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Abstract. We prove weak and viscosity solutions to the p -Laplace equation in the Heisen-
berg group coincide by showing that the viscosity sub(super-) solutions coincide with the p -
sub(super-)harmonic functions from potential theory. We are then able to obtain a comparison
principle for viscosity solutions to the p -Laplace equation.

1. Introduction and motivation

In [JLM], Juutinen, Lindqvist, and Manfredi prove the equivalence of viscosity
solutions and weak solutions to the p -Laplace equation in Rn , given by

−div(‖Du‖p−2Du) = 0

for 1 < p < ∞ . Here, Du denotes the gradient of the real-valued function u .
The p -Laplace equation is a well-known example of a larger class of quasi-linear
equations of the form

−div
(
Ap(u,Du)

)
= 0

where Ap satisfies certain structure conditions. (See [HKM] and [HH] for complete
details.) This class of equations plays a major role in non-linear potential theory
and has been studied in the Euclidean environment [HKM], Carnot groups [HH],
and general metric spaces [KM].

In this paper, we prove the equivalence of the potential-theoretic p -harmonic
functions and viscosity solutions to the p -Laplace equation in the Heisenberg
group. (See Section 3 for relevant definitions.) It should be noted that due to
the geometry of the Heisenberg group, the method of proof in [JLM] cannot be
used, for it relies upon the well-known C1,α regularity of the weak solutions, which
is unknown in the Heisenberg group. (Although, for p near 2, this was proved
recently by Domokos and Manfredi [DM].) We therefore adopt a different strategy
to obtain our results. We begin with a brief review of the Heisenberg group in
Section 2, followed by the relevant definitions in Section 3. It is noted that this
section highlights the nonlinear potential theory found in [HKM] and its extension
to Carnot groups in [HH]. In Section 4, we prove the equivalence of viscosity so-
lutions and p -harmonic functions and obtain a comparison principle for viscosity
solutions to the p -Laplacian.

2000 Mathematics Subject Classification: Primary 31C45, 43A80; Secondary 31B05, 22E25.
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2. The Heisenberg group

We begin with R2n+1 using the coordinates (x1, x2, . . . , x2n, z) and consider
the linearly independent vector fields {Xi, Z} , where the index i ranges from 1
to 2n , defined by

Xi =





∂

∂xi
−
xn+i

2

∂

∂z
, if 1 ≤ i ≤ n,

∂

∂xi
+
xi−n

2

∂

∂z
, if n < i ≤ 2n,

Z =
∂

∂z
·

For i ≤ j , these vector fields obey the relations

[Xi, Xj] =

{
Z, if j = i+ n,
0, otherwise,

and for all i ,
[Xi, Z] = 0.

We then have a Lie algebra denoted hn that decomposes as a direct sum

hn = V1 ⊕ V2

where V1 is spanned by the Xi ’s and V2 is spanned by Z . We endow hn with
an inner product 〈 · , · 〉 and related norm ‖ · ‖ so that this basis is orthonormal.
The corresponding Lie group is called the general Heisenberg group of dimension
n and is denoted by Hn . With this choice of vector fields the exponential map
can be used to identify elements of hn and Hn with each other via

2n∑

i=1

xiXi + zZ ∈ hn ↔ (x1, x2, . . . , x2n, z) ∈ Hn.

In particular, for any P , Q in Hn , written as P = (x1, x2, . . . , x2n, z1) and
Q = (y1, y2, . . . , y2n, z2) the group multiplication law is given by

P ·Q =

(
x1 + y1, x2 + y2, . . . , x2n + y2n, z1 + z2 +

1

2

n∑

i=1

(xiyn+i − xn+iyi)

)
.

The natural metric on Hn is the Carnot–Carathéodory metric given by

dC(P,Q) = inf
Γ

∫ 1

0

‖γ′(t)‖ dt
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where the set Γ is the set of all curves γ such that γ(0) = P , γ(1) = Q and
γ′(t) ∈ V1 . By Chow’s theorem (see, for example, [Be]) any two points can be
connected by such a curve, which makes dC(P,Q) a left-invariant metric on Hn .
This metric induces a homogeneous norm on Hn , denoted | · | , by

|P | = dC(0, P )

and we have the estimate

|P | ∼

2n∑

i=1

|xi| + |z|1/2.

This estimate leads us to define the left-invariant gauge N that is comparable to
the Carnot–Carathéodory metric and is given by

N (P ) =

(( 2n∑

i=1

x2
i

)2

+ 16z2

)1/4

.

We define the Carnot–Carathéodory balls B(P, r) and the gauge balls BN (P, r)
in the obvious way.

Given a smooth function u: Hn 7→ R , we define the horizontal gradient by

∇0u = (X1u,X2u, . . . , X2nu),

the full gradient by
∇u = (X1u,X2u, . . . , X2nu, Zu),

and the symmetrized horizontal second derivative matrix (D2u)? by
(
(D2u)?

)
ij

= 1
2
(XiXju+XjXiu).

Additionally, given a vector field F =
∑2n

i=1 fiXi + f2n+1Z , we define the Heisen-
berg divergence of F , denoted divH F , by

divH F =
2n∑

i=1

Xifi.

A quick calculation shows that when f2n+1 = 0, we have

divH F = diveuclF

where diveucl is the standard Euclidean divergence. The main operator we are
concerned with is the horizontal p -Laplacian for 1 < p < ∞ defined by

∆pf = divH (‖∇0f‖
p−2∇0f)

which is a specific type of operator in an important class of operators in potential
theory as detailed in [HH] and [HKM].

A function f is C 1
sub if Xif is continuous for all i and f is C 2

sub if f is C 1
sub

and XiXjf is continuous for all i and j . Using the horizontal gradient, we may

also define the Sobolev spaces W1,p , W1,p
loc , etc. in the obvious way. For a more

complete treatment of the Heisenberg group, the interested reader is directed to
[Be], [B], [F], [FS], [G], [H], [K], [S] and the references therein.
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3. Notions of solution

In this section, we highlight some results from nonlinear potential theory as
detailed in [HKM]. In [HH], many of the Euclidean results were extended into the
general setting of Carnot groups. A more complete treatment of viscosity solutions
in the Euclidean environment can be found in [CIL] and in the Heisenberg group
in [B]. All the results below can be extended into general Carnot groups.

Our main goal is to relate three different notions of solutions to the equation

(3.1) −∆pf = − divH (‖∇0f‖
p−2∇0f) = 0

in a bounded domain Ω.

3.1. Weak solutions. We begin by defining the concept of weak solutions
to equation (3.1). We will actually do more, for we shall define weak solutions to a
wider class of equations. Letting ε ≥ 0 be a real parameter, we consider equations
of the form

(3.2) −∆pf = − divH (‖∇0f‖
p−2∇0f) = ε

in a bounded domain Ω. Note that equation (3.1) corresponds to equation (3.2)
with ε = 0. We now give the definition of weak solutions.

Definition 1. The function u ∈ W1,p
loc is an ε-weak solution to equation (3.2)

if

(3.3)

∫

Ω

‖∇0u‖
p−2〈∇0u,∇0φ〉 = ε

∫

Ω

φ

for all φ ∈ W1,p
0 (Ω).

A weak solution to equation (3.1) (i.e., a 0-weak solution) is called p-harmon-

ic. It is well known that a p -harmonic function u has a continuous representative
that satisfies

oscBr
u ≤ C

(
r

R

)α

oscBR

when BR ⊂ Ω and r ≤ R ([HH, Theorem 4.2]). We note that the constants C > 0
and α > 0 depend only on the group Hn . We therefore identify p -harmonic
functions with their continuous representative.

In addition to weak solutions we may define weak supersolutions and weak
subsolutions using the following definition (cf. [HKM]).
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Definition 2. The function u ∈ W1,p
loc (Ω) is an ε-weak supersolution to

equation (3.2) if ∫

Ω

‖∇0u‖
p−2〈∇0u,∇0φ〉 ≥ ε

∫

Ω

φ

for all non-negative φ ∈ W1,p
0 (Ω).

The function u ∈ W1,p
loc (Ω) is an ε-weak subsolution to equation (3.2) if −u

is an ε -weak supersolution, that is, if

∫

Ω

‖∇0u‖
p−2〈∇0u,∇0φ〉 ≤ ε

∫

Ω

φ

for all non-negative φ ∈ W1,p
0 (Ω).

Using these definitions for ε1 > ε2 ≥ 0, we observe that an ε1 -weak solution
is a ε2 -weak supersolution and an ε2 -weak solution is a ε1 -weak subsolution.

It is also well known that 0-weak subsolutions and supersolutions satisfy the
following comparison principle

Lemma 3.1 ([HKM, Lemma 3.18]). Let u ∈ W1,p(Ω) be a weak subsolution

to equation (3.1) and let v ∈ W1,p(Ω) be a weak supersolution to equation (3.1)
in Ω . If γ ≡ min{v − u, 0} ∈ W1,p

0 (Ω) then u ≤ v almost everywhere in Ω .

We are then able to formulate the existence-uniqueness of p -harmonic func-
tions (cf. [HKM, Theorem 3.17], [HH, Section 4.10]).

Theorem 3.2. Given a bounded domain Ω with boundary data Θ ∈
W1,p(Ω) , there is a unique p -harmonic function u that satisfies u−Θ ∈ W1,p

0 (Ω) .

Using standard techniques in calculus of variations, one can show that ε -
weak solutions exist and Lemma 3.1 can be extended to ε -weak solutions. In
addition, ε -weak solutions have a continuous representative [CDG] and therefore
such solutions will be identified with that representative.

3.2. p-superharmonic functions. The next class of solutions we wish to
consider are p -superharmonic functions and p -subharmonic functions defined via
the following definition.

Definition 3. The function u: Ω 7→ RN ∪ {∞} is p-superharmonic if the
following hold:

(1) u is lower semicontinuous.
(2) u is not identically infinity in each component of Ω.
(3) For each subdomain D ⊂⊂ Ω, a p -harmonic function g in D that is contin-

uous in D with g ≤ u on ∂D implies g ≤ u in D .

A function u is p-subharmonic if −u is p -superharmonic.
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The key points of these definitions are that they are based on comparison
with p -harmonic functions. We then are able to obtain the following comparison
principle [KM, Theorem 7.2].

Lemma 3.3. Let Ω be a bounded domain in Hn . Let v be an p -superhar-

monic function and u be a p -subharmonic function in Ω so that

lim sup
Q→P

u(Q) ≤ lim inf
Q→P

v(Q)

for all P ∈ ∂Ω with both sides not simultaneously −∞ or ∞ . Then u ≤ v in Ω .

We are then able to conclude the following lemma ([HKM, Lemma 7.8]).

Lemma 3.4. A function is p -harmonic if an only if it is both p -subharmonic

and p -superharmonic.

3.3. Viscosity solutions. In this subsection, we review the concept of
viscosity solution and relate the first two notions of solution to viscosity solutions.
Before we begin, we consider equation (3.2) in non-divergence form, namely,

(3.4) −
(
‖∇0u‖

p−2 tr
(
(D2u)?

)
+ (p− 2)‖∇0u‖

p−4〈(D2u)?∇0u,∇0u〉
)

= ε.

We note that equation (3.4) is degenerate elliptic and proper in the sense
of [CIL]. Given the function u , we consider the set of functions φ that touch from
below at the point P0 . That is, the set T B(u, P0) given by

T B(u, P0) =
{
φ ∈ C

2
sub(Ω) : u(P0) = φ(P0),

u(P ) > φ(P ) for P 6= P0, ∇0φ(P0) 6= 0
}
.

We are now able to define the concept of viscosity solutions to equation (3.4).

Definition 4. The function u: Ω 7→ RN∪{∞} is an ε-viscosity supersolution

to equation (3.4) if the following hold:

(1) u is lower semicontinuous.
(2) u is not identically infinity in each component of Ω.
(3) For P0 ∈ Ω, φ ∈ T B(u, P0) satisfies

−∆pφ(P0) ≥ ε.

A function u is an ε-viscosity subsolution to equation (3.4) if −u is an ε -viscosity
supersolution. A function u is an ε-viscosity solution if it is both an ε -viscosity
supersolution and an ε -viscosity subsolution.
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We call the collection
{(

∇φ(P0), (D
2φ)?(P0)

)
: φ ∈ T B(u, P0)

}

the subjet of u at P0 and denote it J2,−u(P0). We define the superjet of u
at P0 by J2,+u(P0) = −J2,−(−u)(P0). The set-theoretic closure J̄2,−u(P0)
is defined by all pairs {(η,X)} so that there is a sequence {(Pn, φn)} with(
∇φn(Pn), (D2φn)?(Pn)

)
∈ J2,−u(Pn) so that Pn → P0, u(Pn) → u(P0),∇φn(Pn)

→ η and (D2φn)?(Pn) → X . For a more complete discussion of jets, the interested
reader is directed to [CIL] for the Euclidean environment and [B] for Heisenberg
groups.

Given the viscosity solutions, it is natural to ask how they relate to the pre-
vious notions of solutions. It was shown via Lemma 4.1 in [B] that upper(lower)
semicontinuous ε -weak sub(super-)solutions are ε -viscosity sub(super-)solutions.
In addition, we have the following lemma.

Lemma 3.5. A p -sub(super-)harmonic function is a 0 -viscosity sub(super-)
solution. Hence, a p -harmonic function is a 0 -viscosity solution.

Proof. We will do only the p -superharmonic case. We let u be a p -superhar-
monic function in Ω and choose P0 ∈ Ω. We let φ ∈ C 2

sub(Ω) be a function so that
φ(P0) = u(P0), ∇0φ(P0) 6= 0, and u(P ) > φ(P ) for P 6= P0 . If −∆pφ(P0) < 0
then by continuity, there is a small r > 0 so that −∆pφ < 0 in the ball B(P0, r).
Note we also have ∇0φ(P ) 6= 0 in B(P0, r). Define the strictly positive number
m ≡ inf{u(P ) − φ(P ) : dC(P, P0) = r} and the C 2

sub function Φ ≡ φ + 1
2m .

We therefore have Φ is a 0-weak subsolution in B(P0, r). Let g be the unique
(continuous) p -harmonic function equal to Φ on ∂B(P0, r) whose existence is
guaranteed by Theorem 3.2. Using the comparison principle (Lemma 3.1), we
conclude Φ ≤ g ≤ u in B(P0, r), contrary to Φ(P0) > u(P0).

We now have existence of all three notions of solutions, but a comparison
principle only for the first two. In the next section, we correct this deficiency.

4. Equivalence of notions of solution

In this section, our goal is to prove the equivalence of the various notions
of solution. As a consequence, we obtain a comparison principle for viscosity
solutions to equation (3.4) when ε = 0. We recall that Ω is a bounded domain.
Our proof will rely heavily on the Heisenberg geometry.

We begin with a technical lemma whose Euclidean version is Lemma 3.2
in [JLM].

Lemma 4.1. Let v ∈ W1,p
loc be a continuous ε -weak solution. Let P0 ∈ Ω

and let φ ∈ C 2
sub(Ω) be a function such that v − φ has a strict local minimum

at P0 . Then

lim sup
P→P0

P 6=P0

(
−∆pφ(P )

)
≥ ε
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provided that ∇0φ(P0) 6= 0 or P0 is an isolated critical point.

Proof. By left translation we may assume P0 = 0 and by adding constants,
φ(0) = v(0). If the conclusion is false, then there is an r1 > 0 so that ∇0φ(P ) 6= 0
and −∆pφ(P ) < ε when 0 < N (P ) < r1 . Because v − φ has a strict local
minimum at 0, there is an r2 > 0 so that v(P ) > φ(P ) when 0 < N (P ) < r2 .
Let r = min{ 1

2r1,
1
2r2} . Then ∇0φ(P ) 6= 0, −∆pφ(P ) < ε and v > φ when

0 < N (P ) ≤ r . We next define the strictly positive constant m = min{v(P ) −
φ(P ) : N (P ) = r} and consider the function φ̃ = φ + 1

2m . By construction,

φ̃ ∈ C 2
sub(Ω) and (

−∆pφ̃(P )
)

=
(
−∆pφ(P )

)
.

Let ψ ∈ C∞

0 be a non-negative test function with compact support contained
in the ball BN (r). Let 0 < % < r and consider the annulus A ≡ BN (r)\BN (%).
Using the identity

divH (ψ‖∇0φ̃‖
p−2∇0φ̃) = ψ∆pφ̃+ ‖∇0φ̃‖

p−2〈∇0φ̃,∇0ψ〉

we obtain
∫

A

‖∇0φ̃‖
p−2〈∇0φ̃,∇0ψ〉 dV = −

∫

A

ψ∆pφ̃ dV +

∫

A

divH (ψ‖∇0φ̃‖
p−2∇0φ̃) dV

≤ ε

∫

A

ψ dV +

∫

∂A

ψ‖∇0φ̃‖
p−2∇0φ̃ · ν dS

≤ ε

∫

BN (r)

ψ dV −

∫

BN (%)

ψ‖∇0φ̃‖
p−2∇0φ̃ · ν dS

where ν is the outward unit (Euclidean) normal. We now estimate the last integral.

∣∣∣∣
∫

BN (%)

ψ‖∇0φ̃‖
p−2∇0φ̃ · ν dS

∣∣∣∣ ≤ ‖ψ‖∞‖∇0φ̃‖
p−1
∞

∫

BN (%)

dS . %2n+1.

Letting %→ 0, we have

∫

BN (r)

‖∇0φ̃‖
p−2〈∇0φ̃,∇0ψ〉 dV ≤ ε

∫

BN (r)

ψ dV.

Thus, φ̃ is an ε -weak subsolution.
By the comparison principle for ε -weak solutions, φ̃ ≤ v in BN (r) because

φ̃ ≤ v on ∂BN (r) by construction. However, we have

φ̃(0) = φ(0) + 1
2
m = v(0) + 1

2
m > v(0).

This contradiction finishes the proof.
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Note that in the case when p ≥ 2, by continuity we have −∆pφ(P0) ≥ ε and
so ∇0φ(P ) 6= 0 near P0 .

We next consider the function ϕ: Hn × Hn 7→ R given by

ϕ(P,Q) =
1

m

2n∑

i=1

|xi − yi|
m +

1

m

∣∣∣∣z1 − z2 +
1

2

n∑

i=1

(xn+iyi − xiyn+i)

∣∣∣∣
m

def
≡

1

m

2n∑

i=1

|xi − yi|
m +

1

m
|ζ(P,Q)|m

for some large positive integer m ≥ 4. The important properties of ϕ are found
in the following lemma.

Lemma 4.2. As above, let m ≥ 4 . Let the vector η be given by

η =




|x1 − y1|
m−2(x1 − y1)

|x2 − y2|
m−2(x2 − y2)

...

|x2n − y2n|
m−2(x2n − y2n)

|ζ(P,Q)|m−2ζ(P,Q)



.

Recall that the differential of left multiplication with respect to P , denoted DLP ,

is given by (
I2n×2n P

01×2n 1

)

where the 2n× 1 vector P is given by

(
− 1

2xn+1,−
1
2xn+2, . . . ,−

1
2x2n,

1
2x1,

1
2x2, . . . ,

1
2xn

)T

with a similar definition for DLQ using the 2n× 1 vector Q given by

(
− 1

2
yn+1,−

1
2
yn+2, . . . ,−

1
2
y2n,

1
2
y1,

1
2
y2, . . . ,

1
2
yn

)T
.

Define the (2n+ 1) × (2n+ 1) matrix M by

Mij =





(m− 1)|xi − yi|
m−2, i = j, 1 ≤ i ≤ 2n,

(m− 1)|ζ(P,Q)|m−2, i = j = 2n+ 1,

0, i 6= j,

and denote Euclidean differentiation with respect to the point R by DR . We then

have the following properties:

(1) DPϕ(P,Q) = DLQη, DQϕ(P,Q) = −DLP η ,
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(2) DP η = MDLT
Q, DQη = −MDLT

P ,

(3) DLPDLQ = DLQDLP ,

(4) DLPDPϕ(P,Q) = −DLQDQϕ(P,Q) ≡ Υ(P,Q) ,

(5)

DLP (DPPϕ(P,Q)DLT
P +DPQϕ(P,Q)DLT

Q)

=
1

2
|ζ(P,Q)|m−2ζ(P,Q)




0n×n −In×n 0n×1

In×n 0n×n 0n×1

01×n 01×n 0cr


 ,

(6)

DLQ(DQQϕ(P,Q)DLT
Q +DQPϕ(P,Q)DLT

P )

=
1

2
|ζ(P,Q)|m−2ζ(P,Q)




0n×n In×n 0n×1

−In×n 0n×n 0n×1

01×n 01×n 0


 .

(7) Let ξ ∈ hn be a vector. Then

〈DPPϕ(P,Q)DLT
P ξ,DL

T
P ξ〉 + 〈DPQϕ(P,Q)DLT

Qξ,DL
T
Pξ〉

+ 〈DQPϕ(P,Q)DLT
P ξ,DL

T
Qξ〉 + 〈DQQϕ(P,Q)DLT

Qξ,DL
T
Qξ〉 = 0

(8) Let ξ ∈ hn be a vector. We define ξ̄ to be the projection of ξ onto V1 . That

is, if ξ = (ξ1, ξ2, . . . , ξ2n+1) , then ξ̄ = (ξ1, ξ2, . . . , ξ2n) . We then have

∥∥∥∥
(
DPPϕ(P,Q) DPQϕ(P,Q)
DQPϕ(P,Q) DQQϕ(P,Q)

) (
DLT

P ξ
DLT

Qξ

)∥∥∥∥
2

=
1

2
‖ξ̄‖2|ζ(P,Q)|2m−2.

Proof. The first three properties are elementary calculations and left to the
reader. The fourth follows from the first three. We therefore turn our attention
to the last four. Let MPQ be the left-hand side of Property (5). Then,

MPQ = DLP

(
DP (DLQη)DL

T
P +DQ(DLQη)DL

T
Q

)

= DLP

(
DLQDP ηDL

T
P +DQ(DLQ)ηDLT

Q +DLQDQηDL
T
Q

)

= DLP

(
DLQMDLT

QDL
T
P +DQ(DLQ)ηDLT

Q −DLQMDLT
PDL

T
Q

)

= DLP

(
DQ(DLQ)ηDLT

Q

)

and so we are left to compute only the derivative of the matrix DLQ . Knowing
the definition of η above and the formula for DLQ as given above, we see that
when 1 ≤ i ≤ n , we have Dyi

(DLQ) is a matrix with every entry 0 except for the
(i + n, 2n+ 1) entry, which is 1

2
. When n < i < 2n , we have Dyi

(DLQ) has all
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entries 0 except for the (i− n, 2n+ 1) entry, which is − 1
2 . Clearly, Dz2

(DLQ) is
the 0 matrix. We then compute

DQ(DLQ)η =
1

2
|ζ(P,Q)|m−2ζ(P,Q)




0n×n −In×n 0n×1

In×n 0n×n 0n×1

01×n 01×n 0



 .

We then have

(
I2n×2n P

01×2n 1

) 


0n×n −In×n 0n×1

In×n 0n×n 0n×1

01×n 01×n 0




(
I2n×2n 02n×1

QT 1

)

=

(
I2n×2n P

01×2n 1

) 


0n×n −In×n 0n×1

In×n 0n×n 0n×1

01×n 01×n 0





=




0n×n −In×n 0n×1

In×n 0n×n 0n×1

01×n 01×n 0




and Property (5) follows. To prove Property (6), we let MPQ be the left-hand
side of the identity. Then,

MPQ = DLQ

(
−DQ(DLP η)DL

T
Q +DP (−DLP η)DL

T
P

)

= DLQ

(
−DLPDQηDL

T
Q −DP (DLP )ηDLT

P −DLPDP ηDL
T
P

)

= DLQ

(
DLP MDLT

PDL
T
Q −DP (DLP )ηDLT

P −DLP MDLT
QDL

T
P

)

= −DLQ

(
DP (DLP )ηDLT

P

)

and we compute DP (DLP )η in the same way as the above computation for
DQ(DLQ)η and arrive at Property (6).

To prove Property (7), we note that the right-hand side can be written as

〈DLP (DPPϕ(P,Q)DLT
P +DPQϕ(P,Q)DLT

Q)ξ, ξ〉

+ 〈DLQ(DQQϕ(P,Q)DLT
Q +DQPϕ(P,Q)DLT

P )ξ, ξ〉.

Using Properties (5) and (6) we see this is zero. Property (7) then follows.
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Using the proofs of Properties (5) and (6), we have

(
DPPϕ(P,Q) DPQϕ(P,Q)
DQPϕ(P,Q) DQQϕ(P,Q)

) (
DLT

P ξ
DLT

Qξ

)

=

(
(DPPϕ(P,Q)DLT

P +DPQϕ(P,Q)DLT
Q)ξ

(DQPϕ(P,Q)DLT
P +DQQϕ(P,Q)DLT

Q)ξ

)

=
1

2
|ζ(P,Q)|m−2ζ(P,Q)







0n×n −In×n 0n×1

In×n 0n×n 0n×1

01×n 01×n 0



 ξ




0n×n In×n 0n×1

−In×n 0n×n 0n×1

01×n 01×n 0


 ξ



.

We then see that

∥∥∥∥
(
DPPϕ(P,Q) DPQϕ(P,Q)
DQPϕ(P,Q) DQQϕ(P,Q)

) (
DLT

P ξ
DLT

Qξ

)∥∥∥∥
2

=
1

2
‖ξ̄‖2|ζ(P,Q)|2m−2

and Property (8) is proved.

We will use the function ϕ above as a penalty function in our proof of a
preliminary comparison principle. A key step in the proof will be the twisting of
the Euclidean jets into Heisenberg jets.

Lemma 4.3 ([B, Lemma 3.4]). Let DLP0
be the differential of the left

multiplication map at the point P0 , let J2,+
euclu(P0) be the traditional Euclidean

superjet of u at the point P0 and let (η,X) ∈ R2n+1 × S2n+1 . Then,

(η,X) ∈ J̄2,+
euclu(P0)

gives the element

(
DLP0

η, (DLP0
X (DLP0

)T )2n

)
∈ J̄2,+u(P0)

with the convention that for any matrix M , Mn is the n× n principal minor.

We now prove a preliminary comparison principle.

Theorem 4.4. Fix ε > 0 and 1 < p < ∞ . Let v be a continuous ε -weak

solution and let u be a 0 -viscosity subsolution so that u ≤ v on ∂Ω . Then u ≤ v
in Ω .
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Proof. Suppose that sup(u− v) > 0 occurs at the interior point P0 . For each
positive integer j , we consider the function ψj: Hn × Hn 7→ R defined by

ψj(P,Q) = u(P ) − v(Q) − jϕ(P,Q)

where ϕ(P,Q) is the function from Lemma 4.2, with m chosen so that m >
max{4, p/(p− 1), p} . Following the scheme of [B] and [CIL], we let the maximum
of ψj occur at (Pj, Qj) and observe for large j , these are interior points. In
addition, these points tend to P0 as j → ∞ . Using the Euclidean results of [CIL]
and the above twisting lemma, we have

(
jΥ(Pj , Qj),Xj

)
∈ J̄2,+u(Pj) and (jΥ(Pj , Qj),Yj) ∈ J̄2,−v(Qj)

where Υ(P,Q) = DLPDPϕ(P,Q) = −DLQDQϕ(P,Q) as detailed in Lemma 4.2.

Claim 4.5. By passing to a subsequence if needed, we may assume Pj 6= Qj .

Proof. Fix j > 0. By definition, we have for any P and Q ,

u(P ) − v(Q) − jϕ(P,Q) ≤ u(Pj) − v(Qj) − jϕ(Pj, Qj)

and so when Pj = P , we have

v(Q) ≥ v(Qj) + jϕ(Pj , Qj) − jϕ(Pj , Q).

Defining the function β(Q) by

β(Q) = v(Qj) + jϕ(Pj, Qj) − jϕ(Pj, Q) − ϕ(Qj , Q)

we see that v− β has a strict local minimum at Qj and Qj is an isolated critical
point. Applying Lemma 4.1, we have

(4.1) lim sup
Q→Qj

(
−∆pβ(Q)

)
≥ ε.

Suppose now that Pj = Qj . Then β(Q) = v(Qj) − (j + 1)ϕ(Qj, Q). We then
need to estimate ∆pβ(Q). Using the non-divergence form of the p -Laplacian
(equation (3.4)) and the definition of β(Q), we have

|∆pβ(Q)| . ‖∇0ϕ(Qj , Q)‖p−2
∣∣tr(D2ϕ)?(Qj, Q) + ‖(D2ϕ)?(Qj , Q)‖

∣∣.

Using Lemma 4.2, we have

‖∇0ϕ(Qj , Q)‖ ∼ ‖η‖ ∼ ϕ(Qj , Q)(m−1)/m.
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We note that given the standard vectors ek with every entry 0 except for the k th
entry which is equal to 1, we see that for any matrix A ,

tr(A) =
∑

〈Aek, ek〉

and so
| tr(D2ϕ)?(Qj, Q)| . ‖(D2ϕ)?(Qj, Q)‖.

We then conclude via Lemma 4.2

∣∣tr(D2ϕ)?(Qj , Q) + ‖(D2ϕ)?(Qj , Q)‖
∣∣ . ‖M ‖ ∼ ϕ(Qj , Q)(m−2)/m

so that
|∆pβ(Q)| . (ϕ(Qj, Q)1/m)(m−1)(p−2)+(m−2).

Since m > p/(p− 1), we would have

lim
Q→Qj
Q6=Qj

(
−∆pβ(Q)

)
= 0.

This contradicts equation (4.1).

Proceeding as in [B], u is a viscosity subsolution to equation (3.4) with ε = 0.
That is,

0 ≥ −
(
‖jΥ(Pj , Qj)‖

p−2 tr(Xj)
?

+ (p− 2)‖jΥ(Pj , Qj)‖
p−4〈Xj jΥ(Pj , Qj), jΥ(Pj, Qj)〉

)
.

Using Lemmas 3.5 and 4.1 along with the definition of J̄2,− , we have

ε ≤ −
(
‖jΥ(Pj , Qj)‖

p−2 tr(Yj)
?

+ (p− 2)‖jΥ(Pj , Qj)‖
p−4〈Yj jΥ(Pj , Qj), jΥ(Pj, Qj)〉

)
.

Subtracting these two inequalities, we have

(4.2)

0 < ε < jp−2‖Υ(Pj , Qj)‖
p−2

(
tr(Xj) − tr(Yj)

)

+ (p− 2)jp−2‖Υ(Pj , Qj)‖
p−4

(
〈XjΥ(Pj , Qj),Υ(Pj , Qj)〉

− 〈YjΥ(Pj , Qj),Υ(Pj, Qj)〉
)
.

As in the proof of the above claim, we have

‖Υ(Pj , Qj)‖ ∼ ϕ(Pj, Qj)
(m−1)/m.
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Given a vector η ∈ V1 , we denote its extension to hn by η̃ . That is, η =
(η1, η2, . . . , η2n) yields η̃ = (η1, η2, . . . , η2n, 0). Using the formulas for the matrices
Xj and Yj given by Lemma 4.3 and the standard estimate on the matrix ordering
([CIL, Theorem 3.2]) produces

〈XjΥ(Pj , Qj),Υ(Pj, Qj)〉 − 〈YjΥ(Pj , Qj),Υ(Pj, Qj)〉

= 〈X(DLT
Pj

Υ̃(Pj , Qj)), DL
T
Pj

Υ̃(Pj , Qj)〉

− 〈Y (DLT
Qj

Υ̃(Pj , Qj)), DL
T
Qj

Υ̃(Pj , Qj)〉

≤ j〈Dξ, ξ〉

where the matrix D is the Euclidean second derivative of ϕ given by

D =

[
DPPϕ(Pj , Qj) DPQϕ(Pj , Qj)
DQPϕ(Pj , Qj) DQQϕ(Pj, Qj)

]

and the vector
ξ =

(
DLT

Pj
Υ̃(Pj , Qj) ⊕DLT

Qj
Υ̃(Pj, Qj)

)
.

We then conclude via Properties (7) and (8) that

〈XjΥ(Pj , Qj),Υ(Pj, Qj)〉 − 〈YjΥ(Pj , Qj),Υ(Pj, Qj)〉

. j‖Υ(Pj , Qj)‖
2ϕ(Pj , Qj)

(2m−2)/m

. jϕ(Pj , Qj)
(2m−2)/mϕ(Pj , Qj)

(2m−2)/m

= jϕ(Pj , Qj)
(4m−4)/m.

As in the proof of the claim, we write the trace difference as

tr(Xj) − tr(Yj) =

2n∑

k=1

〈Xjek, ek〉 − 〈Yjek, ek〉

and following the previous calculation, we obtain

tr(Xj) − tr(Yj) . j
(
ϕ(Pj , Qj)

(2m−2)/m
)

so that with equation (4.2), we obtain

0 < ε . jp−1
(
ϕ(Pj , Qj)

(m−1)/m
)p−2

ϕ(Pj, Qj)
(2m−2)/m

+ jp−1
(
ϕ(Pj , Qj)

(m−1)/m
)p−4(

ϕ(Pj, Qj)
(4m−4)/m

)

∼ jp−1
(
ϕ(Pj, Qj)

1/m
)p(m−1)

.

Since m > p , we have
(
p(m− 1)

)
(1/m) > p− 1. We arrive at a contradiction as

j → ∞ .
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It is here where we stray significantly from the Euclidean proof in [JLM].
That proof relies on the C1,α regularity of the solutions. This is not known for
the Heisenberg group, although a recent result [DM] has proved this regularity
for p near 2. We therefore adopt a completely different approach beginning with
the next lemma. The first difference is that we only have a weaker version of
Lemma 3.1 in [JLM], in that our sequence converges pointwise instead of locally
uniformly.

Lemma 4.6. Let v be a p -harmonic function in Ω . For each ε ≥ 0 , let

vε be the continuous ε -weak solution equal to v on the boundary. Then vε → v
pointwise as ε→ 0 .

Proof. Arguing as in [JLM], we see that vε → v in Lp . We may assume that
ε ≤ 1 and observe that as noted above, if ε1 > ε2 , then vε2

is a weak subsolution
to equation (3.2) for ε1 . By the comparison principle (Lemma 3.1), we have that
vε2

≤ vε1
when ε1 > ε2 . In particular for all ε > 0, v ≤ vε . We then conclude

that

w = lim
ε→0

vε = inf
ε>0

{vε}

exists and v ≤ w . Since vε → w pointwise, we have |vε|
p → |w|p . By the Lebesque

dominated convergence theorem, (using v1 as dominator) we have vε → w in Lp

so that actually, v = w .

Combining the previous theorem and lemma, we obtain the following conse-
quence.

Lemma 4.7. Let 1 < p < ∞ . 0 -viscosity subsolutions are p -subharmonic.

0 -viscosity supersolutions are p -superharmonic and 0 -viscosity solutions are p -

harmonic.

Proof. The last statement follows from the first two and the second follows
from the first by replacing u with −u . We let u be a 0-viscosity subsolution that
is not p -subharmonic. Then there is a p -harmonic function v so that u ≤ v on
∂Ω but for some P ∈ Ω, we have u(P ) > v(P ). For ε ≤ 1, we let vε be ε -weak
solutions equal to v on ∂Ω so that u ≤ vε on ∂Ω. By Lemma 4.6 we conclude
for some ε near 0, u(P ) > vε(P ), contrary to Theorem 4.4.

Combining Lemmas 3.5 and 4.7, we have the following corollary.

Corollary 4.8. Let 1 < p < ∞ . Then 0 -viscosity sub(super-)solutions to

equation (3.4) and p -sub(super-)harmonic functions coincide. In particular, for

1 < p < ∞ , a function is p -harmonic if and only if it is a 0 -viscosity solution to

equation (3.4).

We are then able to conclude the following comparison principle.
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Corollary 4.9. Let ε = 0 . Let v be a viscosity supersolution to equation

(3.4) and let u be a viscosity subsolution of equation (3.4) so that u ≤ v on ∂Ω .

Then u ≤ v in Ω .
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