1(∞), the result follows by induction.
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If α = β then the continued fraction K(1 | bn) converges classically, otherwise
it diverges classically.

Let γ denote the hyperbolic line in H from 0 to ∞ . Then Tn(γ) is the
hyperbolic line joining Tn(0) and Tn(∞). Lemma 2.1 shows that

σ
(

Tn(0), Tn(∞)
)

= 2/ cosh %H

(

j, Tn(γ)
)

.

Either α = β , in which case Tn converges classically to α , or α 6= β . In the
former case, Tn(0) → α and Tn(∞) = Tn−1(0) → α therefore also Tn(j) → α ,
as Tn(j) lies on the hyperbolic line Tn(γ) joining Tn(0) and Tn(∞), which is a
semi-circle of diminishing radius. In the latter case, σ

(

Tn(0), Tn(∞)
)

decreases

towards σ(α, β) > 0. We subsequently show that in this case %H

(

j, Tn(j)
)

is
bounded so that Tn does not converge generally. The next theorem encapsulates
certain aspects of this information.

Theorem 5.7. The sequence Tn converges generally if and only if it converges

classically.

Proof. We have seen that classical convergence entails general convergence
(this is true of any Möbius sequence associated with a continued fraction). Suppose
that Tn diverges classically. Theorem 5.6 ensures that the sequence with nth term
σ
(

Tn(0), Tn(∞)
)

decreases to a positive constant. Hence cosh %H

(

T−1
n (j), γ

)

=

2/σ
(

Tn(0), Tn(∞)
)

increases to a positive constant k > 1. Let zn = xn + τnj =
T−1

n (j). The closest point on γ to zn is |zn|j , therefore

cosh %H(zn, γ) = 1 +
|zn − |zn|j|2

2τn|zn|
=

|zn|
τn

,

by equation (2.1). Therefore

x2
n

τ2
n

=
x2

n + τ2
n

τ2
n

− 1 6 k − 1.

This shows that |xn/τn| 6 K for every n , where K =
√

k − 1 . Recall from
Theorem 5.4 that all zn ∈ L , therefore we have shown that all zn lie in the sector
S = {x + tj ∈ H : x 6 0, |x| 6 Kt} . We now show that no τn has value greater
than 1. This is certainly true of τ1 and τ2 . Suppose that τn is the smallest
counterexample to this posit, for some n > 2. A short computation shows that

zn−2 =
κn + τnj

κ2
n + τ2

n

=
κn + τnj

1 + 2bnκn − b2
n

(

(xn + bn)2 + τ2
n

) ,

where κn = (xn + bn) +
(

(xn + bn)2 + τ2
n

)

bn . Since xn−2 6 0, also κn 6 0, hence

τn−2 =
τn

1 + 2bnκn − b2
n

(

(xn + bn)2 + τ2
n

) > τn > 1,
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which is a contradiction. Hence all τn ≤ 1. On the other hand, if τn < 1/(1+K2)
then

τn+1 =
τn

x2
n + τ2

n

>
τn

K2τ2
n + τ2

n

=
1

(K2 + 1)τn
> 1,

which is again a contradiction. Hence zn is restricted to that portion of S with
j component between 1/(K2 + 1) and 1 (a compact set). Thus %H

(

j, T−1
n (j)

)

and hence %H

(

Tn(j), j
)

are bounded sequences, therefore Tn(j) does not converge
generally.

We remark that the above proof shows that when Tn diverges classically,
the sequence %H

(

T−1
n (j), j

)

is bounded. Theorem 5.5 and Corollary 5.2 then
demonstrate that

∑

|bn| converges, hence the work of Section 3 applies to show
that T−1

2n → g and T−1
2n+1 → ιg , for some Möbius map g . Thus, not only is T−1

n (j)

restricted to a compact subset of H , in fact T−1
2n (j) → ξ and T−1

2n+1(j) → ι(ξ) for
some ξ ∈ H .

It remains to supply a proof of Theorem 1.2.

Proof of Theorem 1.2. The comments preceding this proof along with the work
of Section 3 show that when Tn does not converge generally, we have T2n → f and
T2n+1 → fι , for some Möbius map f . Since j is a fixed point of ι , the sequence
Tn(j) converges. Hence we have proved the statement that Tn(j) → ζ , for some
ζ ∈ H . Theorem 5.5 demonstrates the equivalence of (i) and (ii) and Theorem 5.7
demonstrates the equivalence of (ii) and (iii).
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