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Abstract. Let u: R? > Q — RM denote a local minimizer of J[w] = [,, f(V*w)dz, where
k> 2 and VFw is the tensor of all k" order (weak) partial derivatives. Assuming rather general
growth and ellipticity conditions for f, we prove that u actually belongs to the class C*(Q; RM)
by the way extending the result of [BF2] to the higher order case by using different methods. A
major tool is a lemma on the higher integrability of functions established in [BFZ].

1. Introduction

Let Q denote a bounded domain in R? and consider a function u: Q — RM
which locally minimizes the variational integral

J[w, Q] :/Qf(ka)d:I;,

where VFw represents the tensor of all k&' order (weak) partial derivatives. Our
main concern is the investigation of the smoothness properties of such local min-
imizers under suitable assumptions on the energy density f. For the first order
case (i.e. k = 1) we have rather general results which can be found for example in
the textbooks of Morrey [Mo], Ladyzhenskaya and Ural’tseva [LU], Gilbarg and
Trudinger [GT] or Giaquinta [Gi], for an update of the history including recent
contributions we refer to [Bi]. In order to keep our exposition simple (and only
for this reason) we consider the scalar case (i.e. M = 1) and restrict ourselves to
variational problems involving the second (generalized) derivative. Then our varia-
tional problem is related to the theory of plates: one may think of u: {2 — R as the
displacement in vertical direction from the flat state of an elastic plate. The clas-
sical case of a potential f with quadratic growth is discussed in the monographs of
Ciarlet and Rabier [CR], Necas and Hlavécek [NH], Chudinovich and Constanda
[CC] or Friedman [Fr], further references are contained in Zeidler’s book [Ze]. We
also like to remark that plates with other hardening laws (logarithmic and power
growth case) together with an additional obstacle have been studied in the papers
[BF1] and [FLM] but not with optimal regularity results. The purpose of this
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note is to present a rather satisfying regularity theory for a quite large class of
potentials allowing even anisotropic growth.

To be precise let M denote the space of all (2 X 2)-matrices and suppose that
we are given a function f: M — [0, 00) of class C? which satisfies with exponents
1 < p < g < > the anisotropic ellipticity estimate

(1) A1+ PP 220> < D*f(€)(0,0) < A1+ [¢[*) 9D 2|o]?

for all £, 0 € M with positive constants A, A. Note that (1.1) implies the growth
condition

(1.2) alg]” —b < f(§) < A[§|"+ B

with suitable constants a, A >0, b, B> 0. Let
Jw, Q] = / f(V2w)dz, VW = (0a05w)1<a p<2-
Q

We say that a function u € W7 .(Q) is a local J-minimizer if and only if
J[u, Q'] < oo for any subdomain ' € 2 and

Ju, Q] < J, Q]

for all v € W2, () such that u —v € W]?(Q’) (here W]f’loc(Q) etc. denote the

standard Sobolev spaces, see [Ad]). Note that (1.1) implies the strict convexity
of f. Therefore, given a function uy € WqQ(Q), the direct method ensures the
existence of a unique J-minimizer u in the class

{ve W} () : J[v,Q] < oo, v—ug € WPQ(Q)}

which motivates the discussion of local J-minimizers. Our main result reads as
follows:

Theorem 1.1. Let u denote a local J-minimizer under condition (1.1).
Assume further that

(1.3) g < min(2p,p + 2)

holds. Then w is of class C*%(Q) for any 0 < a < 1.

Remark 1.1. (i) Clearly the result of Theorem 1.1 extends to local minimiz-
ers of the variational integral

Iw, 9] = /Q F(V2w) do + /Q g(Vw) dz,
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where f is as before and where g denotes a density of class C? satisfying
0 < D*g(&)(n,m) < e(1+ [€]%) D/ 2]y|?

for some suitable exponent s. In case p > 2 any finite number is admissible for
s, in case p < 2 we require the bound s < 2p/(2 — p). The details are left to the
reader.

(ii) Without loss of generality we may assume that ¢ > 2: if (1.1) holds with
some exponent ¢ < 2, then of course (1.1) is true with ¢ replaced by ¢ := 2 and
(1.3) continues to hold for the new exponent.

(iii) If we consider the higher order variational integral [, f(V*w)dz with
k > 2 and f satisfying (1.1), then (1.3) implies that local minimizers u € W;IOC(Q)
actually belong to the space C**(Q).

(iv) The degree of smoothness of u can be improved by standard arguments
provided f is sufficiently regular.

(v) A typical example of an energy J satisfying the assumptions of Theo-
rem 1.1 is given by

J[w, Q] :/Q|V2w\2dx—|—/g(1—|—|(9132w|2)q/2dx

with some exponent ¢ € (2,4).

(vi) Our arguments can easily be adjusted to prove C*<-regularity of local
minimizers u € Wf(x)’loc(ﬁ) of the energy [, (1 + |VFw|?)P(@)/2 dz provided that
1 < pe < plx) < p* < oo for some numbers p,, p* and if p(x) is sufficiently
smooth. Another possible extension concerns the logarithmic case, i.e. we now
consider the variational integral [, |V*w|In(1+|V*w|) dz and its local minimizers

which have to be taken from the corresponding higher order Orlicz—Sobolev space.

The proof of Theorem 1.1 is organized as follows: we first introduce some suit-
able regularization and then prove the existence of higher order weak derivatives
for this approximating sequence in Step 2. Here we also derive a Caccioppoli-type
inequality using difference quotient methods. In a third step we deduce uniform
higher integrability of the second generalized derivatives for any finite exponent.
From this together with a lemma established in [BFZ] we finally obtain our regu-
larity result in the last two steps.

2. Proof of Theorem 1.1

Step 1. Approximation. Let us fix some open domains Q7 € Q5 € 2 and
denote by ,, the mollification of u with radius 1/m, in particular

[tm — ullwz(a,) "=500.
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Jensen’s inequality implies
J[ﬁma QZ] < J[uv QQ] + Tm,

where 7,,, — 0 as m — oo. This, together with the lower semicontinuity of the
functional J, shows that

(2.1) T [, Qo] =57 T[u, Q).

Next let .

Om = Hﬁm—uﬂwg(gz)[/ 1+ |V20n|2)2dz|
Q

2

which obviously tends to 0 as m — oco. With these preliminaries we introduce
the regularized functional

T, Q] 1= gm/ (1+ [V2wl?)2/? dz + J]w, Q]

Qo

and the corresponding regularizing sequence {u,,} as the sequence of the unique
solutions to the problems

(2.2) Tl Qo] = min  in @, + W2(Q).
By (2.1) and (2.2) we have

Jm[uma QQ] S Jm[ﬂma QQ]

m—00

= ||t — ullwz(,) + Jtm, Q2] — J[u, Qo]
hence one gets

(2.3) lim sup Jy, [t , Qo] < J[u, Qs].

m—00

On account of (2.3) and the growth of f we may assume
Up " —:0 in WpQ(QQ).
Moreover, lower semicontinuity gives

J[@, Qo] < liminf J[t,, Qs],

m—00
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which together with (2.3) and the strict convexity of f implies & = u (here we
also note that @ —u € W7}(2)). Summarizing the results it is shown up to now
that (as m — 00)

Um — U in WpQ(QQ),

(2.4) T [tim, Q2] — J[u, Q).

Step 2. Existence of higher order weak derivatives. In this second step we
will prove that (fm(€) := om(1 +[€[*)72 + f(€))

/ 1°D? frr (V2 ) (00 VUi, 00 VP, ) dez
(2:5) " 2 2 112 2 2 2 12 2
<c(IVnls + IV 77Hoo)/ 1D i (VUi [| VUi | + [Vum|?] dz,

sptVn

where n € C°(Q2), 0 <n <1, n=1 on Q; and where we take the sum over
repeated indices. To this purpose let us recall the Euler equation

(2.6) ) Dfn(Viun) : Vi =0 forall p € W2(Qy).

If Aj, denotes the difference quotient in the coordinate direction e,, a = 1,2,
then the test function A_,(7°Apu,,) is admissible in (2.6) with the result

(2.7) /Q A{Df(Vum)} - V2 Apuy,) dz = 0.

Now denote by %, the bilinear form

1
By = / D? [, (VP () + thV? (Apun ) (2)) dt,
0
and observe that

LD LT} () = 1 / 0D (V)

+ V2 ( + hey) — V2um(:1;)]) dt

1
= %/O %Dfm (VU () + RV (Apu,)(z)) dt

= B, (V*(Apun)(2), ),
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hence (2.7) can be written as
[ (7Bt V0 i) i = 0,
Qs

which means that we have
/ 1B, (Vz(Ahum), VQ(Ahum)) dx
Qo
=— | B, (Vi Apum), V2°Apu,,) dz
(2.8) /Q2 ( (Apum), Vi Ay )
—2/ B (V?(Apu), V° © V(Apun,)) da
Qo

= —T1 — 2T2

To handle T we just observe 9,95m° = 300,1m95mm* + 60,05mn°, for Ty we use
Vn® = 6n°Vn. The Cauchy-Schwarz inequality for the bilinear form %, implies

|Ty| = 6’/ (1°V2(Anum), 7°Vn © V(Apuy,)) dz

<6 [/Q B (V(Aptm), VA (Apum))n° dx} v

1/2
X [/ By (V1 © V(Apum), Vi © V(Ahum))n4 dm} ,
Q2
an analogous estimate being valid for 7). Absorbing terms, (2.8) turns into

/ nG,%’m(VQ(Ahum),VQ(Ahum)) dz
Q

(2.9) 2
< eIVl + 1970120 [ 1l (9 )+ [ Bpn?)

sptVn
Next we estimate (note that in the following calculations we always assume, with-
out loss of generality, ¢ > 2, compare Remark 1.1(ii)) for h sufficiently small

/ (B, |V (D)2 dz
sptVn
s/ (14 [V2um[? + W2V (D) 2) 2|V (D) da
sptVn
ch IV(Apum)|?? da
sptVn
+/ (1+|V2um|? + B2 [V (Apun)[*)? do
sptVn

< c/ (14 |V2u,,[*)?? dz.
sptVn
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In a similar way we estimate fsptVn | B | |Aptin,|? dr and end up with

limsup/ n6<%’x(v2(Ahum),V2(Ahum)) dz
(210) h—0 Qo

<l Tl + 19201 [ (4T + VP2

sptVn
Since ¢ > 2 is assumed, (2.10) implies that V?u,, € Wy .(Q2) and

AR(V3u,,) ﬂ@a(VQum) in L2 (Qs) and a.e.

Remark 2.1. With (2.10) we have
|AL{D frn (V2 )}V @Y € LE (Qy) uniformly with regard to h,
and, as a consequence,
D fi(Vtum) € W41y 10c(22)-

This follows exactly as outlined in the calculations after (3.12) of [BF3].

With the above convergences and Fatou’s lemma we find the lower bound
[ D () 0Tt 005 )
for the left-hand side of (2.10) which gives using (1.1)
P 1P 2

< (Va2 + [V%0]2) / A T [T )7 < o,
sptVn

in particular
(2.11) o = (14 [V2u 2P0 € Wi ().
But (2.11) implies h,, € L] .(Q2) for any r < oo, i.e.

loc

(2.12) V32U, € Lt (Q3) for any t < oco.
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Using Fatou’s lemma again we obtain from (2.8)
/ n6D2fm(V2um)(8aV2um, GQVQUm) dz
Qs

(2.13) < li}ln i(IJlf/ S AR{D fr (V)Y - VE(Aptyy,) da
— Qs

=liminf— [ A, {D T (V2um) Y V208 Ap g, 4+ 2Vn8 © V(AL uy)] de.
— QZ

On account of (2.12), Remark 2.1 and Vitali’s convergence theorem we may pass
to the limit A — 0 on the right-hand side of (2.13) and obtain

/ nGDQfm(VQUm)(ﬁaVQUm, GQVQUm) dzx
Qo

< — | D2 (V) (00 VU, V2 Oq iy + 2V1° © Vdauyy, ) dz.
Q2

This immediately gives (2.5) by repeating the calculations leading from (2.8)
to (2.9).

Step 3. Uniform higher integrability of V?u,,. Let x denote any real number
satisfying x > p/(2p—¢q), moreover we set o = xp/2. For all discs B, € Br € {25
any n € C°(Bgr), n = 1 on B,, |[Vkn| < ¢/(R—r)*, k = 1,2, we have by
Sobolev’s inequality

2x/t
/(1+|V2um|2)°‘dx§/ (nShm)Qdech |V(n3hm)|"dm] ,
B, Br B

R

where t € (1,2) satisfies 2y = 2t/(2 — t). Holder’s inequality implies
X
/ (1+ |Vum|*)*dz < ¢(r, R) U |V(n3hm)|2dx}
B, Br

X
<c(r,R) U n°|Vh,|? da +/ |Vn?12h2, dx] :
Bpr sptVn
Observing that obviously

/ (V3 |2h2, dz < c(r, R)/ (14 |V2up,|*)P/? dz
sptVn

sptVn
and that by (2.5)

/ 776|th|2 dz < ¢(r, R)/ (1+ |V2um|2)(q_2)/2 [|V2um|2 + |Vum|2] dz
Br sptVn

<¢(r, R) {/ (1+\V2um\2)‘”2dx+/
sptVn

sptVn

\Vum\qu},
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we deduce

/ (14 |V?u,|*)*dz < ¢(r, R) {/ (1+ |V2um|2)q/2 dzx
B, sptVn

X
+/ |Vum|qu} ,
sptVn

where c(r,R) = c¢(R — r)~? for some suitable 3 > 0. For discussing (2.14)
we first note that the term fsptVn |V, |7dx causes no problems. In fact, since

[um[lwz(0,) < ¢ < 0o we know that Vun, € Li,

p > 2. If p < 2, then we have local L’-integrability of Vu,, provided that
t<2p/(2—p), but ¢ < 2p < 2p/(2—p) on account of (1.3). As a consequence, we
may argue exactly as in [ELM] or [Bi, p. 60|, to derive from (2.14) by interpolation
and hole-filling (here ¢ < 2p enters in an essential way)

(2.14)

(Q2) for any ¢ < oo in case

(2.15)  VZ?u,, € L, () for any t < co and uniformly with regard to m.

Note that (2.15) implies with Step 2 the uniform bound
(2.16) / 1°D? 1 (VU ) (00 VUi, 06 VU, ) d < ¢(n) < o0,
Q2

in particular (2.16) shows
(2.17) hm € W21’10C(92> uniformly with regard to m.

Remark 2.2. (i) If u is a local J-minimizer subject to an additional con-
straint of the form u > 1) a.e. on () for a sufficiently regular function ¢: Q — R,
then it is an easy exercise to adjust the technique used in [BF1] to the present
situation which means that we still have (2.15) so that (recall (2.4)) u € Wiloc(Q)
for any t < oo, hence u € C1¥(Q) for all 0 < a < 1. In [Fr, Theorem 10.6, p. 98],
it is shown for the special case f(w) = |Aw|? that actually u € C%() is true,
and it would be interesting to see if this result also holds for the energy densities
discussed here.

(i) We remark that the proof of (2.15) just needs the inequality ¢ < 2p,
whereas the additional assumption ¢ < p 4 2 enters in the next step.

Step 4. C?-regularity. Now we consider an arbitrary disc Bor € Q; and
n € C§°(Bag) satisfying n =1 on Bg and |Vn| < ¢/R, |V?n| < ¢/R?. Moreover
we denote by Tor the annulus Tor := Bop — Br and by P, a polynomial function
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of degree less than or equal to 2. Exactly as in Step 2 (replacing u,, by u, —Pp,)
we obtain

/ 1°D? £ (V2 ) (00 VUi, 00 VUyy,) diz
Bagr
S - DQfm(VQUm) (aav2um7 V2776aa [um - Pm]
Tor

+2V08 @ VO (tm — Pm)> du.

With the notation
1/2
H, = {D2 fm(v%m)(aav?um,aav?um)] , O = Dfn (V)

we therefore have

/ n®H2 dx < c/ Vo [IV205] [V, — VP | + V0| [V, — V2P, |] da.
Bor Tor

Moreover, by the Cauchy—Schwarz inequality and (1.1)

Vo2 < Hon[D2 for (V1) (0O OO )] 2 < Ho |V D024
where T, := 14 |V?u,,|?. Finally we let

Ry := max [F%_Q)/‘l, Fg_p)/ﬂ

and obtain i
Vo, < chF;g—QV‘* <cH, hpm,
hence
(2.18) / n®H2 dz < c Hopho, [1V°0°] [Vum — VP,
. B2R T2R

+ V00| V2, — V2P, ] da.

Letting v = 4/3 we discuss the right-hand side of (2.18):

Hyp b V18| |V, — V2P| da
Tor

c ~ 1/~ 1/4
< — U (Hyphom )? dx] U VU, — V2P|t da
R Bar Bar
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Next the choice of P, is made more precise by the requirement

(2.19) V2P, = V2u,, dz.

Bagr

Then Sobolev—Poincaré’s inequality together with the definition of h,, gives

1/4 1/~
[/ VU, — V2P, |* dx} < c[/ V3 U | dx}
Bar Bar

~ 1/v
< c{/ (Hphm)? dm} ,
Bor

hence

~ 2/
(2.20) Hphoo |V | V20U, — V2P| da < % U (Hphom )? dx] .
B

Tor 2R

To handle the remaining term on the right-hand side of (2.18) we need in addition
to (2.19)

][ (Vu,, —VP,)dz =0,
Bar

which can be achieved by adjusting the linear part of P,,. Then we have by
Poincaré’s inequality

Hyp b | V20| [V, — VP, | da

Bagr

c ~ 1/ 1/4
< — U (Hphom)? dx} U |Vt — V P |* dx]
R Bar Bar

c ~ 1/~ 1/4
< —= U (Hyhom )? dx] U V32U, — V2P, |* dx} ,
R Bar Bar

and the right-hand side is bounded by the right-hand side of (2.20). Hence, recall-
ing (2.18) and (2.20), we have established the inequality

v/2 ~
(2.21) { H2 dm] < c][ (Hphi )7 d.
Br Bar

Given this starting inequality we like to apply the following lemma which is proved
in [BFZ].
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Lemma 2.1. Let d > 1, 8 > 0 be two constants. With a slight abuse of
notation let f, g, h now denote any non-negative functions on {2 C R" satisfying

feLL (), exp(Bg?) € Li,.(Q), he L. (.

loc loc

Suppose that there is a constant C' > 0 such that

1/d 1/d
44 <C d C[ hdd}
] <o f ssarrelf wa

holds for all balls B = B,(x) with 2B = Ba,(x) € Q2. Then there is a real number
co = co(n,d, C) such that if h%log®™” (e+h) € LL .(Q), then the same is true for f.
Moreover, for all balls B as above we have

d1pgc0P | ¢ / x ex N dz 4 dz
A e e L AL

h
+ c][ h?1logP [e + } dz,
2B [ flla,28

where ¢ = c(n,d, 3,C) >0 and || f||la2p = (45 fEdz)t/?.

The appropriate choices in the setting at hand are d =2/y = 3/2, f = H},,
g=~nh) , h=0. We claim that

][ exp(h? f)dz < ¢ and H2 dzx<c
Bar

Bagr

for a constant being uniform in m. The uniform bound of the second integral
follows from (2.16); thus let us discuss the first one. By (2.17) and Trudinger’s
inequality (see e.g. Theorem 7.15 of [GT]) we know that for any disc B, €

/ exp(ﬁohfn) dz < ¢(p) < oo,
BQ

where [y just depends on the uniformly bounded quantities ||y (q,). This
implies for any 8 >0 and & € (0, 1)

/ exp(Bh2) dz < c(p, B K) < oo,
B

e

Moreover, on account of ¢ < p + 2 we have

=2/2 < p2=r  and clearly T(27P)/2 < p2-r
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for x sufficiently small, which gives our claim and we may indeed apply the lemma
with the result

][ H2 log®P (e + H,,) da < ¢(3, 0) < o0
BQ

for all discs B, C €} and all 8 > 0. Thus we have established the counterparts of
(2.7) and (2.10) in [BFZ], and exactly the same arguments as given there lead to
(2.11) from [BFZ]. Thus we deduce the uniform continuity of the sequence {o,,}
(see again [BFZ], end of Section 2), hence we have uniform convergence o,, —: o
for some continuous tensor o. In order to identify o with D f(V?u), we recall the
weak convergence stated in (2.4) and also observe that V2u,, — V?u a.e. which
can be deduced along the same lines as in Lemma 4.5¢) of [BF3], we also refer to
Proposition 3.29 iii) of [Bi]. Therefore D f(V?u) is a continuous function, i.e. V*u
is of class C?, and finally u € C?(€) follows.

Step 5. C?%-regularity of w. To finish the proof of Theorem 1.1 we observe
that with Step 4 we get from (2.5) the estimate

/ V3%, )% dz < ¢(9)) < oo,
Qq
in particular one has for a = 1,2

U := 0qu € W3 1,c(Q).

Moreover we have
/ D? £ (VU ) (V2 Opti, V) dz = 0 for any ¢ € C°(Q).
Q

Together with the convergences (as m — o0)

D? f,,(V?u,,) — D?f(V?u) in L2,(Q),
V2ot — VU in L} (Q)

we therefore arrive at the limit equation

/ D? f(V?u)(V2U, V3p)dz = 0.
Q

Hence U is a weak solution of an equation with continous coefficients and v €
C?%(Q) for any 0 < a < 1 follows from [GM, Theorem 4.1]. o
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