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Abstract. We consider the conformal mappings f and g of the unit disk onto the inside
of an ellipse with foci at ±1 so that f(0) = 0, f ′(0) > 0 , g(0) = −1 and g′(0) > 0 . The main
purpose of this article is to show positivity of the Taylor coefficients of f and g about the origin.
To this end, we use a special relation between f and g and the fact that f satisfies a second-order
linear ODE. Some applications are given to the class of k -uniformly convex functions.

1. Introduction

If a univalent function f(z) = a0 +a1z +a2z
2 + · · · in the unit disk D = {z ∈

C : |z| < 1} has non-negative Taylor coefficients about the origin, various sharp
estimates can be easily deduced. For example, one can show the sharp inequalities

(1.1) |f(z)− a0 − a1z − · · · − akzk| ≤ f(|z|)− a0 − a1|z| − · · · − ak|z|k, |z| < 1,

and

(1.2) |f (k)(z)| ≤ f (k)(|z|), |z| < 1,

for k = 0, 1, 2, . . . .
As one immediately sees, necessary conditions for a univalent function f to

have non-negative Taylor coefficients about the origin are that f(0) ≥ 0, f ′(0) > 0
and that the image domain Ω = f(D) is symmetric in the real axis. Note that
these conditions imply that the relation f(z̄) = f(z) holds, and hence, all coeffi-
cients are real. It is also necessary that the farthest point of ∂Ω from f(0) is the
right-most point of Ω ∩ R . Conversely, under these conditions, however, it seems
to be difficult to give a sufficient geometric condition for positivity of the Taylor
coefficients. For instance, convexity of Ω is not sufficient. In fact, for constants
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0 < c < 1 and N < α < N + 1 with cα ≤ 1 and N being a positive integer, the
function

f(z) = (1 + cz)α =

∞∑

n=0

(
α

n

)
(cz)n

is univalent in D and has convex image because

Re

(
1 +

zf ′′(z)

f ′(z)

)
= 1 + (α − 1) Re

cz

1 + cz
> 1 − (α − 1)

c

1 − c
≥ 0.

Since
f (k)(z) = ckα(α − 1) · · · (α − k + 1)(1 + cz)α−k,

we observe that (1.2) is fulfilled by k = 0, 1, . . . , N but not by k = N + 1. Note
that one can deduce (1.1) for k from (1.2) for k + 1 by repeated integrations.

In this paper, we show non-negativity of the Taylor coefficients of specific
conformal mappings of the unit disk onto an ellipse. Let Eξ be the ellipse given
by (

u

cosh ξ

)2

+

(
v

sinh ξ

)2

= 1

and let Dξ be the interior of Eξ for ξ > 0. Note that Eξ has foci at 1 and −1
and that an arbitrary ellipse is similar to Eξ for some ξ . We prove the following
two results.

Theorem 1.1. Let fξ be the conformal mapping of the unit disk onto the

interior Dξ of the ellipse Eξ determined by fξ(0) = 0 and f ′
ξ(0) > 0 . Then fξ

has positive odd Taylor coefficients about the origin.

Theorem 1.2. Let gξ be the conformal mapping of the unit disk onto the

interior Dξ of the ellipse Eξ determined by gξ(0) = −1 and g′
ξ(0) > 0 . Then gξ

has positive Taylor coefficients about the origin except for the first one.

Since Dξ is invariant under the rotation by angle π about the origin, fξ is
an odd univalent function and is of the form

fξ(z) = a
(
z + A1z

3 + A2z
5 + · · ·

)
, a = f ′

ξ(0) > 0.

In particular, there exists a univalent function ϕ with ϕ(0) = 0, ϕ′(0) > 0 such

that
(
fξ(z)

)2
= ϕ(z2) (see [4]). Then

ϕ(z) = a2z
∞∑

n=0

( n∑

m=0

AmAn−m

)
zn,

where we set A0 = 1. Therefore, Theorem 1.1 yields that ϕ has positive Taylor
coefficients about the origin except for the first one. We will show the relation

2ϕ = g2ξ + 1
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in Section 2 (see Theorem 2.1). In this way, Theorem 1.2 follows from Theorem 1.1.
An explicit form of fξ was first given by Schwarz as early as in 1869 and is well

known nowadays. There is, however, less awareness of that fξ satisfies a second-
order homogeneous linear ordinary differential equation (see Section 3). Using this
ODE, we obtain linear recurrence relations between three successive coefficients
An−1 , An and An+1 . It is still difficult to show positivity of the coefficients.
The final stroke will be made by a theory of continued fractions, which will be
presented in Section 4.

We apply Theorem 1.2 to the study of k -uniformly convex functions intro-
duced by the first author and Wísniowska [8]. Indeed, the present article grew out
of a part of the first author’s habilitation [6] which summarizes the study of that
class. See Section 5 for details.

Acknowledgements. The authors are grateful to the referee for careful reading
of the manuscript and helpful suggestions.

2. Conformal representation of the interior of an ellipse

We begin with introduction of special functions involving elliptic integrals.
Let K(z, t) and K(t) be the normal and complete elliptic integrals of the first
kind, respectively, i.e.,

K(z, t) =

∫ z

0

dx√
(1 − x2)(1 − t2x2)

and K(t) = K(1, t) for 0 < t < 1. Note that Jacobi’s elliptic function sn( · , t) is
defined as the inverse function of K( · , t) with sn(0, t) = 0, where our notation
K(z, t) and sn(w, t) may not agree with the traditional one. It is well known that
K( · , t) maps the upper half plane conformally onto the rectangle with vertices at
±K(t) and ±K(t)+iK(t′), where t′ =

√
1 − t2 (see, for instance, [11, Chapter VI,

Section 3]). Since the interval [−1, 1] is mapped to the interval [−K(t), K(t)] , the
function K( · , t) can be continued analytically to the slit domain C\

(
(−∞,−1]∪

[1, +∞)
)

by the Schwarz reflection principle. In what follows, the function K( · , t)
will be understood in this way.

The quantity

µ(t) =
π

2
· K(t′)

K(t)
, t′ =

√
1 − t2 ,

is known as the modulus of the Grötzsch ring D \ [0, t] for 0 < t < 1. Note that
µ(t) decreases from +∞ to 0 when t moves from 0 to 1. For details, see [3].

We are now in a position to present an explicit expression of the function fξ .
Choose a number s ∈ (0, 1) so that µ(s) = 2ξ . Then the formula

(2.1) fξ(z) = sin

[
π

2K(s)
K

(
z/

√
s , s

)]
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can be deduced. Note that the inverse function is given by

z =
√

s sn
((

2K(s)/π
)
arcsin w, s

)

as is shown by [11, p. 296, (51)]1 (see also [13]).

Let us give an outline of the proof of (2.1) for the reader’s convenience. Recall
that the function K(z, s) maps the upper half-plane conformally onto the rectangle
{u + iv : −K(s) < u < K(s), 0 < v < K(s′)} , where s′ =

√
1 − s2 . Since

K
(
1/(sz̄), s

)
= K(z, s) + iK(s′)

holds, the upper half of the disk |z| < 1/
√

s is mapped conformally onto the
rectangle {u+ iv : −K(s) < u < K(s), 0 < v < K(s′)/2} . Therefore, the function(
π/

(
2K(s)

))
K(z/

√
s , s

)
maps the upper half of the unit disk onto the rectangle

R = {u + iv : −π/2 < u < π/2, 0 < v < ξ} . On the other hand, since

(2.2) sin(x + iy) = sin x cosh y + i cos x sinh y,

the function sin z maps R onto the upper half of Dξ . In this way, we see that
the function sin

((
π/

(
2K(s)

))
K

(
z/

√
s , s

))
maps the upper half of the unit disk

onto the upper half of Dξ . By the Schwarz reflection principle, we obtain the
expression in (2.1).

Since fξ

(
−√

s
)

= −1, the function gξ can be expressed by

gξ(z) = fξ

(
z −√

s

1 −√
s z

)
.

This formula is, however, not convenient to compute the Taylor coefficients of gξ

about the origin. This is a motivation of deduction of the following formula.

Theorem 2.1. For ξ > 0 , the relation g2ξ(z) = 2
(
fξ

(√
z

))2 − 1 holds for

|z| < 1 .

As was indicated, Theorem 1.2 immediately follows from Theorem 1.1 by
means of this identity. See also Theorem 5.1 for a related result.

The representations fξ and gξ also give explicit values of the hyperbolic
density of the domain Dξ . Recall that the hyperbolic density %D of a simply
connected domain D with #(C \ D) ≥ 2 is defined by %D(w0) = 1/|f ′(0)| for a
conformal mapping f of the unit disk D onto D with f(0) = w0 .

1 We remark that there is a confusion on p. 296 of Nehari’s book. Since c = πK ′/(2K) in his

notation, the norm q = e−K′/K should be given by e−2c/π instead of e−2c .
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Corollary 2.2. Let ξ = µ(s)/2 for s ∈ (0, 1) . Then

%Dξ
(0) =

2
√

s

π
K(s) and %D2ξ

(−1) = %D2ξ
(1) =

2s

π2

(
K(s)

)2
.

Proof. Since f ′
ξ(0) = π/

(
2
√

sK(s)
)

and g′
2ξ(0) = 2

(
f ′

ξ(0)
)2

we obtain the
required relations.

In order to prove Theorem 2.1, we recall some facts about Chebyshev polyno-
mials. We first consider the conformal mapping J of D onto Ĉ \ [−1, 1] defined
by J(z) = (z + z−1)/2. Since

J(e−ξ+iη) = cosh ξ cos η − i sinh ξ sin η,

the circle |z| = e−ξ is mapped by J onto the ellipse Eξ for ξ > 0 and the radial
segment (0, eiη) is mapped by J into the branch Hη of a hyperbola given by

(2.3)

(
u

cos η

)2

−
(

v

sin η

)2

= 1, u cos η > 0,

for η ∈ R with (2/π)η /∈ Z . Note that these conic sections have the common foci
at −1 and 1.

Let Tn be the Chebyshev polynomial of degree n , i.e., Tn(cos θ) = cos(nθ).
Then it is well known that the n -fold mapping z 7→ zn is conjugate to Tn under
J , in other words,

J(zn) = Tn

(
J(z)

)

holds for |z| < 1. In particular, one can see that the ellipse Eξ is mapped by
Tn onto Enξ in an n -to-one fashion and that the branch Hη of a hyperbola is
mapped by Tn bijectively to Hnη .

Applying the above argument to T2(w) = 2w2 − 1, we obtain the following.
We recall that Dξ is the interior of the ellipse Eξ .

Lemma 2.3. The Chebyshev polynomial T2(w) = 2w2 − 1 maps Dξ onto

D2ξ . Also, T2 maps the domain bounded by Hη and Hπ−η onto the connected

component of C \ H2η containing −1 . Both are two-sheeted branched covering

projections.

On the basis of the above lemma, we can prove Theorem 2.1.

Proof of Theorem 2.1. By Lemma 2.3, the composed function T2 ◦ fξ is a
two-sheeted covering projection of D onto D2ξ which sends the origin to the focus
−1 of E2ξ . Since T2◦fξ is even, the function g(z) = (T2◦fξ)

(√
z

)
is single-valued

and analytic in D . By construction, g is conformal and satisfies g′(0) > 0, and
therefore, g = g2ξ . Thus the theorem has been proved.
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The same reasoning yields a relation between conformal mappings onto do-
mains bounded by hyperbolas. Let Fη be the conformal mapping of D onto
the domain bounded by Hη and Hπ−η which are given by (2.3) with Fη(0) = 0
and F ′

η(0) > 0 for 0 < η < π/2. We also let Gη be the conformal mapping
of D onto the left component of C \ Hη with Gη(0) = −1, G′

η(0) > 0 for
0 < η < π , η 6= π/2. We define Gπ/2 as the limit of Gη as η → π/2, that is,
Gπ/2(z) = (z − 1)/(z + 1). Then we obtain the following.

Proposition 2.4. Let η ∈ (0, π/2) . Then G2η(z) = 2
(
Fη

(√
z

))2 − 1 for

|z| < 1 .

In view of (2.2) we see that the function sin z maps the parallel strip |Re z| <
a conformally onto the domain

{
u + iv : (u/ sin a)2 − (v/ cos a)2 < 1

}
for 0 <

a < π/2. Noting that the function arctan z maps the unit disk onto the strip
|Re w| < π/2, we have the expression

(2.4) Fη(z) = sin

((
2 − 4η

π

)
arctan z

)
for 0 < η < π/2.

3. A linear ODE satisfied by the conformal representation fξ

It is a noteworthy fact that the conformal representations fξ and Fη , which
are given in (2.1) and (2.4), respectively, satisfy simple second-order linear ordinary
differential equations (ODE).

Indeed, if we write b = 2−4η/π , we have F ′
η(z) = b(1+z2)−1 cos(b arctan z).

Differentiating both sides of (1+ z2)F ′
η(z) = b cos(b arctan z), we see that w = Fη

satisfies the differential equation

(1 + z2)2w′′ + 2z(1 + z2)w′ + b2w = 0.

Similarly, one can check that the function w = fξ(z) satisfies the differential
equation

(3.1) (1 − 2Mz2 + z4)w′′ − 2z(M − z2)w′ + cw = 0

in D , where M = (s + s−1)/2, c = π2/
(
4s

(
K(s)

)2)
and s ∈ (0, 1) is chosen so

that µ(s) = 2ξ .
Let w = f(z) be the solution to the differential equation (3.1) with the initial

conditions f(0) = 0 and f ′(0) = 1. Note that fξ can be written in the form
fξ = f ′

ξ(0)f , and hence, positivity of the Taylor coefficients of fξ is equivalent to
that of f .

As was seen in the introduction, f(z) has the Taylor expansion of the form

f(z) =

∞∑

n=0

Anz2n+1,



On conformal representations of the interior of an ellipse 335

with A0 = 1. Substituting the above expansion to the equation (3.1), we obtain
the following recurrence relations for the coefficients An :

(3.2) (2n + 2)(2n + 3)An+1 −
{
2M(2n + 1)2 − c

}
An + 2n(2n − 1)An−1 = 0

for n ≥ 0; here we have set A−1 = 0.
Since the image f(D) is bounded by an ellipse and, in particular, convex,

|An| ≤ 1 holds for every n ≥ 1 (see [4, p. 45]). As was explained in the introduc-
tion, all the coefficients An are real. However, we have no a priori information
about the sign of An .

We take a closer look at the recurrence formula (3.2). We now transform the
sequence by

Bn = (2n + 1)An.

Then B−1 = 0, B0 = 1 and the relation (3.2) turns to

(3.3) (n + 1)Bn+1 −
{

M(2n + 1) − c

2(2n + 1)

}
Bn + nBn−1 = 0

for n ≥ 0. We further set

En =
Bn

Bn−1

for n ≥ 0. Here, we adopt the convention En = ∞ when Bn−1 happens to be
zero. Thus, for instance, E0 = ∞ . By dividing both sides of (3.3) by (n + 1)Bn ,
we obtain

En+1 =
M(2n + 1)

n + 1
− c

(2n + 1)(2n + 2)
− n

n + 1
· 1

En
.

By letting

(3.4) pn =
n

n + 1
, qn =

M(2n − 1)

n
− c

2n(2n − 1)
,

the last relation can be rewritten in the form

(3.5) En+1 = qn+1 −
pn

En
, n = 0, 1, 2, . . . .

We recall that the constants M and c are given by

M =
1

2

(
s +

1

s

)
and c =

π2

4s
(
K(s)

)2 .

We remark that c =
(
f ′

ξ(0)
)2

= 1/
(
%Dξ

(0)
)2

(cf. Corollary 2.2). For a later use,
we give estimates of c .
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Lemma 3.1. The quantity c = π2/
(
4s

(
K(s)

)2)
satisfies the double inequal-

ity
1

s
− s ≤ c ≤ 1

s
− s

2
.

Proof. It is easily checked that the required inequality is equivalent to

(3.6)
π

2
√

1 − s2/2
≤ K(s) ≤ π

2
√

1 − s2

for 0 < s < 1. First, using the inequality
√

1 − s2x2 ≥
√

1 − s2 for 0 < x < 1,
we obtain

K(s) =

∫ 1

0

dx√
(1 − x2)(1 − s2x2)

≤ 1√
1 − s2

∫ 1

0

dx√
1 − x2

=
π

2
√

1 − s2
.

To show the other part, we need another technique. We first express K(s) in the
form

K(s) =

∫ π/2

0

dθ√
1 − s2 sin2 θ

=

∫ π/4

0

(
1√

1 − s2 sin2 θ
+

1√
1 − s2 cos2 θ

)
dθ.

Note here the inequality

(1 − s2 sin2 θ)(1 − s2 cos2 θ) = 1 − s2 +
s4

4
sin2(2θ) ≤

(
1 − s2

2

)2

.

We now use the inequality 1/X + 1/Y ≥ 2/
√

XY for X, Y > 0 to deduce

K(s) ≥
∫ π/4

0

2

4

√
(1 − s2 sin2 θ)(1 − s2 cos2 θ)

dθ ≥ π

2
√

1 − s2/2
.

Remark. Matti Vuorinen told us that the inequalities

2

1 +
√

1 − s2
≤ 2

π
K(s) ≤ 1

4
√

1 − s2
,

which are better than (3.6), are known (see [3, 4.6(3)]). See also [2, Section 7.4]
for a different kind of inequalities and related references. The authors thank him
for the above information.

Let us explain the difficulty of the recurrence relations (3.5). First note that
pn → 1 and qn → s + s−1 as n → ∞ . Thus, one can think that the dynamical
system En+1 = qn+1−pn+1/En converges to the autonomous system E◦

n+1 = s+
s−1 − 1/E◦

n as n → ∞ . As is easily observed, the linear fractional transformation
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f(x) = s + s−1 − x−1 has the attracting fixed point x = s−1 and the repelling
fixed point x = s . On the other hand, in reality, a numerical computation suggests
that En → s as n → ∞ . Therefore, usual methods of approximation and even
induction arguments seem to fail to show positivity of En . Therefore, we have to
take a different approach.

By (3.5), we can express En in terms of a continued fraction:

En = qn − pn−1

qn−1 −
pn−2

. . . − p1

q1

= qn − pn−1

qn−1 −
pn−2

qn−2 − · · ·−
p1

q1
.

We define the double sequence qm,n for 1 ≤ m ≤ n by induction of n − m .
Fix a positive integer n . First we set

qn,n = qn.

Suppose that qn,n, qn−1,n, . . . , qm+1,n have already been defined for 1 ≤ m < n .
Then, we set

(3.7) qm,n = qm − pm

qm+1,n
.

In this way, we can define qn,n, . . . , q1,n . Then we can restate positivity of En in
terms of qm,n .

Lemma 3.2. Let n be a positive integer. Then Em > 0 holds for each m
with 1 ≤ m ≤ n if and only if qm,n > 0 for each m with 1 ≤ m ≤ n .

Proof. We first assume that qm,n > 0 for all 1 ≤ m ≤ n . Then q1,n > 0
implies

E1 = q1 >
p1

q2,n
.

In particular, E1 > 0 (though this is implied by Lemma 3.1). Since q2,n > 0 by
assumption, we obtain

q2,n = q2 −
p2

q3,n
>

p1

E1
,

which is equivalent to

E2 = q2 −
p1

E1
>

p2

q3,n
.

In particular, we observe E2 > 0. We now use q3,n > 0 to see

q3,n = q3 −
p3

q4,n
>

p2

E2
.
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We repeat this procedure to get finally

qn,n = qn >
pn−1

En−1
,

which yields

En = qn − pn−1

En−1
> 0.

The converse can be seen by tracing back the above.

At this stage, we collect some elementary properties of qm,n . When we regard
qm,n as a function of s in (0, 1), we sometimes write qm,n(s) to indicate the
argument s . We also write qm,n(1) = lims→1 qm,n(s) if the limit exists. In
particular, we have qm(1) = qm,m(1) = 2 − 1/m because c = c(s) → 0 when
s → 1. We first prepare the following lemma.

Lemma 3.3. Let m be a positive integer. The function qm(s) is positive in

0 < s < 1 and the inequality qm(s) ≥ qm(1) holds for 0 < s ≤ (2m−2)/(2m−1) .

Remark. If the inequality qm(s) ≥ qm(1) held for all 0 < s < 1, the proof
of positivity of En would be simpler. Unfortunately, this is not the case.

Proof. By Lemma 3.1, we have c < s−1 − s/2. Thus, we obtain

qm ≥ q1 =
s + s−1

2
− c

2
>

3s

4
> 0.

It is easily verified that the condition qm(s) ≥ qm(1) = 2−1/m is equivalent to
(2/π)(1−s)K(s) ≥ 1/(2m−1). Since K(s) ≥ π/2, the condition s ≤ 1−1/(2m−1)
is enough to ensure the inequality qm(s) ≥ qm(1).

The following result is readily shown by (reverse) induction on m .

Lemma 3.4. Let a1, . . . , an; x1, . . . , xn and x′
1, . . . , x

′
n be positive numbers

with xm ≤ x′
m for m = 1, . . . , n . Define ym by reverse induction: yn = xn

and ym = xm − am+1/ym+1 for m < n . Similarly, set y′
n = x′

n and y′
m =

x′
m − am+1/y′

m+1 for m < n . Further suppose that ym > 0 for all 1 ≤ m ≤ n .

Then ym ≤ y′
m and, in particular, y′

m > 0 for all m .

With the aid of the above lemma, we can now show the following.

Lemma 3.5. Let m and n be integers with 2 ≤ m ≤ n . Then the quantity

qm,n = qm,n(s) is positive for 0 < s ≤ (2m − 2)/(2m − 1) .

Proof. We first show that qm,n(1) > 0 for 1 ≤ m ≤ n . In view of Lemma 3.2,
it is enough to see that En(1) is positive for each n ≥ 1. The solution w = f(z)
with f(0) = 0, f ′(0) = 1 to the equation (3.1) corresponding to the case when
s = 1 is nothing but the function arctanh z . Clearly, this has positive odd Taylor
coefficients about the origin, and therefore, the inequality En(1) > 0 follows.
Lemmas 3.3 and 3.4 now yield the inequality qm,n(s) ≥ qm,n(1) > 0 for 0 < s ≤
(2m − 2)/(2m − 1) and for 2 ≤ m ≤ n .
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The next simple fact will be a key to the proof of Theorem 1.1.

Lemma 3.6. Let n and n0 be integers with 2 ≤ n0 ≤ n . Suppose that

qm,n > 0 holds for every m with n0 ≤ m ≤ n . Then qm,n−1 > qm,n holds for

every m with n0 − 1 ≤ m ≤ n − 1 .

Proof. We shall show qm,n−1 > qm,n by reverse induction on m . For m =
n−1, the inequality holds because qn−1,n = qn−1,n−1 −pn−1/qn . We now assume
that qm,n−1 > qm,n holds for some m with n0 ≤ m ≤ n − 1. Note now that
qm,n > 0 by assumption. Since

qm−1,n−1 − qm−1,n = − pm−1

qm,n−1
+

pm−1

qm,n
=

pm−1(qm,n−1 − qm,n)

qm,n−1qm,n
,

we obtain qm−1,n−1 > qm−1,n . This procedure can be continued up to m − 1 =
n0 − 1.

At this stage, we can show that limn→∞ qm,n always exists.

Proposition 3.7. For each m ≥ 1 , the sequence qm,n has a limit in Ĉ when

n → ∞ .

Proof. Since qm,n and qm+1,n are related by a Möbius transformation de-
scribed in (3.7), if qm,n has a limit for some m then qm,n does for all m . By
Lemma 3.5, for a fixed s , there exists an integer N such that qm,n > 0 whenever
N ≤ m ≤ n . Lemma 3.6 now implies that qm−1,n is monotone decreasing with
respect to n . In particular, qm−1,n has a limit as n → ∞ for m ≥ N − 1.

We denote by qm,∞ the limit of qm,n as n → ∞ . In order to find a value of
qm,∞ , we employ the general theory of continued fractions, which will be explained
in the next section.

4. A continued fraction approach

In order to apply the general theory of continued fractions to our problem,
we recall some notions and results in the theory based on the work of L. Jacobsen
(Lorentzen) and W. J. Thron [5].

Let {Tn} be a sequence of Möbius maps. The sequence is said to be restrained

if there exist sequences {un} and {vn} of points in the Riemann sphere Ĉ =
C ∪ {∞} such that

lim inf
n→∞

d(un, vn) > 0

and that
lim

n→∞
d
(
Tn(un), Tn(vn)

)
= 0,

where d(z, w) denotes the chordal distance between z and w , namely, d(z, w) =
|z − w|/

√
(1 + |z|2)(1 + |w|2) . Note that the asymptotic behaviour of {Tn(un)}
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is unique in the sense that d
(
Tn(un), Tn(u′

n)
)
→ 0 for any other pair of sequences

{u′
n} and {v′

n} satisfying lim inf d(u′
n, v′

n) > 0 and lim d
(
Tn(u′

n), Tn(v′
n)

)
= 0

(see [5, Theorem 2.1]). Sometimes we say that {Tn} is restrained with {un}
when we want to indicate the associated sequence. A sequence {wn} is said to be
exceptional with respect to the restrained sequence {Tn} with {un} if

lim sup
n→∞

d
(
Tn(wn), Tn(un)

)
> 0.

Among several interesting results in [5], the following will be made use of in
the present paper.

Lemma 4.1 (Proposition 2.4 in [5]). Let {Tn} be a sequence of Möbius maps

which is restrained with {un} . Suppose that lim infn→∞ d
(
Tn(un),∞

)
> 0 . Then

for an exceptional sequence {wn}

lim inf
n→∞

d
(
wn, T−1

n (∞)
)

= 0.

We now return to our problem. Let

Rm(z) = qm − pm

z
, Sm = R1 ◦ · · · ◦ Rm, and Tm = S−1

m

for m ≥ 1, where pm and qm are given by (3.4). Then, by definition,

qm,n = (Rm ◦ · · · ◦ Rn)(∞).

In particular,

(4.1) q1,n = Sn(∞) = Sn+1(0).

Also, by noting the relation R−1
m (w) = pm/(qm − w), we observe

(4.2) Tn(0) =
pn

En
.

We now claim that our {Tn} is restrained. More concretely, we show the
following.

Lemma 4.2. For a fixed s ∈ (0, 1) , there exists a non-empty open interval

I = I(s) in R such that Tn(x) → s for every x ∈ I .

Proof. Since qn → s + s−1 (> 2) as n → ∞ , one can take an integer N
so that qn > 2 for all n ≥ N . Let αn = 1/

√
pn =

√
(n + 1)/n and choose

tn ∈ (0, 1) for n ≥ N so that αnqn = tn + 1/tn , and thus,

(4.3)
1

tn
=

αnqn +
√

(αnqn)2 − 4

2
.
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We now investigate the asymptotic behaviour of tn as n → ∞ . Since

αn = 1 +
1

2n
− 1

8n2
+

1

16n3
+ O(n−4)

as n → ∞ , we have

αnqn = s +
1

s
− 2c + 3(s + s−1)

8
· 1

n2
+

s + s−1 − 2c

8
· 1

n3
+ O(n−4)

and

(4.4) αn+1qn+1 − αnqn =
2c + 3(s + s−1)

4
· 1

n3
+ O(n−4)

as n → ∞ . In particular, αn+1qn+1 > αnqn and hence tn+1 < tn for sufficiently
large n . It is obvious that tn → s as n → ∞ . Also, by (4.3) and (4.4), we obtain
1/tn+1 − 1/tn = O(n−3). If we set sn = tn/αn , then

1

sn−1
− 1

sn
=

αn−1 − αn

tn−1
+ αn

(
1

tn−1
− 1

tn

)
=

1

2sn2
+ o(n−2)

as n → ∞ . In particular, sn−1 < sn for sufficiently large n . We replace N by a
larger number if necessary so that tn+1 < tn and sn−1 < sn hold for all n ≥ N .
In particular, we have tn ≤ τ for n ≥ N , where we set τ = tN (< 1). Since
1/αn − sn → 1 − s(> 0) as n → ∞ , we may further assume that the inequality

(4.5) τ

(
1

αn
− sn

)
<

1

αn+1
− sn+1

holds for each n ≥ N . In the rest of the proof, we consider only integers n with
n ≥ N .

It is easy to check that sn is a fixed point of the map Un = R−1
n . Furthermore,

Un(x) − Un(sn) =
pn(x − sn)

(qn − x)(qn − sn)
=

sn

qn − x
(x − sn).

When sn < x < 1/αn , one has 0 < sn/(qn−x) = tn/(αnqn−αnx) ≤ τ/(2−1) = τ ,
and therefore

(4.6) 0 < Un(x) − Un(sn) ≤ τ(x − sn).

For xN ∈ R , we set xn = (Un ◦ · · · ◦ UN+1)(xN ) for n > N . Then, by (4.6)
and (4.5), if sn < xn < 1/αn we have

0 < xn+1 − sn+1 = Un+1(xn) − Un+1(sn+1) ≤ τ(xn − sn+1) < τ(xn − sn)

< τ

(
1

αn
− sn

)
<

1

αn+1
− sn+1,

and therefore, sn+1 < xn+1 < 1/αn+1 . By induction, we have sn < xn < 1/αn

for all n ≥ N if we take xN from (sN , 1/αN ). Therefore, the interval I =
SN

(
(sN , 1/αN )

)
works for the assertion.
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If we choose a pair of distinct points x0 and x′
0 from the interval I in the

last lemma, then d
(
Tn(x0), Tn(x′

0)
)
→ d(s, s) = 0 as n → ∞ . In particular, {Tn}

is a restrained sequence with constant sequence {x0} . With the aid of this fact,
we can now show the following.

Lemma 4.3. We have q1,∞ = 0 .

Proof. Fix a number x0 ∈ I . Then Tn(x0) → s as n → ∞ . In particular,
d
(
Tn(x0),∞

)
→ d(s,∞) > 0. Next we observe the relation T−1

n (∞) = Sn(∞) =
q1,n by (4.1). Suppose now that the constant sequence {0} were not exceptional
with respect to {Tn} . That would mean Tn(0) → s when n → ∞ . Now we recall
the relation (4.2). Since En = Bn/Bn−1 and Bn = (2n + 1)An , we would have

lim
n→∞

An

An−1
= lim

n→∞

Bn

pnBn−1
= lim

n→∞

1

Tn(0)
=

1

s
> 1,

which would violate the boundedness of the sequence {An} . Thus we have con-
cluded that the constant sequence {0} is exceptional with respect to {Tn} . Lemma
4.1 now yields

lim inf
n→∞

d(0, q1,n) = lim inf
n→∞

d
(
0, T−1

n (∞)
)

= 0,

which implies that 0 is a limit point of the convergent sequence {q1,n} (see Propo-
sition 3.7). Thus q1,∞ = limn→∞ q1,n must be 0.

Proof of Theorem 1.1. We now show the inequality qm,n > 0 for all m ≤ n .
This implies En > 0 for all n ≥ 1 by Lemma 3.2, and thus Theorem 1.1 follows.

For each s ∈ (0, 1), by Lemma 3.5, we see that there exists an integer N ≥ 1
such that qm,n > 0 for any pair of integers m , n with N ≤ m ≤ n . We denote by
N(s) the minimum of such numbers N for s ∈ (0, 1). Lemma 3.5 implies also that
N(s) ≤ m for s ∈

(
0, (2m−2)/(2m−1)

]
. In particular, N(s) ≤ 2 for s ∈ (0, 2/3].

If N(s) ≤ 2, then Lemma 3.6 gives us the information q1,n > q1,n+1 for n ≥ 1.
Since q1,n → 0 by Lemma 4.3, we now conclude that q1,n > 0 for n ≥ 1. Thus
N(s) must be 1 in this case. In particular, N(s) = 1 for s ∈ (0, 2/3].

Suppose that N(s) > 2 for some s . Let s0 be the infimum of the set {s ∈
(0, 1) : N(s) > 2} . As we observed above, N(s) = 1 for s < s0 , namely, qm,n(s) >
0 for all 1 ≤ m ≤ n , and thus 0 < En(s) < +∞ , n ≥ 1, for s < s0 .

Since N(s) is locally bounded in 0 < s < 1, there exist an integer N > 2
and a decreasing sequence {sk} such that N(sk) = N and sk → s0 as k → ∞ .
Since qN,n(sk) > 0 for n ≥ N , Lemma 3.6 yields qN−1,n−1(sk) > qN−1,n(sk) for
n ≥ N . In particular, we obtain qN−1,n−1(sk) > qN−1,∞(sk) for n ≥ N . By
minimality of N(sk), we see that −∞ ≤ qN−1,∞(sk) < 0. On the other hand,
qN−1,∞(s) ≥ 0 for s < s0 . By continuity, we obtain qN−1,∞(s0) = ∞ or 0. Since

SN−2(qN−1,∞) = SN−2

(
lim

n→∞
qN−1,n

)
= lim

n→∞
SN−2(qN−1,n) = lim

n→∞
q1,n = 0,
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we see that qN−1,∞ = TN−2(0) = pN−2/EN−2 . So EN−2(s0) = 0 or EN−2(s0) =
∞ .

Suppose first that EN−2(s0) = 0. Now EN−2(s) approaches 0 from the right
as s → s−

0 . On the other hand, EN−1(s) > 0 implies

qN−1(s) >
pN−1

EN−2(s)

for s < s0 . Therefore, as s → s−

0 the right-hand side goes to ∞ , which forces
qN−1(s0) to be infinity. Thus we have reached a contradiction.

We next suppose that EN−2(s0) = ∞ . In this case, EN−3(s1) = 0 by (3.5).
Then the same argument as above leads to a contradiction.

At any event, we get a contradiction. Thus the possibility that N(s) > 2 for
some 0 < s < 1 has been ruled out. Therefore N(s) = 1, namely, qm,n(s) > 0 for
1 ≤ m ≤ n .

Numerical experiments suggest the following conjectures, which seem to be
difficult to prove by simple induction arguments. Recall that En = En(s) is
defined as (2n + 1)An/(2n − 1)An−1 in Section 3.

Conjecture 4.4.

(i) En(s) is increasing in 0 < s < 1 for each n ≥ 1 .

(ii) En(s) monotonically increases to s as n → ∞ .

(iii) En(s)/s increases from (2n + 1)/(2n + 2) to 1 when s moves from 0 to 1 .

(iv) Let a ∈ Dξ ∩ (−∞, 0) . The conformal map f of the unit disk D onto Dξ

determined by f(0) = a and f ′(0) > 0 has positive Taylor coefficients except

for the first one.

Repeated use of (iii) would yield the inequality

(2n − 1)!!

(2n)!!
· sn

n + 1
≤ An(s) ≤ sn

2n + 1

for each n ≥ 1 and for each s ∈ (0, 1). Note that Stirling’s formula implies

(2n − 1)!!

(2n)!!
=

(2n)!

22n(n!)2
∼ 1√

πn
as n → ∞ .

5. Applications to k -uniformly convex functions

We consider the domain

(5.1) Ωk = {u + iv ∈ C : u2 > k2(u − 1)2 + k2v2, u > 0}
for k ∈ [0,∞). Note that 1 ∈ Ωk for all k . Ω0 is nothing but the right half-plane.
When 0 < k < 1, the domain Ωk is the unbounded domain enclosed by the right
half of the hyperbola

(
(1 − k2)u + k2

k

)2

−
(

(1 − k2)v√
1 − k2

)2

= 1
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with foci at 1 and −(1 + k2)/(1− k2). When k = 1, the domain Ω1 becomes the
unbounded domain enclosed by the parabola

v2 = 2u − 1

with focus at 1. When k > 1, the domain Ωk is the interior of the ellipse
(

(k2 − 1)u − k2

k

)2

+

(
(k2 − 1)v√

k2 − 1

)2

= 1

with foci at 1 and (k2 + 1)/(k2 − 1). For every k , the domain Ωk is convex and
symmetric in the real axis. Note also that Ωk1

⊃ Ωk2
if 0 ≤ k1 ≤ k2 and that Ωk

converges to Ωk0
in the sense of Carathéodory when k → k0 .

An analytic function f in the unit disk D normalized by f(0) = 0 and
f ′(0) = 1 is called k -uniformly convex if 1 + zf ′′(z)/f ′(z) ∈ Ωk for z ∈ D .
This concept was introduced and studied by the first author and Wísniowska [8],
[7]. Clearly, 0-uniformly convex functions are exactly same as convex functions.
Moreover, uniformly convex functions introduced by Goodman are characterized
as 1-uniformly convex functions (see [10] and [12]).

Let Pk be the conformal mapping of D onto Ωk determined by the conditions
Pk(0) = 1 and P ′

k(0) > 0. They gave a concrete expression for Pk .

Theorem A (Kanas–Wísniowska [8]). The conformal map Pk: D → Ωk with

Pk(0) = 1 and P ′
k(0) > 0 is given by

Pk(z) =





(1 + z)/(1 − z) if k = 0,

(1 − k2)−1 cosh
[
Ck log

(
1 +

√
z

)
/
(
1 −√

z
)]

− k2/(1 − k2) if 0 < k < 1,

1 + (2/π2)
[
log

(
1 +

√
z

)
/
(
1 −√

z
)]2

if k = 1,

(k2 − 1)−1 sin
[
CkK

((
z/

√
t − 1

)
/
(
1 −

√
tz

)
, t

)]
+ k2/(k2 − 1) if 1 < k,

where Ck = (2/π) arccosk for 0 < k < 1 and Ck = π/
(
2K(t)

)
and t ∈ (0, 1) is

chosen so that k = cosh
(
µ(t)/2

)
for k > 1 .

By Theorem 2.1, we can obtain another expression which is more convenient
to compute the Taylor expansion about the origin.

Theorem 5.1. For k ≤ 0 , the conformal map Pk of the unit disk onto the

domain Ωk with Pk(0) = 1 and P ′
k(0) > 0 is expressed as

(5.2) Pk(z) = 1 +
(
Qk

(√
z

))2
,

where

Qk(z) =





√
2 z/

√
1 − z2 if k = 0,√

2

1 − k2
sinh(Ck arctanh z) if 0 < k < 1,

√
1

2π2
arctanh z if k = 1,

√
2

k2 − 1
sin

(
C ′

kK
(
z/

√
s , s

))
if 1 < k.
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Here, Ck = (2/π) arccosk when 0 < k < 1 , and C ′
k = π/

(
2K(s)

)
when k > 1 ,

where s ∈ (0, 1) is chosen so that k = cosh µ(s) .

Furthermore, the function Qk is odd and maps the unit disk conformally onto

the domain Wk = {u + iv : (k − 1)u2 + (k + 1)v2 < 1} .

This result was presented in the first author’s habilitation [6, Theorem 2.2.2]
with a proof slightly different from the one here.

It is easily checked that Wk is the inside of a hyperbola when k < 1 and Wk

is the interior of an ellipse when k > 1. When k = 1, the domain Wk becomes
the parallel strip −1/

√
2 < Im w < 1/

√
2 . Note that Wk is invariant under the

involution w 7→ −w . The relation between t and s in Theorems A and 5.1 is
given by s = 2

√
t /(1 + t) (see [11, p. 293, (43)]).

The reader might expect that the functions Pk could be expressed in a unified
way for all 0 < k < ∞ by introducing another kind of special functions. It is,
however, hopeless to do that because we discarded the left half of the “interior” of
the hyperbola when k became less than 1 (see also that the forms of corresponding
differential equations are different). Though we can prove Theorem 5.1 by using
Theorem A, we give an independent proof so that the present article be self-
contained as far as possible.

Proof of Theorem 5.1. First let k > 1. Choose ξ > 0 so that cosh(2ξ) = k ,
namely, k = cosh

(
µ(s)

)
. Since the similarity

L(z) = (z + k2)/(k2 − 1) = 1 + (z + 1)/(k2 − 1)

maps −1 to 1 and 1 to (k2+1)/(k2−1), respectively, the image L(D2ξ) coincides
with Ωk . Thus Pk = L ◦ g2ξ = 1 + (g2ξ + 1)/(k2 − 1). By Theorem 1.2, we

obtain the relation Pk(z) = 1 + 2
(
fξ

(√
z

))2
/(k2 − 1). Hence, we conclude that

Pk(z) = 1 +
(
Qk

(√
z

))2
.

The case when 0 < k < 1 can be treated as above. Indeed, take a number
η ∈ (0, π/4) so that k = cos 2η and let L(z) = (z + k2)/(k2 − 1). Then the
similarity L maps the left component of C\Hπ−2η onto Ωk . Noting L′(−1) < 0,
we obtain the relation Pk(z) = L

(
Gπ−2η(−z)

)
for z ∈ D . Proposition 2.4 and

formula (2.4) now yield

Pk(z) = L
(
2
(
Fπ/2−η

(
i
√

z
))2 − 1

)
= L

(
2 sin

(
(4η/π) arctan

(
i
√

z
))2 − 1

)

= L
(
−2 sinh

(
(4η/π) arctanh

(√
z

))2 − 1
)

= 1 +
(
Qk

(√
z

))2
.

When k = 1, the expression is obtained as the limiting case when k → 1.

As an immediate corollary, we have another characterization of k -uniformly
convex functions (cf. [6, Theorem 3.8.1]).
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Theorem 5.2. For a function f locally univalent and analytic in the unit

disk D and normalized so that f(0) = 0 , f ′(0) = 1 , let g be the analytic branch

of log f ′ determined by g(0) = 0 . The function f is k -uniformly convex if and

only if
√

zg′(z) ∈ Wk for each z ∈ D .

Proof. Set p(z) = 1 + zf ′′(z)/f ′(z). It is enough to show that p(D) ⊂ Ωk .
By assumption, there exists a point w ∈ Wk such that zg′(z) = w2 for each
z ∈ D . Choose a point ζ ∈ D so that Qk(ζ) = w . Then, p(z) = 1 + zg′(z) =

1 +
(
Qk(ζ)

)2
= Pk(ζ2) by Theorem 5.1, which implies p(z) ∈ Ωk .

The next result was also claimed in [6, Theorem 2.3.3]. However, the proof
for the case k > 1 contained a serious error. In order to correct it, the present
joint research was initiated.

Theorem 5.3. The conformal representation Pk of Ωk with Pk(0) = 1 ,

P ′
k(0) > 0 has positive Taylor coefficients about the origin for each k ≥ 0 .

Proof. The assertion for 0 ≤ k ≤ 1 can be deduced by Theorem 5.1 because
sinh z and arctanh z both have positive odd Taylor coefficients about the origin.
The assertion for k > 1 follows from Theorem 1.2 since Pk = 1+(g2ξ +1)/(k2−1)
as observed in the proof of Theorem 5.1.

We remark that for 0 < k < 1, the function w = Qk(z) satisfies the linear
ODE

(5.3) (1 − z2)2w′′ − 2z(1 − z2)w′ − C2
kw = 0

in D . By using this, one can also show positivity of the Taylor coefficients of
Pk about the origin. Note that this differential equation is a special case of the
Legendre equation (see, for example, [1, Chapter 8]).

An analytic function p in the unit disk is called a Carathéodory function if
p(0) = 1 and if p has positive real part, in other words, Re p(z) > 0 holds for
|z| < 1. The class of Carathéodory functions will be denoted by P .

For two analytic functions f and g in the unit disk D , we say that f is
subordinate to g and denote it by f ≺ g if there exists an analytic map ω: D → D

such that f = g ◦ ω and ω(0) = 0. For each Carathéodory function q , we define
the subclass

P(q) = {p ∈ P : p ≺ q}
of P . For instance, a normalized analytic function f in the unit disk is k -
uniformly convex if and only if the function 1 + zf ′′(z)/f ′(z) belongs to P(Pk).

If q has some nice properties, then elements of P(q) are dominated by q in
various ways.

Proposition 5.4. Suppose that a Carathéodory function q is convex univa-

lent and has non-negative Taylor coefficients about the origin. Then each element

p of P(q) satisfies

q(−|z|) ≤ Re p(z) ≤ |p(z)| ≤ q(|z|)
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for |z| < 1 .

Proof. We write pr(z) = p(rz) for 0 < r < 1. The Lindelöf principle says
that p ≺ q implies pr ≺ qr for all 0 < r < 1. Therefore, for a fixed r ∈ [0, 1), we
obtain

min
|z|=r

Re q(z) ≤ Re p(z0) ≤ |p(z0)| ≤ max
|z|=r

|q(z)|

for any z0 with |z0| = r . Notice now that q is symmetric, i.e., q(z) = q(z̄),
because q has non-negative (thus real) coefficients. Since qr is convex (see the
proof of Theorem 2.1 in [4]) and symmetric and Re qr > 0, the relation

min
|z|=r

Re q(z) = q(−r)

can be deduced. On the other hand, the non-negativity of the coefficients means
that q can be expressed in the form

q(z) = 1 +
∞∑

n=1

anzn, |z| < 1,

for some an ≥ 0. Therefore,

|q(z)| ≤ 1 +
∞∑

n=1

an|z|n = q(|z|),

and thus,
max
|z|=r

|q(z)| = q(r)

follows.

This, together with Theorem 5.3, implies the following.

Corollary 5.5. Let 0 ≤ k < ∞ and p ∈ P(Pk) . Then the inequalities

Re p(z) ≤ |p(z)| ≤





1 +
2

1 − k2
sinh2

(
2 arctanh

√
r

π arccos k

)
for k ∈ [0, 1),

1 +
8

π2
arctanh2 √r for k = 1,

1 +
2

k2 − 1
sin2

(
π

2K(t)
K

(√
r/t , t

))
for k > 1,

and

|p(z)| ≥ Re p(z) ≥





1 − 2

1 − k2
sin2

(
2 arctan

√
r

π arccos k

)
for k ∈ [0, 1),

1 − 8

π2
arctan2

√
r for k = 1,

1 − 2

k2 − 1
sinh2

(
π

2K(t)
K̃

(√
r/t , t

))
for k > 1,
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hold for z ∈ D with |z| = r . In particular, the inequalities

k

k + 1
< Re p(z) ≤ |p(z)|

hold for all |z| < 1 and all k > 0 and |p(z)| < k/(k − 1) holds for all |z| < 1 and

k > 1 .

In the above, we set

K̃(r, t) = −iK(ir, t) =

∫ r

0

dx√
(1 + x2)(1 + t2x2)

.

It is expected that the positivity theorem (Theorem 5.1) has more applications
to the class of k -uniformly convex functions. For instance, it gives an improvement
of the bound for the lengths of the images of the unit circle under k -uniformly
starlike functions (see [9, Theorem 3.5]).
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[13] Szegö, G.: Conformal mapping of the interior of an ellipse onto a circle. - Amer. Math.
Monthly 57, 1950, 474–478.

Received 29 March 2005


