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Abstract. Let u: R
2 ⊃ Ω → R

M denote a local minimizer of J [w] =
∫

Ω f(∇kw) dx , where

k ≥ 2 and ∇kw is the tensor of all kth order (weak) partial derivatives. Assuming rather general
growth and ellipticity conditions for f , we prove that u actually belongs to the class Ck,α(Ω;RM )
by the way extending the result of [BF2] to the higher order case by using different methods. A
major tool is a lemma on the higher integrability of functions established in [BFZ].

1. Introduction

Let Ω denote a bounded domain in R
2 and consider a function u: Ω → R

M

which locally minimizes the variational integral

J [w,Ω] =

∫

Ω

f(∇kw) dx,

where ∇kw represents the tensor of all kth order (weak) partial derivatives. Our
main concern is the investigation of the smoothness properties of such local min-
imizers under suitable assumptions on the energy density f . For the first order
case (i.e. k = 1) we have rather general results which can be found for example in
the textbooks of Morrey [Mo], Ladyzhenskaya and Ural’tseva [LU], Gilbarg and
Trudinger [GT] or Giaquinta [Gi], for an update of the history including recent
contributions we refer to [Bi]. In order to keep our exposition simple (and only
for this reason) we consider the scalar case (i.e. M = 1) and restrict ourselves to
variational problems involving the second (generalized) derivative. Then our varia-
tional problem is related to the theory of plates: one may think of u: Ω → R as the
displacement in vertical direction from the flat state of an elastic plate. The clas-
sical case of a potential f with quadratic growth is discussed in the monographs of
Ciarlet and Rabier [CR], Necǎs and Hlávácek [NH], Chudinovich and Constanda
[CC] or Friedman [Fr], further references are contained in Zeidler’s book [Ze]. We
also like to remark that plates with other hardening laws (logarithmic and power
growth case) together with an additional obstacle have been studied in the papers
[BF1] and [FLM] but not with optimal regularity results. The purpose of this
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note is to present a rather satisfying regularity theory for a quite large class of
potentials allowing even anisotropic growth.

To be precise let M denote the space of all (2×2)-matrices and suppose that
we are given a function f : M → [0,∞) of class C2 which satisfies with exponents
1 < p ≤ q < ∞ the anisotropic ellipticity estimate

(1.1) λ(1 + |ξ|2)(p−2)/2|σ|2 ≤ D2f(ξ)(σ, σ) ≤ Λ(1 + |ξ|2)(q−2)/2|σ|2

for all ξ , σ ∈ M with positive constants λ , Λ. Note that (1.1) implies the growth
condition

(1.2) a|ξ|p − b ≤ f(ξ) ≤ A|ξ|q +B

with suitable constants a , A > 0, b , B ≥ 0. Let

J [w,Ω] =

∫

Ω

f(∇2w) dx, ∇2w = (∂α∂βw)1≤α,β≤2.

We say that a function u ∈ W 2
p,loc(Ω) is a local J -minimizer if and only if

J [u,Ω′] <∞ for any subdomain Ω′
b Ω and

J [u,Ω′] ≤ J [v,Ω′]

for all v ∈ W 2
p,loc(Ω) such that u − v ∈ W̊ 2

p (Ω′) (here W k
p,loc(Ω) etc. denote the

standard Sobolev spaces, see [Ad]). Note that (1.1) implies the strict convexity
of f . Therefore, given a function u0 ∈ W 2

q (Ω), the direct method ensures the
existence of a unique J -minimizer u in the class

{

v ∈W 2
p (Ω) : J [v,Ω] < ∞, v − u0 ∈ W̊ 2

p (Ω)
}

which motivates the discussion of local J -minimizers. Our main result reads as
follows:

Theorem 1.1. Let u denote a local J -minimizer under condition (1.1) .
Assume further that

(1.3) q < min(2p, p+ 2)

holds. Then u is of class C2,α(Ω) for any 0 < α < 1 .

Remark 1.1. (i) Clearly the result of Theorem 1.1 extends to local minimiz-
ers of the variational integral

I[w,Ω] =

∫

Ω

f(∇2w) dx+

∫

Ω

g(∇w) dx,
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where f is as before and where g denotes a density of class C2 satisfying

0 ≤ D2g(ξ)(η, η) ≤ c(1 + |ξ|2)(s−2)/2|η|2

for some suitable exponent s . In case p ≥ 2 any finite number is admissible for
s , in case p < 2 we require the bound s ≤ 2p/(2 − p). The details are left to the
reader.

(ii) Without loss of generality we may assume that q ≥ 2: if (1.1) holds with
some exponent q < 2, then of course (1.1) is true with q replaced by q̄ := 2 and
(1.3) continues to hold for the new exponent.

(iii) If we consider the higher order variational integral
∫

Ω
f(∇kw) dx with

k ≥ 2 and f satisfying (1.1), then (1.3) implies that local minimizers u ∈W k
p,loc(Ω)

actually belong to the space Ck,α(Ω).

(iv) The degree of smoothness of u can be improved by standard arguments
provided f is sufficiently regular.

(v) A typical example of an energy J satisfying the assumptions of Theo-
rem 1.1 is given by

J [w,Ω] =

∫

Ω

|∇2w|2 dx+

∫

Ω

(1 + |∂1∂2w|
2)q/2 dx

with some exponent q ∈ (2, 4).

(vi) Our arguments can easily be adjusted to prove Ck,α -regularity of local
minimizers u ∈ W k

p(x),loc(Ω) of the energy
∫

Ω
(1 + |∇kw|2)p(x)/2 dx provided that

1 < p∗ ≤ p(x) ≤ p∗ < ∞ for some numbers p∗ , p∗ and if p(x) is sufficiently
smooth. Another possible extension concerns the logarithmic case, i.e. we now
consider the variational integral

∫

Ω
|∇kw| ln(1+|∇kw|) dx and its local minimizers

which have to be taken from the corresponding higher order Orlicz–Sobolev space.

The proof of Theorem 1.1 is organized as follows: we first introduce some suit-
able regularization and then prove the existence of higher order weak derivatives
for this approximating sequence in Step 2. Here we also derive a Caccioppoli-type
inequality using difference quotient methods. In a third step we deduce uniform
higher integrability of the second generalized derivatives for any finite exponent.
From this together with a lemma established in [BFZ] we finally obtain our regu-
larity result in the last two steps.

2. Proof of Theorem 1.1

Step 1. Approximation. Let us fix some open domains Ω1 b Ω2 b Ω and
denote by ūm the mollification of u with radius 1/m , in particular

‖ūm − u‖W 2
p (Ω2)

m→∞
−→ 0.
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Jensen’s inequality implies

J [ūm,Ω2] ≤ J [u,Ω2] + τm,

where τm → 0 as m → ∞ . This, together with the lower semicontinuity of the
functional J , shows that

(2.1) J [ūm,Ω2]
m→∞
−→ J [u,Ω2].

Next let

%m := ‖ūm − u‖W 2
p (Ω2)

[
∫

Ω2

(1 + |∇2ūm|2)q/2 dx

]−1

,

which obviously tends to 0 as m → ∞ . With these preliminaries we introduce
the regularized functional

Jm[w,Ω2] := %m

∫

Ω2

(1 + |∇2w|2)q/2 dx+ J [w,Ω2]

and the corresponding regularizing sequence {um} as the sequence of the unique
solutions to the problems

(2.2) Jm[ · ,Ω2] → min in ūm + W̊ 2
q (Ω2).

By (2.1) and (2.2) we have

Jm[um,Ω2] ≤ Jm[ūm,Ω2]

= ‖ūm − u‖W 2
p (Ω2) + J [ūm,Ω2]

m→∞
−→ J [u,Ω2],

hence one gets

(2.3) lim sup
m→∞

Jm[um,Ω2] ≤ J [u,Ω2].

On account of (2.3) and the growth of f we may assume

um
m→∞
⇁ : û in W 2

p (Ω2).

Moreover, lower semicontinuity gives

J [û,Ω2] ≤ lim inf
m→∞

J [um,Ω2],
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which together with (2.3) and the strict convexity of f implies û = u (here we
also note that û − u ∈ W̊ 2

p (Ω2)). Summarizing the results it is shown up to now
that (as m→ ∞)

(2.4)
um ⇁ u in W 2

p (Ω2),

Jm[um,Ω2] → J [u,Ω2].

Step 2. Existence of higher order weak derivatives. In this second step we
will prove that (fm(ξ) := %m(1 + |ξ|2)q/2 + f(ξ))

(2.5)

∫

Ω2

η6D2fm(∇2um)(∂α∇
2um, ∂α∇

2um) dx

≤ c(‖∇η‖2
∞ + ‖∇2η‖2

∞)

∫

spt∇η

|D2fm(∇2um)|
[

|∇2um|2 + |∇um|2
]

dx,

where η ∈ C∞
0 (Ω2), 0 ≤ η ≤ 1, η ≡ 1 on Ω1 and where we take the sum over

repeated indices. To this purpose let us recall the Euler equation

(2.6)

∫

Ω2

Dfm(∇2um) : ∇2ϕ = 0 for all ϕ ∈ W̊ 2
q (Ω2).

If ∆h denotes the difference quotient in the coordinate direction eα , α = 1, 2,
then the test function ∆−h(η6∆hum) is admissible in (2.6) with the result

(2.7)

∫

Ω2

∆h{Dfm(∇2um)} : ∇2(η6∆hum) dx = 0.

Now denote by Bx the bilinear form

Bx =

∫ 1

0

D2fm

(

∇2um(x) + th∇2(∆hum)(x)
)

dt,

and observe that

∆h{Dfm(∇2um)}(x) =
1

h

∫ 1

0

d

dt
Dfm

(

∇2um(x)

+ t[∇2um(x+ heα) −∇2um(x)]
)

dt

=
1

h

∫ 1

0

d

dt
Dfm

(

∇2um(x) + ht∇2(∆hum)(x)
)

dt

= Bx

(

∇2(∆hum)(x), ·
)

,
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hence (2.7) can be written as
∫

Ω2

Bx

(

∇2(∆hum),∇2(η6∆hum)
)

dx = 0,

which means that we have

(2.8)

∫

Ω2

η6
Bx

(

∇2(∆hum),∇2(∆hum)
)

dx

= −

∫

Ω2

Bx

(

∇2(∆hum),∇2η6∆hum

)

dx

− 2

∫

Ω2

Bx

(

∇2(∆hum),∇η6 �∇(∆hum)
)

dx

=: −T1 − 2T2.

To handle T1 we just observe ∂α∂βη
6 = 30∂αη∂βηη

4 + 6∂α∂βηη
5 , for T2 we use

∇η6 = 6η5∇η . The Cauchy–Schwarz inequality for the bilinear form Bx implies

|T2| = 6

∣

∣

∣

∣

∫

Ω2

Bx

(

η3∇2(∆hum), η2∇η �∇(∆hum)
)

dx

∣

∣

∣

∣

≤ 6

[
∫

Ω2

Bx

(

∇2(∆hum),∇2(∆hum)
)

η6 dx

]1/2

×

[
∫

Ω2

Bx

(

∇η �∇(∆hum),∇η �∇(∆hum)
)

η4 dx

]1/2

,

an analogous estimate being valid for T1 . Absorbing terms, (2.8) turns into

(2.9)

∫

Ω2

η6
Bx

(

∇2(∆hum),∇2(∆hum)
)

dx

≤ c(‖∇η‖2
∞ + ‖∇2η‖2

∞)

∫

spt∇η

|Bx|
(

|∇(∆hum)|2 + |∆hum|2
)

dx.

Next we estimate (note that in the following calculations we always assume, with-
out loss of generality, q ≥ 2, compare Remark 1.1(ii)) for h sufficiently small

∫

spt∇η

|Bx| |∇(∆hum)|2 dx

≤

∫

spt∇η

(

1 + |∇2um|2 + h2|∇2(∆hum)|2
)(q−2)/2

|∇(∆hum)|2 dx

≤ c

[
∫

spt∇η

|∇(∆hum)|q/2 dx

+

∫

spt∇η

(1 + |∇2um|2 + h2|∇2(∆hum)|2)q/2 dx

]

≤ c

∫

spt∇η

(1 + |∇2um|2)q/2 dx.
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In a similar way we estimate
∫

spt∇η
|Bx| |∆hum|2 dx and end up with

(2.10)

lim sup
h→0

∫

Ω2

η6
Bx

(

∇2(∆hum),∇2(∆hum)
)

dx

≤ c(‖∇η‖2
∞ + ‖∇2η‖2

∞)

∫

spt∇η

(1 + |∇um|2 + |∇2um|2)q/2 dx.

Since q ≥ 2 is assumed, (2.10) implies that ∇2um ∈ W 1
2,loc(Ω2) and

∆h(∇2um)
h→0
−→ ∂α(∇2um) in L2

loc(Ω2) and a.e.

Remark 2.1. With (2.10) we have

|∆h{Dfm(∇2um)}|q/(q−1) ∈ L1
loc(Ω2) uniformly with regard to h,

and, as a consequence,

Dfm(∇2um) ∈W 1
q/(q−1),loc(Ω2).

This follows exactly as outlined in the calculations after (3.12) of [BF3].

With the above convergences and Fatou’s lemma we find the lower bound

∫

Ω2

η6D2fm(∇2um)(∂α∇
2um, ∂α∇

2um) dx

for the left-hand side of (2.10) which gives using (1.1)

∫

Ω2

η6(1 + |∇2um|2)(p−2)/2|∇3um|2 dx

≤ c(‖∇η‖2
∞ + ‖∇2η‖2

∞)

∫

spt∇η

(1 + |∇um|2 + |∇2um|2)q/2 dx <∞,

in particular

(2.11) hm := (1 + |∇2um|2)p/4 ∈W 1
2,loc(Ω2).

But (2.11) implies hm ∈ Lr
loc(Ω2) for any r <∞ , i.e.

(2.12) ∇2um ∈ Lt
loc(Ω2) for any t <∞ .
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Using Fatou’s lemma again we obtain from (2.8)

(2.13)

∫

Ω2

η6D2fm(∇2um)(∂α∇
2um, ∂α∇

2um) dx

≤ lim inf
h→0

∫

Ω2

η6∆h{Dfm(∇2um)} : ∇2(∆hum) dx

= lim inf
h→0

−

∫

Ω2

∆h{Dfm(∇2um)} : [∇2η6∆hum + 2∇η6 �∇(∆hum)] dx.

On account of (2.12), Remark 2.1 and Vitali’s convergence theorem we may pass
to the limit h→ 0 on the right-hand side of (2.13) and obtain

∫

Ω2

η6D2fm(∇2um)(∂α∇
2um, ∂α∇

2um) dx

≤ −

∫

Ω2

D2fm(∇2um)(∂α∇
2um,∇

2η6∂αum + 2∇η6 �∇∂αum) dx.

This immediately gives (2.5) by repeating the calculations leading from (2.8)
to (2.9).

Step 3. Uniform higher integrability of ∇2um . Let χ denote any real number
satisfying χ > p/(2p−q), moreover we set α = χp/2. For all discs Br b BR b Ω2

any η ∈ C∞
0 (BR), η ≡ 1 on Br , |∇kη| ≤ c/(R − r)k , k = 1, 2, we have by

Sobolev’s inequality

∫

Br

(1 + |∇2um|2)α dx ≤

∫

BR

(η3hm)2χ dx ≤ c

[
∫

BR

|∇(η3hm)|t dx

]2χ/t

,

where t ∈ (1, 2) satisfies 2χ = 2t/(2 − t). Hölder’s inequality implies
∫

Br

(1 + |∇2um|2)α dx ≤ c(r, R)

[
∫

BR

|∇(η3hm)|2 dx

]χ

≤ c(r, R)

[
∫

BR

η6|∇hm|2 dx+

∫

spt∇η

|∇η3|2h2
m dx

]χ

.

Observing that obviously
∫

spt∇η

|∇η3|2h2
m dx ≤ c(r, R)

∫

spt∇η

(1 + |∇2um|2)p/2 dx

and that by (2.5)
∫

BR

η6|∇hm|2 dx ≤ c(r, R)

∫

spt∇η

(1 + |∇2um|2)(q−2)/2
[

|∇2um|2 + |∇um|2
]

dx

≤ c(r, R)

[
∫

spt∇η

(1 + |∇2um|2)q/2 dx+

∫

spt∇η

|∇um|q dx

]

,
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we deduce

(2.14)

∫

Br

(1 + |∇2um|2)α dx ≤ c(r, R)

[
∫

spt∇η

(1 + |∇2um|2)q/2 dx

+

∫

spt∇η

|∇um|q dx

]χ

,

where c(r, R) = c(R − r)−β for some suitable β > 0. For discussing (2.14)
we first note that the term

∫

spt∇η
|∇um|q dx causes no problems. In fact, since

‖um‖W 2
p (Ω2) ≤ c < ∞ we know that ∇um ∈ Lt

loc(Ω2) for any t < ∞ in case

p ≥ 2. If p < 2, then we have local Lt -integrability of ∇um provided that
t < 2p/(2−p), but q < 2p < 2p/(2−p) on account of (1.3). As a consequence, we
may argue exactly as in [ELM] or [Bi, p. 60], to derive from (2.14) by interpolation
and hole-filling (here q < 2p enters in an essential way)

(2.15) ∇2um ∈ Lt
loc(Ω2) for any t < ∞ and uniformly with regard to m .

Note that (2.15) implies with Step 2 the uniform bound

(2.16)

∫

Ω2

η6D2fm(∇2um)(∂α∇
2um, ∂α∇

2um) dx ≤ c(η) < ∞,

in particular (2.16) shows

(2.17) hm ∈W 1
2,loc(Ω2) uniformly with regard to m .

Remark 2.2. (i) If u is a local J -minimizer subject to an additional con-
straint of the form u ≥ ψ a.e. on Ω for a sufficiently regular function ψ: Ω → R ,
then it is an easy exercise to adjust the technique used in [BF1] to the present
situation which means that we still have (2.15) so that (recall (2.4)) u ∈W 2

t,loc(Ω)

for any t <∞ , hence u ∈ C1,α(Ω) for all 0 < α < 1. In [Fr, Theorem 10.6, p. 98],
it is shown for the special case f(w) = |∆w|2 that actually u ∈ C2(Ω) is true,
and it would be interesting to see if this result also holds for the energy densities
discussed here.

(ii) We remark that the proof of (2.15) just needs the inequality q < 2p ,
whereas the additional assumption q < p+ 2 enters in the next step.

Step 4. C2 -regularity. Now we consider an arbitrary disc B2R b Ω1 and
η ∈ C∞

0 (B2R) satisfying η ≡ 1 on BR and |∇η| ≤ c/R , |∇2η| ≤ c/R2 . Moreover
we denote by T2R the annulus T2R := B2R−BR and by Pm a polynomial function
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of degree less than or equal to 2. Exactly as in Step 2 (replacing um by um−Pm )
we obtain

∫

B2R

η6D2fm(∇2um)(∂α∇
2um, ∂α∇

2um) dx

≤ −

∫

T2R

D2fm(∇2um)
(

∂α∇
2um,∇

2η6∂α[um − Pm]

+ 2∇η6 �∇∂α(um − Pm)
)

dx.

With the notation

Hm :=

[

D2fm(∇2um)(∂α∇
2um, ∂α∇

2um)

]1/2

, σm := Dfm(∇2um)

we therefore have
∫

B2R

η6H2
m dx ≤ c

∫

T2R

|∇σm|
[

|∇2η6| |∇um −∇Pm| + |∇η6| |∇2um −∇2Pm|
]

dx.

Moreover, by the Cauchy–Schwarz inequality and (1.1)

|∇σm|2 ≤ Hm

[

D2fm(∇2um)(∂ασm, ∂ασm)
]1/2

≤ Hm|∇σm|Γ(q−2)/4
m ,

where Γm := 1 + |∇2um|2 . Finally we let

h̃m := max
[

Γ(q−2)/4
m ,Γ(2−p)/4

m

]

and obtain
|∇σm| ≤ cHmΓ(q−2)/4

m ≤ cHmh̃m,

hence

(2.18)

∫

B2R

η6H2
m dx ≤ c

∫

T2R

Hmh̃m

[

|∇2η6| |∇um −∇Pm|

+ |∇η6| |∇2um −∇2Pm|
]

dx.

Letting γ = 4/3 we discuss the right-hand side of (2.18):

∫

T2R

Hmh̃m|∇η6| |∇2um −∇2Pm| dx

≤
c

R

[
∫

B2R

(Hmh̃m)γ dx

]1/γ[
∫

B2R

|∇2um −∇2Pm|4 dx

]1/4

.
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Next the choice of Pm is made more precise by the requirement

(2.19) ∇2Pm =

∫

−
B2R

∇2um dx.

Then Sobolev–Poincaré’s inequality together with the definition of h̃m gives

[
∫

B2R

|∇2um −∇2Pm|4 dx

]1/4

≤ c

[
∫

B2R

|∇3um|γ dx

]1/γ

≤ c

[
∫

B2R

(Hmh̃m)γ dx

]1/γ

,

hence

(2.20)

∫

T2R

Hmh̃m|∇η6| |∇2um −∇2Pm| dx ≤
c

R

[
∫

B2R

(Hmh̃m)γ dx

]2/γ

.

To handle the remaining term on the right-hand side of (2.18) we need in addition
to (2.19)

∫

−
B2R

(∇um −∇Pm) dx = 0,

which can be achieved by adjusting the linear part of Pm . Then we have by
Poincaré’s inequality

∫

B2R

Hmh̃m|∇2η6| |∇um −∇Pm| dx

≤
c

R2

[
∫

B2R

(Hmh̃m)γ dx

]1/γ[
∫

B2R

|∇um −∇Pm|4 dx

]1/4

≤
c

R

[
∫

B2R

(Hmh̃m)γ dx

]1/γ[
∫

B2R

|∇2um −∇2Pm|4 dx

]1/4

,

and the right-hand side is bounded by the right-hand side of (2.20). Hence, recall-
ing (2.18) and (2.20), we have established the inequality

(2.21)

[
∫

−
BR

H2
m dx

]γ/2

≤ c

∫

−
B2R

(Hmh̃m)γ dx.

Given this starting inequality we like to apply the following lemma which is proved
in [BFZ].
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Lemma 2.1. Let d > 1 , β > 0 be two constants. With a slight abuse of

notation let f , g , h now denote any non-negative functions on Ω ⊂ R
n satisfying

f ∈ Ld
loc(Ω), exp(βgd) ∈ L1

loc(Ω), h ∈ Ld
loc(Ω).

Suppose that there is a constant C > 0 such that

[
∫

−
B

fd dx

]1/d

≤ C

∫

−
2B

fg dx+ C

[
∫

−
2B

hd dx

]1/d

holds for all balls B = Br(x) with 2B = B2r(x) b Ω . Then there is a real number

c0 = c0(n, d, C) such that if hd logc0β(e+h) ∈ L1
loc(Ω) , then the same is true for f .

Moreover, for all balls B as above we have

∫

−
B

fd logc0β

[

e+
f

‖f‖d,2B

]

dx ≤ c

[
∫

−
2B

exp(βgd) dx

][
∫

−
2B

fd dx

]

+ c

∫

−
2B

hd logc0β

[

e+
h

‖f‖d,2B

]

dx,

where c = c(n, d, β, C) > 0 and ‖f‖d,2B = (
∫

−
2B
fd dx)1/d .

The appropriate choices in the setting at hand are d = 2/γ = 3/2, f = Hγ
m ,

g = h̃γ
m , h ≡ 0. We claim that

∫

−
B2R

exp(h̃2
mβ) dx ≤ c and

∫

−
B2R

H2
m dx ≤ c

for a constant being uniform in m . The uniform bound of the second integral
follows from (2.16); thus let us discuss the first one. By (2.17) and Trudinger’s
inequality (see e.g. Theorem 7.15 of [GT]) we know that for any disc B% b Ω1

∫

B%

exp(β0h
2
m) dx ≤ c(%) <∞,

where β0 just depends on the uniformly bounded quantities ‖hm‖W 1

2
(Ω1) . This

implies for any β > 0 and κ ∈ (0, 1)

∫

B%

exp(βh2−κ
m ) dx ≤ c(%, β, κ) < ∞.

Moreover, on account of q < p+ 2 we have

Γ(q−2)/2
m ≤ h2−κ

m and clearly Γ(2−p)/2
m ≤ h2−κ

m
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for κ sufficiently small, which gives our claim and we may indeed apply the lemma
with the result

∫

−
B%

H2
m logc0β(e+Hm) dx ≤ c(β, %) < ∞

for all discs B% ⊂ Ω1 and all β > 0. Thus we have established the counterparts of
(2.7) and (2.10) in [BFZ], and exactly the same arguments as given there lead to
(2.11) from [BFZ]. Thus we deduce the uniform continuity of the sequence {σm}
(see again [BFZ], end of Section 2), hence we have uniform convergence σm →: σ
for some continuous tensor σ . In order to identify σ with Df(∇2u), we recall the
weak convergence stated in (2.4) and also observe that ∇2um → ∇2u a.e. which
can be deduced along the same lines as in Lemma 4.5c) of [BF3], we also refer to
Proposition 3.29 iii) of [Bi]. Therefore Df(∇2u) is a continuous function, i.e. ∇2u
is of class C0 , and finally u ∈ C2(Ω) follows.

Step 5. C2,α -regularity of u . To finish the proof of Theorem 1.1 we observe
that with Step 4 we get from (2.5) the estimate

∫

Ω1

|∇3um|2 dx ≤ c(Ω1) < ∞,

in particular one has for α = 1, 2

U := ∂αu ∈W 2
2,loc(Ω).

Moreover we have

∫

Ω

D2fm(∇2um)(∇2∂αum,∇
2ϕ) dx = 0 for any ϕ ∈ C∞

0 (Ω).

Together with the convergences (as m→ ∞)

D2fm(∇2um) → D2f(∇2u) in L∞
loc(Ω),

∇2∂αum ⇁ ∇2U in L2
loc(Ω)

we therefore arrive at the limit equation

∫

Ω

D2f(∇2u)(∇2U,∇2ϕ) dx = 0.

Hence U is a weak solution of an equation with continous coefficients and u ∈
C2,α(Ω) for any 0 < α < 1 follows from [GM, Theorem 4.1].
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826, Springer, Berlin–Heidelberg–New York, 1980.

[ELM] Esposito, L., F. Leonetti, and G. Mingione: Regularity results for minimizers of
irregular integrals with (p, q) -growth. - Forum Math. 14, 2002, 245–272.

[Fr] Friedman, A.: Variational Principles and Free Boundary Problems. - Wiley-Interscience,
1982.

[FLM] Fuchs, M., G. Li, and O. Martio: Second order obstacle problems for vectorial functions
and integrands with subquadratic growth. - Ann. Acad. Sci. Fenn. Math. 23, 1998,
549–558.

[Gi] Giaquinta, M.: Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic
Systems. - Ann. of Math. Stud. 105, Princeton University Press, Princeton 1983.

[GM] Giaquinta, M., and G. Modica: Regularity results for some classes of higher order non
linear elliptic systems. - J. Reine Angew. Math. 311/312, 1979, 145–169.

[GT] Gilbarg, D., and N. Trudinger: Elliptic Partial Differential Equations of the Second
Order. - Second Edition, Springer-Verlag, Berlin–Heidelberg, 1983.

[LU] Ladyzhenskaya, O.A., and N.N. Ural’tseva: Linear and Quasilinear Elliptic Equa-
tions. - Nauka, Moskow, 1964. English transl:: Academic Press, New York 1968.

[Mo] Morrey, C.B.: Multiple Integrals in the Calculus of Variations. - Grundlehren Math.
Wiss. 130, Springer, Berlin–Heidelberg–New York, 1966.
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