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Abstract. In this paper we study a (two-phase) free boundary regularity problem for caloric
measure in parabolic δ0 -Reifenberg flat domains Ω ⊂ Rn+1 . In particular for such a domain we
define Ω1 = Ω ⊂ Rn+1 , Ω2 = Rn+1 \ Ω and we let, for i ∈ {1, 2} , ωi(X̂i, t̂i, · ) be the caloric

measure at (X̂i, t̂i) ∈ Ωi defined with respect to Ωi . If t̂2 < t̂1 we assume that ω2(X̂2, t̂2, · ) is

absolutely continuous with respect to ω1(X̂1, t̂1, · ) on ∂Ω and we denote by k(X̂1, t̂1, X̂2, t̂2, · ) =

dω2(X̂2, t̂2, · )/dω1(X̂1, t̂1, · ) the Radon–Nikodym derivative. Our main result states that there
exists δn > 0 such that if δ0 < δn and if

log k(X̂1, t̂1, X̂2, t̂2, · ) ∈ VMO(dω1(X̂1, t̂1, · ))

then Cr(X, t) ∩ ∂Ω is Reifenberg flat with vanishing constant whenever (X, t) ∈ ∂Ω and t̂2 >
t+ 4r2 .

1. Introduction

In this paper we study a free boundary regularity problem for caloric mea-
sure below the continous threshold. We consider unbounded domains Ω ⊂ Rn+1

assuming that ∂Ω is δ0 -Reifenberg flat in the parabolic sense (this notion is de-
fined below). As is described below the bounded continuous Dirichlet problem
for the heat equation always has a unique solution in this type of domains. Let
(X, t), X = (x0, . . . , xn−1), t ∈ R denote a point in Rn+1 and for given r > 0

set Cr(X, t) = {(Y, s) : |Y − X| < r, |t − s| < r2} . For fixed (X̂, t̂) ∈ Ω we

let ω(X̂, t̂, · ) denote the parabolic measure (in this paper this measure is referred
to as the caloric measure) for the heat equation obtained from the maximum
principle and the Riesz representation theorem. Let ∆(X, t, r) = Cr(X, t) ∩ ∂Ω

whenever (X, t) ∈ ∂Ω and r > 0. Given (X̂, t̂) ∈ Ω let (X, t) ∈ ∂Ω and suppose

|X − X̂|2 ≤ A(t̂ − t) for some A ≥ 2. In [HLN2] it is proven that ω(X̂, t̂, · )
is, in the setting of Reifenberg flat domains as well as in the more general set-
ting of parabolic NTA domains, a doubling measure in the sense that there exists
a1 = a1(n,A) such that if t̂− t ≥ 8r2 then

ω
(
X̂, t̂,∆(X, t, 2r)

)
≤ a1 ω

(
X̂, t̂,∆(X, t, r)

)
.
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We let Ω1 = Ω ⊂ Rn+1 , Ω2 = Rn+1 \ Ω. We also let (X̂i, t̂i) ∈ Ωi , for

i ∈ {1, 2} , t̂2 < t̂1 and define ω1(X̂1, t̂1, · ) and ω2(X̂2, t̂2, · ) to be the caloric
measures defined with respect to Ω1 and Ω2 , respectively. In the following we
will assume that ω2(X̂2, t̂2, · ) is absolutely continuous with respect to ω1(X̂1, t̂1, · )
on ∂Ω and that the Radon–Nikodym derivative

k(X̂1, t̂1, X̂2, t̂2, · ) = dω2(X̂2, t̂2, · )/dω1(X̂1, t̂1, · )

is such that log k(X̂1, t̂1, X̂2, t̂2, · ) ∈ VMO(dω1).

VMO(dω1) = VMO
(
dω1(X̂1, t̂1, · )

)

is the space of functions of vanishing mean oscillation defined with respect to the
measure ω1(X̂1, t̂1, · ). This space is defined in the bulk of the paper.

To formulate our main theorem we need to properly introduce the notion of
δ0 -Reifenberg flat domains.

Definition 1. If Ω is a connected open set in Rn+1 then we say that ∂Ω
separates Rn+1 and is δ0 -Reifenberg flat , 0 < δ0 ≤ 1/10, if given any (X, t) ∈ ∂Ω,

R > 0, there exists an n -dimensional plane P̂ = P̂(X, t, R), containing (X, t) and
a line parallel to the t -axis, having unit normal n̂ = n̂(X, t, R) such that

{(Y, s) + rn̂ ∈ CR(X, t) : (Y, s) ∈ P̂ , r > δ0R} ⊂ Ω,

{(Y, s)− rn̂ ∈ CR(X, t) : (Y, s) ∈ P̂ , r > δ0R} ⊂ Rn+1 \ Ω.

For short we say that ∂Ω separates Rn+1 when the last two conditions hold for
some δ0 .

Note that if ∂Ω separates Rn+1 in the sense of Definition 1, then a line
segment drawn parallel to n̂ and with endpoints in each of the sets stated in the
definition also intersects ∂Ω. We will often refer to Ω as being a δ0 -Reifenberg
flat domain if ∂Ω is δ0 -Reifenberg flat. We pose one more definition.

Definition 2. Let Ω be a connected open set in Rn+1 , (X, t) ∈ ∂Ω, and
r > 0. We say that Cr(X, t) ∩ ∂Ω is Reifenberg flat with vanishing constant
in the parabolic sense, if for each ε > 0, there exists %0 = %0(ε) > 0 with the

following property. If (X̃ , t̃) ∈ Cr(X, t)∩ ∂Ω and 0 < % ≤ %0 , then there exists a

plane P ′(X̃ , t̃, %) containing a line parallel to the t axis such that the statement

in Definition 1 holds with R , δ0 , P̂ replaced by % , ε and P ′ .

We can now formulate our main result.

Theorem 1. Let Ω ⊂ Rn+1 be a δ0 -Reifenberg flat domain and define

Ω1 = Ω ⊂ Rn+1 , Ω2 = Rn+1 \ Ω. Let (X̂i, t̂i) ∈ Ωi , for i ∈ {1, 2} , t̂2 < t̂1 and
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assume that ω2(X̂2, t̂2, · ) is absolutely continuous with respect to ω1(X̂1, t̂1, · ) on

∂Ω and that the Radon–Nikodym derivative

k(X̂1, t̂1, X̂2, t̂2, · ) = dω2(X̂2, t̂2, · )/dω1(X̂1, t̂1, · )

is such that

log k(X̂1, t̂1, X̂2, t̂2, · ) ∈ VMO
(
dω1(X̂1, t̂1, · )

)
.

Then there exists δn > 0 such that if δ0 < δn then Cr(X, t) ∩ ∂Ω is Reifenberg

flat with vanishing constant whenever (X, t) ∈ ∂Ω and t̂2 > t+ 4r2 .

In [KT3], Kenig and Toro consider the elliptic version of the two-phase prob-
lem stated in Theorem 1. In particular, they prove ([KT3, Corollary 4.1]) that
if Ω ⊂ Rn is δ0 -Reifenberg flat (in the elliptic sense) for small δ0 > 0 and if
k = dω2/dω1 , log k ∈ VMO(dω1), then ∂Ω is Reifenberg flat with vanishing con-
stant. In the elliptic setting questions of this type have previous been addressed,
from a slightly different point of view, in the case n = 2, i.e., in the plane, through
the works of Bishop, Carleson, Garnett and Jones. See [B], [BCGJ] and [BJ]. We
are not aware of any results of this type in the parabolic setting.

The rest of the paper is organized as follows. In Section 2 we put the prob-
lem considered in this paper in perspective and state that our main result, i.e.
Theorem 1, can be seen as part of a program focusing on the understanding of
certain parabolic one-phase and two-phase problems in parabolic Reifenberg flat
domains. In Section 3 we in Section 3.1 list some basic estimates for solutions to
the heat or adjoint heat equation in parabolic NTA domains. These estimates are
then complemented, in Section 3.2, by a set of what we refer to as refined esti-
mates, the latter being based on δ0 -Reifenberg flatness and an exploration of the
condition log k(X̂1, t̂1, X̂2, t̂2, · ) ∈ VMO

(
dω1(X̂1, t̂1, · )

)
. In Section 3.3 we clarify

the notion of Green function with pole at infinity and the associated caloric mea-
sure. In Section 4, which is at the heart of the matter, our regularity assumption
on the kernel k(X̂1, t̂1, X̂2, t̂2, · ) is explored in a blow-up argument. In the limit
we encounter the problem of classification of what we refer to as global solutions
to a specific two-phase free boundary problem. The section ends with a theorem
giving us the appropriate classification and finally it is shown that Theorem 1 is
a consequence of that classification theorem.

2. One and two-phase free boundary problems

below the continous threshold

In this section we put Theorem 1 into perspective and briefly discuss how this
result can be seen as part of a program focusing on the understanding of certain
parabolic one-phase and two-phase problems in parabolic Reifenberg flat domains.

Given a Borel set F ⊂ Rn+1 we let F , ∂F denote the closure and the
boundary of F respectively and define σ(F ) =

∫
F
dσt dt where dσt is n − 1-

dimensional Hausdorff measure on the time slice F ∩ (Rn × {t}). Let Ω be a
connected open set in Rn+1 .
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Definition 3. We say that ∂Ω satisfies a (M,R) Ahlfors condition, M ≥ 4,
if for all (X, t) ∈ ∂Ω and 0 < r ≤ R ,

σ
(
∂Ω ∩ Cr(X, t)

)
≤ Mrn+1.

Combining the notion of Reifenberg flatness and the Ahlfors condition, the
fact that Hausdorff measure does not increase under a projection we deduce that
for 0 < r ≤ R , (X, t) ∈ ∂Ω,

(r/2)n+1 ≤ σ
(
∂Ω ∩ Cr(X, t)

)
≤Mrn+1,

whenever ∂Ω separates Rn+1 and satisfies a (M,R) Ahlfors condition.
Let Ω ⊂ Rn+1 be a δ0 -Reifenberg flat domain and define Ω1 = Ω ⊂ Rn+1 ,

Ω2 = Rn+1 \ Ω. As above we let (X̂i, t̂i) ∈ Ωi , for i ∈ {1, 2} , t̂2 < t̂1 and define

ω1(X̂1, t̂1, · ) and ω2(X̂2, t̂2, · ) to be the caloric measures defined with respect to
Ω1 and Ω2 , respectively. Based on this notation there are several problems of free
boundary type that one can pose. As discussed in this paper we can assume that
ω2(X̂2, t̂2, · ) is absolutely continuous with respect to ω1(X̂1, t̂1, · ) on ∂Ω and that

the Radon–Nikodym derivative k(X̂1, t̂1, X̂2, t̂2, · ) = dω2(X̂2, t̂2, · )/dω1(X̂1, t̂1, · )

is such that log k(X̂1, t̂1, X̂2, t̂2, · ) ∈ VMO(dω1). The question is then what these
conditions imply on the geometry and regularity of ∂Ω. Assuming that ∂Ω is
δ0 -Reifenberg flat and satisfies a (M,R) Ahlfors condition it is also relevant to
study the implication of similar conditions phrased in terms of the Poisson ker-
nel. I.e., we could assume at least one of the caloric measures ωi(X̂i, t̂i, · ) to be
absolutely continuous with respect to σ on ∂Ω and hence define a Poisson ker-
nel as k̃i(X̂i, t̂i, · ) = dωi(X̂i, t̂i, · )/dσ . Using this notation the following natural
problems, in the spirit of the one considered in this paper, can be formulated.
VMO(dσ) is the space of functions of vanishing mean oscillation, defined with
respect to dσ , defined in the bulk of the paper.

1. (One-phase problem). Assume that log k̃1(X̂1, t̂1, · ) ∈ VMO(dσ). What im-
plications does this condition have on ∂Ω?

2. (Two-phase problem). Assume that log k̃1(X̂1, t̂1, · ) ∈ VMO(dσ) and that

log k̃2(X̂2, t̂2, · ) ∈ VMO(dσ). What implications do these conditions have
on ∂Ω?

In the following we briefly describe recent developments on these kind of
problems in the geometric settings of this paper. We first discuss the development
in the elliptic situation before we focus on the parabolic situation.

2.1. Elliptic theory. In [D] B. Dahlberg showed that in a Lipschitz domain
Ω the harmonic measure with respect to a fixed point , dω , and surface measure,
dσ , are mutually absolutely continuous. In fact if k̃ = dω/dσ , then Dahlberg
showed that k̃ is in a certain L2 reverse Hölder class from which it follows that
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log k̃ ∈ BMO(dσ), the functions of bounded mean oscillation with respect to
surface area on ∂Ω. Jerison and Kenig [JK] showed for a C1 domain that log k̃ ∈
VMO(dσ), the functions in BMO(dσ) of vanishing mean oscillation. In [KT] this
result was generalized to ‘chord arc domains with vanishing constant’. Concerning
reverse conclusions, i.e., elliptic free boundary problems a classical result of Alt–
Caffarelli states (for the definition of all the concepts we refer to [AC] and [KT2])
that if Ω ⊂ Rn is δ0 -Reifenberg flat with an Ahlfors regular boundary and if
log k̃ ∈ C0,β(∂Ω) for some β ∈ (0, 1), then Ω is a C1,α -domain for some α ∈ (0, 1)
which depends on β and n . In [J] Jerison proved that α = β . The conclusion is
that the oscillation of the logarithm of the Poisson kernel controls the geometry and
in particular the ‘flatness’ or the oscillation of the unit normal. Furthermore in [J]
Jerison treated a case beyond the C0,β situation for β > 0 under the assumption
that the domain is locally given as the graph of a Lipschitz function and assuming
that the normal derivative is continuous instead of having just vanishing mean
oscillation. In the setting of domains not locally given by graphs, in [KT2], Kenig
and Toro were able to prove the following theorem which is the analogue of the
result of [AC] assuming vanishing oscillation of the logarithm of the Poisson kernel
in an integral sense (VMO(dσ)) instead of in the classical pointwise sense.

Theorem 2. Assume that Ω ⊂ Rn is δ0 -Reifenberg flat for some small

enough δ0 > 0 and assume that ∂Ω is Ahlfors regular. If log k̃ ∈ VMO(dσ) then

Ω is a chord arc domain with vanishing constant, i.e., the measure theoretical

normal ~n is in VMO(dσ) .

This theorem can be seen as an answer to the elliptic one-phase type problem
stated as Problem 1 above. In [KT3], Kenig and Toro consider the elliptic version
of the two-phase problem we consider in Theorem 1. In particular, they prove
([KT3, Corollary 4.1]) that if Ω ⊂ Rn is a δ0 -Reifenberg flat (in the elliptic sense)
for some small enough δ0 > 0 and if k = dω1/dω2 , log k ∈ VMO(dω1), then ∂Ω
is Reifenberg flat with vanishing constant. In the elliptic setting questions of this
type have previous been addressed in the case n = 2, i.e., in the plane, through
the works of Bishop, Carleson, Garnett and Jones; see [B], [BCGJ] and [BJ].

Assuming that Ω ⊂ Rn is a two-sided chord arc domain (meaning that Ω1

and Ω2 are NTA-domains and that ∂Ω is Ahlfors) they also prove ([KT3, Corol-
lary 5.2]) that if log k̃1 ∈ VMO(dσ) and log k̃2 ∈ VMO(dσ) then firstly ∂Ω is
Reifenberg flat with vanishing constant and secondly Ω is a chord arc domain
with vanishing constant, i.e., the measure theoretical normal ~n is in VMO(dσ).
This result can be seen as an answer to the elliptic two-phase type problem stated
as Problem 2 above. One interesting aspect of the last result is that by imposing
the two-phase condition log k̃1 ∈ VMO(dσ) and log k̃2 ∈ VMO(dσ) the conclusion
of Theorem 2 remains true without an assumption on Reifenberg flatness. I.e., the
two-phase condition serves as a replacement for flatness.

2.2. Parabolic theory. Through the works in [LM], [HL] it has become clear
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that from the perspective of parabolic singular integrals and caloric measure the
parabolic analogue of the notion of Lipschitz domains, explored in elliptic partial
differential equations, is graph domains Ω = {(X, t) ∈ Rn+1 : x0 > ψ(x, t)} where
ψ = ψ(x, t): Rn → R has compact support and satisfies

|ψ(x, t)− ψ(y, t)| ≤ b1|x− y|, x, y ∈ Rn−1, t ∈ R, (1)

Dt
1/2ψ ∈ BMO(Rn), ‖Dt

1/2ψ‖∗ ≤ b2 <∞. (2)

Here Dt
1/2ψ(x, t) denotes the 1/2 derivative in t of ψ(x, · ), x fixed. This half

derivative in time can be defined by way of the Fourier transform or by

Dt
1/2ψ(x, t) ≡ ĉ

∫

R

ψ(x, s)− ψ(x, t)

|s− t|3/2
ds

for properly chosen ĉ . ‖ · ‖∗ denotes the norm in parabolic BMO(Rn) (for a
definition of this space see [HLN2]). One can prove that the conditions in (1) and
(2) imply that ψ(x, t) is parabolically Lipschitz in the following sense,

|ψ(x, t)− ψ(y, s)| ≤ β(|x− y| + |t− s|1/2) x, y ∈ Rn t, s ∈ R.

Under the smoothness assumptions on ψ stated in (1) and (2) it was proven
in [LM] that the parabolic Poisson kernel is in a certain Lp reverse Hölder class

for some p > 1. In particular ω(X̂, t̂, · ) is an A∞ weight (with respect to σ ).
The result of [LM] was later shown to be sharp in [HL] where examples are given
of graph domains, as in [LM], with p arbitrarily close to 1. In [HL] the relevant
L2 -result was established. Finally we note that examples of [KW] and [LS] show
that caloric and adjoint caloric measure need not be absolutely continous with
respect to the surface measure σ in graph Lip(1, 1/2) domain.

In [HLN2] the parabolic Poisson kernel was analyzed in domains not locally
given by graphs. In this situation the geometry was controlled by a certain geo-
metric square function, the boundedness of which implied that on every scale the
boundary contained ‘big pieces of graph’, graph with the regularity stated in (1)
and (2) (see [HLN1]). A fundamental assumption in [HLN2] is that ∂Ω is δ0 -
Reifenberg flat and satisfies a (M,R) Ahlfors condition (as defined above) but to
properly formulate the result in [HLN2] we need to introduce some more notation
and concepts.

Let

d(F1, F2) = inf{|X − Y | + |s− t|1/2 : (X, t) ∈ F1, (Y, s) ∈ F2}

denote the parabolic distance between the sets F1 , F2 and for Ω (such that ∂Ω
separates Rn+1 and satisfies a (M,R) Ahlfors condition) we set

γ(Z, τ, r) = inf
P

[
r−n−3

∫

∂Ω∩Cr(Z,τ)

d({(Y, s)}, P )2 dσ(Y, s)

]
.
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Here the infimum is taken over all n -dimensional planes P containing a line par-
allel to the t axis. Let

dν(Z, τ, r) = γ(Z, τ, r) dσ(Z, τ) r−1dr.

We say that ν is a Carleson measure on [∂Ω ∩ CR(Y, s)] × (0, R) if there exists
M1 <∞ such that whenever (X, t) ∈ ∂Ω and C%(X, t) ⊂ CR(Y, s), we have

(3) ν
(
[C%(X, t) ∩ ∂Ω] × (0, %)

)
≤M1 %

n+1.

The smallest such M1 is called the Carleson norm of ν on [∂Ω∩CR(Y, s)]× (0, R)
and we write ‖ν‖+ for the Carleson norm of ν if the inequality in (3) holds for all
% > 0. The following two definitions can be found in [HLN1] and [HLN2].

Definition 4. ∂Ω is said to be uniformly rectifiable (in the parabolic sense)
if ‖ν‖+ < ∞ and (3) holds for all R > 0. If furthermore ∂Ω separates Rn+1 and
is uniformly rectifiable, then Ω is called a parabolic regular domain.

Definition 5. Ω is called a chord arc domain with vanishing constant if Ω
is a parabolic regular domain and

(4) sup
(X,t)∈∂Ω
0<%≤r

[
%−(n+1) ν

(
[C%(X, t) ∩ ∂Ω] × (0, %)

)]
→ 0 as r → 0.

In [HLN2] it is proven that if Ω is a parabolic regular domain with Reifen-
berg constant δ0 = δ0(M, ‖ν‖+), sufficiently small, then ω is an A∞ weight.

Furthermore if Ω is a chord arc domain with vanishing constant and k̃(X̂, t̂, · ) =

dω(X̂, t̂, · )/dσ , then log k̃(X̂, t̂, · ) ∈ VMO(dσ).

To formulate the result in [HLN2] which is more relevant to the discussions

in this paper let a = a
(
∆(X, t, %), f

)
denote the average of f = log k̃(X̂, t̂, · ) on

∆(X, t, %) with respect to σ . Then we say that f ∈ VMO(dσ) provided for each
compact K ⊂ ∂Ω ∩ {(Y, s) : s < t̂} ,

lim
r→0

sup
(X,t)∈K
0<%≤r

σ
(
∆(X, t, %)

)−1
∫

∆(X,t,%)

|f(Y, s)− a| dσ = 0.

Let (X, t) ∈ ∂Ω, and r, % > 0 and put

∆(X, t, r, %) = {(Y, s) ∈ ∂Ω : |Y −X| < r, |s− t| < %2}.

In this notation ∆(X, t, r) = ∆(X, t, r, r). We say that ω(X̂, t̂, · ) is asymptotically
optimal doubling if, whenever K ⊂ ∂Ω ∩ {(Y, s) : s < t̂} is compact and 0 <
τ1, τ2 < 1, we have

lim
r→0

sup
(X,t)∈K

ω
(
∆(X, t, τ1r, τ2r)

)

ω
(
∆(X, t, r)

) = lim
r→0

inf
(X,t)∈K

ω
(
∆(X, t, τ1r, τ2r)

)

ω
(
∆(X, t, r)

) = τn−1
1 τ2

2 .

In [HLN2] the following theorem is proven.
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Theorem 3. Let Ω be a parabolic regular domain and put k̃(X̂, t̂, · ) =

dω(X̂, t̂, · )/dσ . If ω(X̂, t̂, · ) is asymptotically optimal doubling, log k̃(X̂, t̂, · ) ∈
VMO(dσ) and ‖ν‖+ is small enough then (4) holds with ∂Ω replaced by any

compact subset, F ⊂ ∂Ω ∩ {(Y, s) : s < t̂} .

Note that this result is weaker than the result proved in [KT2] as Theorem 3

uses the assumption that ω(X̂, t̂, · ) is asymptotically optimal doubling. In fact
the proof in [KT2] uses the important result of [AC] for elliptic pde, whose poten-
tial generalization to the heat equation is currently unknown. In fact these ‘free
boundary’ type problems appear harder in the caloric case. Similar problems have
been considered in [ACS], [ACS1] under stronger assumptions.

Summarizing we can conclude that to a large extent the answers to Problem 1
and 2 in the parabolic setting remain unclear but that the main theorem of this
paper, Theorem 1, gives a perfect parabolic analogue to the corresponding elliptic
result ([KT3, Corollary 4.1]).

3. Estimates of caloric functions in parabolic NTA-domains

Recall from [LM, Chapter 3, Section 6] that Ω ⊂ Rn+1 is an unbounded
parabolic nontangentially accessible domain if ∂Ω separates Rn+1 and if the fol-
lowing conditions are satisfied for some λ, γ ≥ 100. Given (X, t) ∈ ∂Ω and r > 0
there exist

A1
r(X, t) =

(
U1(X, t), t1(X, t)

)
= (U1, t1) ∈ Ω ∩ Cr(X, t),

Ā1
r(X, t) =

(
U2(X, t), t2(X, t)

)
= (U2, t2) ∈ Ω ∩ Cr(X, t),

A2
r(X, t) =

(
N1(X, t), τ1(X, t)

)
= (N1, τ1) ∈ (Rn+1 \ Ω) ∩ Cr(X, t),

Ā2
r(X, t) =

(
N2(X, t), τ2(X, t)

)
= (N2, τ2) ∈ (Rn+1 \ Ω) ∩ Cr(X, t),

such that
λ−1r2 ≤ min(t2 − t, t− t1) ≤ λr2,

λ−1r2 ≤ min(τ2 − t, t− τ1) ≤ λr2,

r/λ ≤ min
[
d
(
{(Ni, τi)}, ∂Ω

)
, d

(
{(Ui, ti)}, ∂Ω

)]
.

Here d( · , · ) denotes the parabolic distance defined in the previous section. As
in [JK1] we refer to these conditions as the corkscrew condition. Next suppose
(Ui, si) ∈ Ω, i = 1, 2, with (s2 − s1)

1/2 > γ−1d
(
{(U1, s1)}, {(U2, s2)}

)
. We say

as in [JK1] that {Cri
(Xi, ti)}

l
1 is a Harnack chain from (U1, s1) to (U2, s2) with

constant γ provided there exists c(γ) ≥ 1 such that

• (U1, s1) ∈ Cr1
(X1, t1), (U2, s2) ∈ Crl

(Xl, tl), and for i = 1, 2, . . . , l − 1,
Cri+1

(Xi+1, ti+1) ∩ Cri
(Xi, ti) 6= ∅ ,

• c(γ)−1d
(
{(Xi, ti)}, ∂Ω

)
≤ ri ≤ c(γ)d

(
{(Xi, ti)}, ∂Ω

)
, when i = 1, 2, . . . , l ,

• ti+1 − ti ≥ c(γ)−1r2i , for i = 1, 2, . . . , l ,
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• l ≤ c(γ) log

(
2 +

d
(
{(U1, s1)}, {(U2, s2)}

)

min
[
d
(
{(U1, s1)}, ∂Ω

)
, d

(
{(U2, s2)}, ∂Ω

)]
)

.

l is referred to as the length of the Harnack chain. Our first lemma states that
δ -Reifenberg flat domains are examples of parabolic NTA-domains. This lemma
is also proven in [HLN2].

Lemma 4. Let Ω be δ0 -Reifenberg flat. If δ0 > 0 is sufficiently small, then

Ω is a parabolic NTA domain for λ = 100 and any γ ≥ 100 .

Proof. Let (X, t) ∈ ∂Ω and r > 0. The definition of Reifenberg flatness
(Definition 1) implies that for δ0 > 0 sufficiently small and with λ = 100, the
corkscrew conditions are fulfilled with

A1
r(X, t) = (U1, t1) = (X + rn̂, t− r2), Ā1

r(X, t) = (U2, t2) = (X + rn̂, t+ r2),

A2
r(X, t) = (N1, τ1) = (X − rn̂, t− r2), Ā2

r(X, t) = (N2, τ2) = (X − rn̂, t+ r2).

Here n̂ = n̂(X, t, r). To prove, for any γ ≥ 100, the existence of Harnack
chains we follow [KT1] and for (U1, s1), (U2, s2) ∈ Ω, as above, we choose points
(P1, t1), (P2, t2) ∈ ∂Ω with

%i = d
(
{(Pi, ti)}, {(Ui, ti)}

)
= d

(
{(Ui, ti)}, ∂Ω

)
, i = 1, 2.

If % = d
(
{(U1, t1)}, {(U2, t2)}

)
, then using that Ω is δ0 -Reifenberg flat for δ0 > 0

small, we can choose a Harnack chain of length

l ≤ c(γ) log

(
2 +

%

min{%1, %2}

)

joining (U1, s1) to (U2, s2). If for example % > 1000 max(%1, %2) and l0 is the
smallest positive integer greater than log(%/%1), then from the Reifenberg flatness
it follows that we can choose {(Xi, ti)} with (Xi, ti) ∈ Cei%1

(P1, t1) for 2 ≤ i ≤ l0
and then (Xi, ti) ∈ Cel0−i%(P2, t2) for l0+1 ≤ i ≤ l0+l1 , where l1 ≤ log(2%/%2).

In this section we will assume, in order to ensure that Lemma 4 is valid, that
Ω is a δ0 -Reifenberg flat with small constant. For (X, t) ∈ ∂Ω and r > 0 we
define the following points located in Ω,

Ar(X, t) = (X+rn̂, t−r2), Ar(X, t) = (X+rn̂, t), Ār(X, t) = (X+rn̂, t+r2).

Again here n̂ = n̂(X, t, r). The existence of these points is a consequence of the
δ0 -Reifenberg flatness and we will make use of these points throughout the section.
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3.1. Basic estimates. In this section we state some basic estimates for
certain solutions to the heat and adjoint heat equation in parabolic NTA domains.
An outline of the proofs of these lemmas valid in the current situation can be found
in [LM, Chapter 3, Section 6] and [HLN2]. Apart from these references many of
the relevant ideas used in the proofs can also be found in [FS], [FSY] and [N].
In particular, in [N] all relevant estimates are stated and proved, in Lip(1, 1/2)-
domains, in the general setting of second order parabolic equations in divergence
form.

Note that the characteristics of a parabolic NTA-domain is described by the
parameters λ and γ and hence basically all constants appearing below will depend
on these two parameters. I.e., below c = c(λ, γ) but the constants often also
depend on other parameters and we will not always indicate the dependence on λ
and γ .

We start by a lemma on Hölder decay at the boundary of non-negative solu-
tions vanishing on the boundary. The lemma is proved using standard comparison
arguments and the fact that the complement of Ω is uniformly ‘fat’.

Lemma 5. Let Ω ⊂ Rn+1 be a parabolic NTA-domain with parameters λ
and γ . Let (X, t) ∈ ∂Ω and suppose that u is a non-negative solution to either

the heat or the adjoint heat equation in Ω∩C2r(X, t) which vanishes continuously

on ∂Ω∩C2r(X, t) . Then there exists α = α(λ, γ) , 0 < α < 1
2 , and c = c(λ, γ) ≥ 1

such that whenever (Y, s) ∈ Ω ∩ Cr(X, t)

u(Y, s) ≤ c

[
d
(
{(Y, s)}, {(X, t)}

)

r

]α

sup
(Z,τ)∈Ω∩Cr(X,t)

u(Z, τ).

The next lemma is a standard Carleson type lemma.

Lemma 6. Let u , Ω and (X, t) be as in the previous lemma. If (Y, s) ∈
Ω ∩ Cr/2(X, t) , then

u(Y, s) ≤ cu
(
Ār(X, t)

)

when u is a solution to the heat equation while

u(Y, s) ≤ cu
(
Ar(X, t)

)

when u is a solution to the adjoint heat equation in C2r(X, t) ∩ Ω .

Given (Y, s) ∈ Ω, let G( · , Y, s) denote Green’s function for the heat equation
in Ω with pole at (Y, s). That is

∂

∂t
G(X, t, Y, s)− ∆G(X, t, Y, s) = δ

(
(X, t)− (Y, s)

)
in Ω and G ≡ 0 on ∂Ω.

Here δ denotes the Dirac delta function and ∆ is the Laplacian in X . We note that
G(Y, s, · ) is Green’s function for the adjoint heat equation with pole at (Y, s) ∈ Ω
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(i.e. −(∂/∂t)G(Y, s, · )−∆G(Y, s, ·) = δ
(
·−(Y, s)

)
. Let ω , ω̂ be the corresponding

caloric and adjoint caloric measures for the heat/adjoint heat equation in Ω. We
note that ω(Y, s, · ), ω̂(Y, s, · ) are the Riesz measures associated with G(·, Y, s),
G(Y, s, · ) by way of the Riesz representation theorem for sub caloric/adjoint caloric
functions in Rn+1 \ {(Y, s)} (see [Do]). From this theorem we have that

∫

∂Ω

φ dω(Y, s, · ) =

∫

Ω

G(Y, s, · )

(
∆φ−

∂φ

∂s

)
dZ dτ

for all φ ∈ C∞
0

(
Rn+1 \ {(Y, s)}

)
. A similar formula holds for ω̂ . Estimates for

caloric/adjoint caloric measure in terms of Green’s function and vice versa are
given by the following lemma. The proof follows by standard arguments.

Lemma 7. Let Ω and (X, t) be as in the previous lemma. Let A ≥ 100 and

assume that (Y, s) ∈ Ω with |Y −X|2 ≤ A|s− t| and |s− t| ≥ 4r2 . There exists

c = c(A) ≥ 1 such that if s > t , then

c−1rnG
(
Y, s, Ār(X, t)

)
≤ ω

(
Y, s, ∆(X, t, r/2)

)
≤ crnG

(
Y, s, Ar(X, t)

)

while if s < t ,

c−1rnG
(
Ar(X, t), Y, s

)
≤ ω̂

(
Y, s,∆(X, t, r/2)

)
≤ crnG

(
Ār(X, t), Y, s

)
.

Next we have the following backward Harnack inequality.

Lemma 8. Let Ω and (X, t) be as in the previous lemma. Let A ≥ 100 and

assume that |Y − X|2 ≤ A|s − t| and |s − t| ≥ 5r2 . There exists c = c(A) ≥ 1
such that

G
(
Y, s, Ar(X, t)

)
≤ cG

(
Y, s, Ār(X, t)

)

when s > t while if s < t , then

G
(
Ar(X, t), Y, s

)
≤ cG

(
Ār(X, t), Y, s

)
.

Combining the previous two lemmas the doubling property of caloric/adjoint
caloric measure can be proven.

Lemma 9. Let Ω , (X, t) , (Y, s) and A be as in the previous lemma. Then

ω∗
(
Y, s,∆(X, t, r)

)
≤ c(A)ω∗

(
Y, s,∆(X, t, r/2)

)

where ω∗ = ω when s > t while ω∗ = ω̂ when s < t .
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Let (X, t) ∈ ∂Ω, % > 0 and R > 0. u > 0 is said to satisfy a strong Harnack
inequality in CR(X, t) ∩ Ω provided that u is a solution to either the heat or
adjoint heat equation in CR(X, t) ∩ Ω and

u(X̂, t̂) ≤ λ̃u(X̃ , t̃) whenever (X̂, t̂), (X̃ , t̃) ∈ C%(Z, τ)

and C2%(Z, τ) ⊂ CR(X, t) ∩ Ω.

Here λ̃, 1 ≤ λ̃ < ∞ , is independent of C2%(Z, τ) ⊂ CR(X, t)∩Ω. For (X, t), % as
above and A > 0 we define

Γ+

A(X, t, %) = Ω ∩ {(Y, s) : |Y −X|2 ≤ A|s− t|, |s− t| ≥ 5%2, s > t},

Γ−

A(X, t, %) = Ω ∩ {(Y, s) : |Y −X|2 ≤ A|s− t|, |s− t| ≥ 5%2, s < t}.

Using Lemmas 7, 8 and 9 one can prove that if (Y, s) ∈ Γ+

A(X, t, R) then G(Y, s, · )
satisfies a strong Harnack inequality in CR(X, t) ∩ Ω while if (Y, s) ∈ Γ−

A(X, t, R)
then G( · , Y, s) satisfies a strong Harnack inequality in CR(X, t) ∩ Ω. Moreover,
λ̃ depends only on A once the NTA-constants λ and γ have been chosen. Using
the notion of strong Harnack inequality the following two comparison lemmas can
be proven.

Lemma 10. Let u, v > 0 be continuous in C2r(X, t) ∩ Ω, u = v = 0 on

∆(X, t, 2r) and assume that u and v both are solutions either to the heat or the

adjoint heat equation in C2r(X, t)∩Ω . If u , v satisfy a strong Harnack inequality

in C2r(X, t) ∩ Ω for some λ̃ ≥ 1 , then

u(Y, s)

v(Y, s)
≤ c(λ̃)

u(Û)

v(Û)
in Cr/2(X, t) ∩ Ω.

Here Û = Ār(X, t) when u , v are solutions to the heat equation while Û =
Ar(X, t) when u, v are solutions to the adjoint heat equation in Ω ∩ C2r(X, t) .

Lemma 11. Under the same hypotheses as in Lemma 10 there exists γ̃ =
γ̃(λ̃) , 0 < γ̃ ≤ 1/2 , and c = c(λ̃) ≥ 1 , such that whenever 0 < % ≤ r/2 then

∣∣∣∣
u(Z, τ)v(Y, s)

v(Z, τ)u(Y, s)
− 1

∣∣∣∣ ≤ c (%/r)γ̃ for (Z, τ), (Y, s) ∈ C%(X, t) ∩ Ω.

3.2. Refined estimates. Let Ω ⊂ Rn+1 be a δ0 -Reifenberg flat domain
and define Ω1 = Ω ⊂ Rn+1 , Ω2 = Rn+1 \ Ω. We assume that δ0 > 0 is small.

Let (X̂i, t̂i) ∈ Ωi , for i ∈ {1, 2} , t̂2 < t̂1 and define ω1(X̂1, t̂1, · ) and ω2(X̂2, t̂2, · )
to be the caloric measures defined with respect to Ω1 and Ω2 , respectively. In the
following we will assume that ω2(X̂2, t̂2, · ) is absolutely continuous with respect to

ω1(X̂1, t̂1, · ) on ∂Ω and that the Radon–Nikodym derivative k(X̂1, t̂1, X̂2, t̂2, · ) =
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dω2(X̂2, t̂2, · )/dω1(X̂1, t̂1, · ) is such that log k(X̂1, t̂1, X̂2, t̂2, · ) is in the space

VMO
(
dω1(X̂1, t̂1, · )

)
. To properly define the space VMO

(
dω1(X̂1, t̂1, · )

)
we let

a = a(∆(X, t, %), f) denote the average of f = log k(X̂1, t̂1, X̂2, t̂2, · ) on ∆(X, t, %)

with respect to dω1(X̂1, t̂1, · ). f is said to be in VMO
(
dω1(X̂1, t̂1, · )

)
provided

for each compact K ⊂ ∂Ω ∩ {(Y, s) : s < t̂2} ,

lim
r→0

sup
(X,t)∈K
0<%≤r

ω1
(
X̂1, t̂1,∆(X, t, %)

)−1
∫

∆(X,t,%)

|f(Y, s)− a| dω1(X̂1, t̂1, · ) = 0.

We start by exploring the information contained in the condition

log k(X̂1, t̂1, X̂2, t̂2, · ) ∈ VMO
(
dω1(X̂1, t̂1, · )

)
.

Lemma 12. Let Ω ⊂ Rn+1 be a δ0 -Reifenberg flat domain and define

Ω1 = Ω ⊂ Rn+1 , Ω2 = Rn+1 \ Ω. Assume furthermore that ω2(X̂2, t̂2, · ) is

absolutely continuous with respect to ω1(X̂1, t̂1, · ) on ∂Ω and that the Radon–

Nikodym derivative

k(X̂1, t̂1, X̂2, t̂2, · ) = dω2(X̂2, t̂2, · )/dω1(X̂1, t̂1, · )

is such that

log k(X̂1, t̂1, X̂2, t̂2, · ) ∈ VMO
(
dω1(X̂1, t̂1, · )

)
.

Then there exists α ∈ (0, 1) and a constant C = C(n, δ0, A) such that the following

is true. If (X, t) ∈ ∂Ω , r < r0 , |X − X̂i|2 ≤ A(t̂i − t) for some A ≥ 2 and for

i ∈ {1, 2} , min{t̂1, t̂2} − t ≥ 8r2 and E ⊂ ∆(X, t, r) , then

ω2(X̂2, t̂2, E)

ω2
(
X̂2, t̂2,∆(X, t, r)

) ≤ C

(
ω1(X̂1, t̂1, E)

ω1
(
X̂1, t̂1,∆(X, t, r)

)
)α

.

Proof. Let E ⊂ ∆(X, t, r) and ∆(X, t, r) be as in the statement of the

lemma. Note that the restrictions on the points (X, t) and (X̂i, t̂i) imply uniform
bounds on the doubling constants of the caloric measures under consideration.
The inequality stated in the lemma is therefore a standard consequence of the fact
that if log k(X̂1, t̂1, X̂2, t̂2, · ) ∈ VMO

(
dω1(X̂1, t̂1, · )

)
then k(X̂1, t̂1, X̂2, t̂2, · ) is an

A∞ weigth with respect to the measure ω1(X̂1, t̂1, · ). For more on the relation
between VMO and Ap -weights we refer to [S].

Lemma 13. Let Ω be a δ0 -Reifenberg flat domain with δ0 > 0 small enough.

Let (X, t) ∈ ∂Ω , r > 0 and let u > 0 be a solution to either the heat or the adjoint

heat equation in C2r(X, t) ∩ Ω , continous in C2r(X, t) ∩ Ω and such that u = 0
on ∆(X, t, 2r) . If u satisfies a strong Harnack inequality in C2r(X, t) ∩ Ω for
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some λ̃ ≥ 1 , then, given ε > 0 , there exists δ̂0 = δ̂0(n, ε, λ̃) > 0 and a constant

C = C(n, ε, λ̃) such that if δ0 ≤ δ̂0 and r̂ ≤ r then

C−1

(
r̂

r

)1+ε

u
(
Ar(X, t)

)
≤ u

(
Ar̂(X, t)

)
≤ C

(
r̂

r

)1−ε

u
(
Ar(X, t)

)
.

Proof. By scaling and translation we can without loss of generality assume
that r = 1, (X, t) = (0, 0). We can furthermore assume that u

(
A1(0, 0)

)
= 1.

Based on these simplifications we want to prove that given ε > 0, there exists
δ̂0 = δ̂0(n, ε, λ̃) > 0 and a constant C = C(n, ε, λ̃) such that if δ0 ≤ δ̂0 and r̂ ≤ 1
then

C−1r̂1+ε ≤ u
(
Ar̂(0, 0)

)
≤ Cr̂1−ε.

In order to prove this inequality we will make use of a number of auxiliary sets
and functions. Recall that by definition of the δ0 -Reifenberg flatness there exists
an n -dimensional plane P̂ = P̂(0, 0, 2), containing (0, 0) and a line parallel to the
t axis, having unit normal n̂ = n̂(0, 0, 2) such that

{
(Ẑ , τ̂) + rn̂ ∈ C2(0, 0) : (Ẑ , τ̂) ∈ P̂ , r > 2δ0

}
⊂ Ω,

{
(Ẑ , τ̂) − rn̂ ∈ C2(0, 0) : (Ẑ , τ̂) ∈ P̂ , r > 2δ0

}
⊂ Rn+1 \ Ω.

Based on this we introduce

S− = S−(δ0) =
{
(Ẑ , τ̂) + rn̂ : (Ẑ , τ̂) ∈ P̂ , r > −4δ0

}
,

S+ = S+(δ0) =
{
(Ẑ , τ̂) + rn̂ : (Ẑ , τ̂) ∈ P̂ , r > 4δ0

}
.

Then S+ ⊂ S− and S+ is a translation of the halfspace S− . Consider the sets
S−∩C2(0, 0) and S+∩C2(0, 0). The parabolic boundary of S−∩C2(0, 0) consists
of two pieces Γ−

1 and Γ−

2 where

Γ−

1 = C2(0, 0) ∩
{
(Ẑ , τ̂) − 4δ0n̂ : (Ẑ , τ̂) ∈ P̂

}
,

Γ−

2 = ∂pC2(0, 0) ∩
{
(Ẑ , τ̂) + rn̂ : (Ẑ , τ̂) ∈ P̂ , r > −4δ0

}
.

Here ∂pC2(0, 0) is the parabolic boundary of C2(0, 0). Similarly the parabolic
boundary of S+ ∩ C2(0, 0) consists of two pieces Γ+

1 and Γ+

2 . We define two
auxilary functions ũ− and ũ+ . ũ− is a caloric function defined in S−(δ0)∩C2(0, 0)
satisfying ũ−(Y, s) = 0 if (Y, s) ∈ Γ−

1 and ũ−(Y, s) = 1 if (Y, s) ∈ Γ−

2 . Similarly
ũ+ is a caloric function defined in S+(δ0) ∩ C2(0, 0) satisfying ũ+(Y, s) = 0 if
(Y, s) ∈ Γ+

1 and ũ+(Y, s) = 1 if (Y, s) ∈ Γ+

2 . Finally we also define

ṽ−
(
(Ẑ , τ̂) + rn̂

)
:= r + 4δ0, ṽ+

(
(Ẑ , τ̂) + rn̂

)
:= r − 4δ0
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for all (Ẑ , τ̂) ∈ P̂ and r ∈ R . I.e., the last two caloric functions are independent
of the time variable and grow linearly in the direction of the normal n̂ .

Based on this notation we will now prove the right-hand side inequality. By
the maximum principle we have, by construction, that

u(Y, s) ≤ ũ−(Y, s)

for all (Y, s) ∈ Ω ∩ C1(0, 0). Note that if δ0 ≤ δ̂0 then ũ− will satisfy, as ũ−

essentially is the caloric measure in S−(δ0)∩C2(0, 0) of the set S−(δ0)∩∂pC2(0, 0),

a strong Harnack inequality in S−(δ0) ∩C1/2(0, 0) with a universal λ̃ . Let in the

following (Ẑ , τ̂) ∈ P̂ . For all (Y, s) = (Ẑ , τ̂)+ rn̂ ∈ C1/2(0, 0)∩Ω, r ∈ R , we get,
using Lemma 10, that

ũ−(Y, s) ≤ Cṽ−(Y, s) = C(r + 4δ0).

Therefore if (Y, s) = (Ẑ , τ̂) + rn̂ ∈ Cθ(0, 0) ∩ Ω for θ < 1/2 an elementary
argument implies that ũ−(Y, s) ≤ C(θ + δ0) and hence u(Y, s) ≤ C(θ + δ0).

Iteratively u(Y, s) ≤ [C(θ + δ0)]
k for (Y, s) = (Ẑ , τ̂) + rn̂ ∈ Cθk(0, 0) ∩ Ω. In

particular, we can conclude that if δ0 is small enough, then u(Y, s) ≤ [2Cδ0]
k for

all (Y, s) = (Ẑ , τ̂)+ rn̂ ∈ Cδk
0
(0, 0)∩Ω. For given ε > 0 small, let δ0 be such that

2Cδ0 ≤ δ1−ε
0 . If we let k be determined through δk

0 = r̂ , then u
(
Ar̂(0, 0)

)
≤ Cr̂1−ε

and the proof is complete in one direction.
Left is to prove the inequality in the other direction. To start with we in this

case let û be a caloric function defined in Ω ∩ C2(0, 0) satisfying û(Y, s) = 0 if

(Y, s) ∈ ∂Ω ∩C2(0, 0) and û(Y, s) = 1 if (Y, s) ∈ Ω ∩ ∂pC2(0, 0). Again if δ0 ≤ δ̂0
then û will satisfy a strong Harnack inequality in Ω∩C1(0, 0) with a universal λ̃ .
Applying Lemma 10 it follows that there exists a constant C such that

C−1u
(
A1(0, 0)

)

û
(
A1(0, 0)

) ≤
u
(
Ar̃(0, 0)

)

û
(
Ar̃(0, 0)

) ≤ C
u
(
A1(0, 0)

)

û
(
A1(0, 0)

)

for all 0 < r̃ ≤ 1. Therefore, as u
(
A1(0, 0)

)
= 1 ∼ û

(
A1(0, 0)

)
, we have

u
(
Ar̃(0, 0)

)
∼ û

(
Ar̃(0, 0)

)
for all 0 < r̃ ≤ 1. Furthermore, by construction,

we have by the maximum principle that

ũ+(Y, s) ≤ û(Y, s)

for all (Y, s) ∈ S+(δ0) ∩ C1(0, 0). Applying Lemma 10 once again we can also
conclude that

ũ+
(
A32δ0

(0, 0)
)

ṽ+
(
A32δ0

(0, 0)
) ∼

ũ+
(
A1(0, 0)

)

ṽ+
(
A1(0, 0)

) ∼
ũ+

(
A1(0, 0)

)

1 − 4δ0
.
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This implies that

ũ+
(
A32δ0

(0, 0)
)
≥ Cδ0

ũ+
(
A1(0, 0)

)

1 − 4δ0
≥ Cδ0ũ

+
(
A1(0, 0)

)
.

By iteration
ũ+

(
A(32δ0)k(0, 0)

)
≥ (Cδ0)

kũ+
(
A1(0, 0)

)
.

Choosing δ0 so small that Cδ0 ≥ (32δ0)
1+ε we can conclude that if

r̂ ∈
[
(32δ0)

k+1, (32δ0)
k
]

then by the Harnack principle

ũ+
(
Ar̂(0, 0)

)
≥ Cũ+

(
A(32δ0)k(0, 0)

)

≥ C(32δ0)
k(1+ε)ũ+

(
A1(0, 0)

)
≥ Cr̂(1+ε)ũ+

(
A1(0, 0)

)
.

As ũ+
(
A1(0, 0)

)
∼ û

(
A1(0, 0)

)
and as ũ+ ≤ û on S+(δ0) ∩ C2(0, 0) we can, by a

straightforward comparison argument, conclude that

û
(
Ar̂(0, 0)

)
≥ Cr̂1+εû

(
A1(0, 0)

)
.

As û
(
A1(0, 0)

)
∼ u

(
A1(0, 0)

)
= 1 we can put all the estimates together and finally

conclude that
u
(
Ar̂(0, 0)

)
≥ Cr̂1+εu

(
A1(0, 0)

)
= Cr̂1+ε.

This completes the proof of the lemma.

3.3. The Green function and caloric measure at infinity. In this
section we will clarify the notion of Green function with pole at infinity and the
associated caloric measure.

Lemma 14. Let Ω be a δ0 -Reifenberg flat domain with δ0 > 0 small. Then

there exists a unique function u (unique modulo a constant) such that u is a non-

negative solution to the adjoint heat in Ω and such that u vanishes continuously

on ∂Ω .

In fact a similar result holds for the heat equation. The function u , in the
statement of the lemma, should be referred to as the Green function with pole at
+infinity. By + we refer to the ‘infinity’ in the positive direction of time.

Proof. There are two steps in the proof, the uniqueness and the existence.
We start by proving the existence. We let (X, t) ∈ ∂Ω and let R > 0 be a large

positive number. Assume that (X̂, t̂) ∈ Γ+

A(X, t, 100R) and let K ⊂ Rn+1 be
a fixed compact set. Assume that R is so large that K ∩ Ω ⊂ CR(X, t). Using
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Lemma 6, the fact that if (X̂, t̂) ∈ Γ+

A(X, t, 100R) then G(X̂, t̂, · ) satisfies a strong
Harnack inequality in CR(X, t)∩Ω and Lemma 10 it follows that if (Z, τ) ∈ K∩Ω,
then

G(X̂, t̂, Z, τ) ≤ CK,n,AG
(
X̂, t̂, A1(X, t)

)
.

In particular this implies that if (X̂, t̂) ∈ Γ+

A(X, t, 100R) then

sup
(Z,τ)∈K∩Ω

G(X̂, t̂, Z, τ)

G
(
X̂, t̂, A1(X, t)

) ≤ CK,n,A.

Let (X̂j , t̂j) ∈ Γ+

A(X, t, 2jR) for j = 1, 2, . . . and define for (Z, τ) ∈ CR(X, t) ∩ Ω

uj(Z, τ) =
G(X̂j , t̂j, Z, τ)

G
(
X̂j , t̂j , A1(X, t)

) .

Then {uj} is a set of positive adjoint caloric functions in CR(X, t)∩ Ω vanishing
on ∂Ω. Furthermore, we can assume that {uj} is a uniformly bounded set of func-
tions on Ω ∩ CR(X, t). By the Arzela–Ascoli theorem there exists a subsequence
{j̃k} such that {uj̃k

} converges to a non-negative solution ũ = ũR to the adjoint
heat equation in Ω ∩ CR(X, t). If we choose a sequence of numbers Ri such that
Ri → ∞ and pick a diagonal subsequence we can conclude that there exists a
subsequence {jk} such that {ujk

} converges to a non-negative solution u∞ to the
adjoint heat equation in Ω, uniformly on compact sets of Ω. Furthermore, u∞
vanishes continuously on ∂Ω and u∞

(
A1(X, t)

)
= 1.

Left is to prove uniqueness. Let u and v be two functions fulfilling the
statement of the lemma and assume that u

(
A1(X, t)

)
= v

(
A1(X, t)

)
for some

point (X, t) ∈ ∂Ω. Under these assumptions we want to prove that u ≡ v . Let
% and R be fixed numbers such that 0 < % ≤ R/2. Using the same argument as
in the proof of Lemma 8 (see the proof of Lemma 3.11 in [HLN2]) one can prove
that u and v satisfy a strong Harnack inequality in CR(X, t)∩Ω with a constant
λ̃ which only depends on the Reifenberg constant δ0 and the dimension n . Using
Lemma 11 we therefore get that whenever (Z, τ), (Y, s) ∈ C%(X, t) ∩ Ω then

∣∣∣∣
u(Z, τ)v(Y, s)

v(Z, τ)u(Y, s)
− 1

∣∣∣∣ ≤ c (%/R)γ.

Hence if we put (Y, s) = A1(X, t) then

∣∣∣∣
u(Z, τ)

v(Z, τ)
− 1

∣∣∣∣ ≤ C(%/R)γ

whenever (Z, τ) ∈ C%(X, t) ∩ Ω. Letting R→ ∞ completes the proof.
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Lemma 15. Let Ω be a δ0 -Reifenberg flat domain with δ0 > 0 small. Let

(X, t) ∈ ∂Ω . Then there exists a unique doubling Radon measure ω such that

ω
(
∆(X, t, 1)

)
= 1 and a non-negative solution u to the adjoint heat in Ω vanishing

continuously on ∂Ω such that for all φ ∈ C∞
0 (Rn+1)

∫

∂Ω

φ(Y, s) dω(Y, s) =

∫

Ω

u(Y, s)(∆− ∂s)φ(Y, s) dY ds.

ω is referred to as the caloric measure for Ω at + infinity and normalized at (X, t) .

Proof. Again there are two steps in the proof, the uniqueness and the ex-
istence. In this case we start by proving the uniqueness. I.e., we assume that
there exist two measures ω1 and ω2 as in the statement of the lemma and such
that ω1

(
∆(X, t, 1)

)
= ω2

(
∆(X, t, 1)

)
= 1 for a point (X, t) ∈ ∂Ω. We want to

prove that ω1 ≡ ω2 . Let u1 and u2 be related to ω1 respectively ω2 according
to the statement of the lemma. Using Lemma 14 we can conclude that there exist
constants α1 and α2 as well as a function u such that ui = αiu . Here u is a
non-negative solution to the adjoint heat in Ω such that u vanishes continuously
on ∂Ω. I.e., for all φ ∈ C∞

0 (Rn+1)

∫

∂Ω

φ(Y, s) dωi(Y, s) = αi

∫

Ω

u(Y, s)(∆− ∂s)φ(Y, s) dY ds.

From this we can we conclude that

α−1
1

∫

∂Ω

φ(Y, s) dω1(Y, s) = α−1
2

∫

∂Ω

φ(Y, s) dω2(Y, s).

Choosing φ as the indicator function of ∆(X, t, 1) and using the normalization of
ω1 and ω2 we get that α1 = α2 . Therefore u1 ≡ u2 and ω1 ≡ ω2 .

To prove the existence we argue as in the proof of Lemma 14. We let (X, t) ∈

∂Ω and define R > 0 to be a large positive number. Let (X̂j , t̂j) ∈ Γ+

A(X, t, 2jR)
for j = 1, 2, . . . and define for (Z, τ) ∈ CR(X, t) ∩ Ω

uj(Z, τ) =
G(X̂j , t̂j, Z, τ)

G
(
X̂j , t̂j , A1(X, t)

) .

Let φ ∈ C∞
0

(
CR(X, t)

)
and let as usual ω(X̂j , t̂j, · ) be the caloric measure defined

with respect to (X̂j , t̂j). Then

∫

∂Ω

φ(Z, τ)G
(
X̂j , t̂j , A1(X, t)

)−1
dω(X̂j , t̂j, Z, τ)

=

∫

Ω

uj(Z, τ)(∆− ∂τ )φ(Z, τ) dZ dτ.
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Defining measures

dµj(Z, τ) = G
(
X̂j , t̂j , A1(X, t)

)−1
dω(X̂j , t̂j, Z, τ)

we can conclude that
∫

∂Ω

φ(Z, τ) dµj(Z, τ) =

∫

Ω

uj(Z, τ)(∆− ∂τ )φ(Z, τ) dZ dτ

for all φ ∈ C∞
0

(
CR(X, t)

)
. Using Lemma 7 and the fact that G(X̂j , t̂j, · ) satisfies

a strong Harnack inequality in CR(X, t) ∩ Ω we have that

µj

(
∆(X, t, R)

)
=
ω
(
X̂j , t̂j ,∆(X, t, R)

)

G
(
X̂j , t̂j, A1(X, t)

) ∼
RnG

(
X̂j , t̂j, AR(X, t)

)

G
(
X̂j , t̂j, A1(X, t)

)

∼ Rnuj(Z, τ)

for all (Z, τ) ∈ CR(X, t) ∩ Ω. As in the proof of Lemma 14, {uj} is a uniformly
bounded set of functions on Ω∩CR(X, t). Hence the sequence {µj} is a uniformly
bounded set of measures on CR(X, t)∩∂Ω and therefore there exists a subsequence
{µj̃k

} and a Radon measure µ such that,

∫

∂Ω

φ(Z, τ) dµjk
(Z, τ) →

∫

∂Ω

φ(Z, τ) dµ(Z, τ),

for all φ ∈ C∞
0

(
CR(X, t)

)
as k → ∞ . If we again choose a sequence of numbers Ri

such that Ri → ∞ and pick a diagonal subsequence we can therefore conclude that
there exists a subsequence {jk} such that {µjk

} converges to a Radon measure µ
such that for all φ ∈ C∞

0 (Rn+1),

∫

∂Ω

φ(Z, τ) dµjk
(Z, τ) →

∫

∂Ω

φ(Z, τ) dµ(Z, τ),

as k → ∞ . Repeating the argument of Lemma 14 we can also conclude that {ujk
}

converges, uniformly on compacts subsets, to a non-negative solution u∞ and for
all φ ∈ C∞

0 (Rn+1)

∫

∂Ω

φ(Z, τ) dµ(Z, τ) =

∫

Ω

u∞(Z, τ)(∆− ∂τ )φ dZdτ.

Define ω∞ = µ/µ
(
∆(X, t, 1)

)
and u∞ = u∞/µ

(
∆(X, t, 1)

)
. Then for all φ ∈

C∞
0 (Rn+1)

∫

∂Ω

φ(Z, τ) dω∞(Z, τ) =

∫

Ω

u∞(Z, τ)(∆ − ∂τ )φ dZ dτ.
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This completes the existence part of the proof. Left is to prove that ω∞ is a
doubling measure. But if (X̃ , t̃) ∈ ∂Ω and r > 0 it follows from Lemma 9 that

ω∞

(
∆(X̃ , t̃, 2r)

)
≤ lim inf

jk→∞

ω
(
X̂jk

, t̂jk
,∆(X̃ , t̃, 2r)

)

µ
(
∆(X, t, 1)

)
G

(
X̂jk

, t̂jk
, A1(X, t)

)

≤ C lim inf
jk→∞

ω
(
X̂jk

, t̂jk
,∆(X̃ , t̃, r/2)

)

µ
(
∆(X, t, 1)

)
G

(
X̂jk

, t̂jk
, A1(X, t)

)

≤ Cω∞

(
∆(X̃ , t̃, r)

)
.

This completes the proof.

4. A blow-up argument and the classification of global solutions

In the following we let Ω be δ0 -Reifenberg flat. Let (Xj, tj) ∈ ∂Ω → (X̃ , t̃) ∈

∂Ω and assume that (X̃ , t̃) = (0, 0). For a sequence {rj} of real numbers tending
to zero we define,

Ωj =
{(
r−1
j (X −Xj), r

−2
j (t− tj)

)
: (X, t) ∈ Ω

}
.

This section is devoted to the analysis of these blow-ups by making use of our
assumption on the kernel k(X̂1, t̂1, X̂2, t̂2, · ) and therefore we will also assume
that tj < t̂2 < t̂1 for all j .

4.1. Blow-ups. Recall that the parabolic distance between the two sets
F1, F2 is defined as

d(F1, F2) = inf{|X − Y | + |s− t|1/2 : (X, t) ∈ F1, (Y, s) ∈ F2}.

Based on this we introduce the parabolic Hausdorff distance between two sets F1 ,
F2 as

D(F1, F2) = sup{d(x, F2) : x ∈ F1} + sup{d(F1, y) : y ∈ F2}.

In the following we will consider uniform Hausdorff convergence (in the metric
induced by the parabolic Hausdorff distance) on compact sets. To define this
properly we consider a sequence of closed sets {Fj}j , Fj ⊂ Rn+1 . We say that
Fj converges to a closed set F ⊂ Rn+1 in the parabolic Hausdorff distance sense,
uniformly on compact subsets of Rn+1 , if for any compact set K ⊂ Rn+1 and
any ε > 0 there exists j0 ≥ 1 so that if j ≥ j0 then

D(Fj ∩K,F ∩K) < ε.

Furthermore a sequence of open sets {Ej}j , Ej ⊂ Rn+1 , is said to converge to
an open set E ⊂ Rn+1 in the parabolic Hausdorff distance sense uniformly on
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compact subsets of Rn+1 if Rn+1 \ Ej → Rn+1 \ E in the parabolic Hausdorff
distance sense uniformly on compact subsets of Rn+1 .

Let ω(X̂, t̂, · ) and G(X̂, t̂, · , · ) be the caloric measure and Green function
defined with Ω as domain of reference. For arbitrary Borel sets E ⊂ Rn+1 we
define,

ωj(E) =
ω
(
X̂, t̂,

{
(Z, τ) ∈ ∂Ω :

(
(Z −Xj)/rj, (τ − tj)/r

2
j

)
∈ E

})

ω
(
X̂, t̂,∆(Xj, tj , rj)

) .

We furthermore define

uj(Z, τ) =
G(X̂, t̂, Xj + rjZ, tj + r2j τ)

ω
(
X̂, t̂,∆(Xj, tj , rj)

) rn
j

whenever (Z, τ) ∈ Ωj . Then uj is adjoint caloric in Ωj outside of its pole and it
is zero on ∂Ωj .

We will start by proving the following two lemmas.

Lemma 16. Let Ω be δ0 -Reifenberg flat domain with δ0 > 0 small. Let

(Xj, tj) ∈ ∂Ω → (X̃ , t̃) ∈ ∂Ω and assume that (X̃ , t̃) = (0, 0) . For a sequence

{rj} of real numbers tending to zero we define,

Ωj =
{(
r−1
j (X −Xj), r

−2
j (t− tj)

)
: (X, t) ∈ Ω

}
.

Then Ωj → Ω∞ and ∂Ωj → ∂Ω∞ in the parabolic Hausdorff distance sense

uniformly on compact subsets of Rn+1 as j → ∞ . Furthermore, Ω∞ is a 4δ0 -

Reifenberg flat domain.

Lemma 17. Let Ωj and Ω∞ be as in Lemma 16. Then uj → u∞ uniformly

on compact subsets, u∞ is a positive adjoint caloric function in Ω∞ and u∞ =
0 on ∂Ω∞ . Moreover ωj → ω∞ weakly as Radon measures and for all φ ∈
C∞

0 (Rn+1)

∫

∂Ω

φ(Y, s) dω∞(Y, s) =

∫

Ω

u∞(Y, s)(∆− ∂s)φ(Y, s) dY ds.

ω∞ is the caloric measure of Ω∞ at infinity.

We start by proving Lemma 16.

Proof. Note that for each j ≥ 1, (0, 0) ∈ ∂Ωj and C1(0, 0) ∩ Ωj 6= ∅ . Using
this we can conclude that given a compact set K ⊂ Rn+1 there exists a sub-
sequence {j̃m}m such that K ∩ ∂Ωj̃m

and K ∩ Ωj̃m
converge in the parabolic

Hausdorff distance sense. We can therefore exhaust Rn+1 by a sequence of com-
pact sets in order to ensure that there exists a subsequence {jm}m such that ∂Ωjm
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and Ωjm
converge in the parabolic Hausdorff distance sense uniformly on com-

pact sets. Hence by an appropriate relabeling we can conclude that as j → ∞ ,
Ωj → Ω∞ , ∂Ωj → Σ∞ in the parabolic Hausdorff distance sense uniformly on
compact subsets of Rn+1 . In analogy with the proof of Theorem 4.1 in [KT2] we
want to prove that ∂Ω∞ = Σ∞ and that ∂Ω∞ is 4δ0 -Reifenberg flat.

Since ω is a doubling measure we have that for any compact set K ⊂ Rn+1 ,
supj≥1 ωj(K) ≤ CK . Hence arguing as in the proof of Lemma 15 there exists a
subsequence (which we relabel) such that ωj → ω∞ in the sense that

∫
φ dωj →

∫
φ dω∞

for all φ ∈ C∞
0 (Rn+1). We start by proving that the support of ω∞ equals Σ∞ .

To do this we let (Ẑ , τ̂) ∈ Σ∞ . By construction there exists a sequence (Zj , τj)
such that (Zj, τj) ∈ ∂Ω and

(Z̃j , τ̃j) :=
(
(Zj −Xj)/rj, (τj − tj)/r

2
j

)
→ (Ẑ , τ̂).

Furthermore for every r ∈ (0, 1) there exists j0 ≥ 1 such that for j ≥ j0 ,

d
(
(Z̃j , τ̃j), (Ẑ , τ̂)

)
< r/2 and d

(
(Zj , τj), (Xj, tj)

)
< Crj for some large C =

C
(
(Ẑ , τ̂)

)
. Hence we have that

ωj

(
Cr(Ẑ , τ̂)

)
=
ω
(
X̂, t̂,

{
(Z, τ) ∈ ∂Ω :

(
(Z −Xj)/rj , (τ − tj)/r

2
j

)
∈ Cr(Ẑ , τ̂)

})

ω
(
X̂, t̂,∆(Xj, tj, rj)

)

≥
ω
(
X̂, t̂, Crrj/2(Zj , τj)

)

ω
(
X̂, t̂,∆(Xj, tj, rj)

) ≥
ω
(
X̂, t̂, Crj/2(Zj , τj)

)

ω
(
X̂, t̂, C2Crj

(Zj , τj)
) ≥ C̃(r, C)

as ω is a doubling measure. Hence this implies that if (Ẑ , τ̂) ∈ Σ∞ then (Ẑ , τ̂)
is in the support of ω∞ . Left is to prove the other inclusion. I.e., in this case we
start by assuming that (Ẑ , τ̂) is in the support of ω∞ . We want to prove that
there exists (Zj , τj) ∈ ∂Ω such that

(Z̃j , τ̃j) :=
(
(Zj −Xj)/rj, (τj − tj)/r

2
j

)
→ (Ẑ , τ̂).

If this is not the case then there exists ε > 0 and j0 such that for any sequence
(Zj , τj) ∈ ∂Ω as above d

(
(Z̃j , τ̃j), (Ẑ , τ̂)

)
≥ ε if j ≥ j0 . In particular in this case

Cε/2(Ẑ , τ̂) ∩ ∂Ωj = ∅ . If we take φ ∈ C∞
0

(
Cε/2(Ẑ , τ̂)

)
we then get as ωj → ω∞

that

0 =

∫
φ(Y, s) dωj(Y, s) →

∫
φ(Y, s) dω∞(Y, s).
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I.e., ∫
φ(Y, s) dω∞(Y, s) = 0

for all φ ∈ C∞
0

(
Cε/2(Ẑ , τ̂)

)
. This contradicts the assumption that (Ẑ , τ̂) is in

the support of ω∞ . I.e. , (Ẑ , τ̂) ∈ Σ∞ and we can conclude that the support of
ω∞ coincides with Σ∞ .

We now prove that ∂Ω∞ ⊂ Σ∞ . To do this we let (Z, τ) ∈ ∂Ω∞ = Ω∞ ∩
Rn+1 \ Ω∞ and note that given ε > 0, there exist (Y, s) ∈ Ω∞ ∩ Cε(Z, τ) and

(Ŷ , ŝ) ∈ [Rn+1 \Ω∞ ]∩Cε(Z, τ). There also exist sequences of points (Yj , sj) ∈ Ω

and (Ŷ j , ŝj) ∈ [Rn+1 \ Ω] such that

(Y, s) =
(
(Yj −Xj)/rj , (sj − tj)/r

2
j

)
, (Ŷ , ŝ) =

(
(Ŷ j −Xj)/rj , (ŝj − tj)/r

2
j

)
.

Let lj be the parabolic line connecting (Yj, sj) and (Ŷ j , ŝj) and pick (Zj , τj) ∈
lj ∩∂Ω. As ∂Ω separates Rn+1 at least one such point exists. As {(Zj−Xj)/rj}j

as well as {(τj−tj)/r
2
j}j are bounded sequences there exists a subsequence (which

we relabel) such that

(
(Zj −Xj)/rj, (τj − tj)/r

2
j

)
→ (Ẑ , τ̂) ∈ Σ∞.

Furthermore as

d
((

(Zj −Xj)/rj, (τj − tj)/r
2
j

)
,
(
(Yj −Xj)/rj , (sj − tj)/r

2
j

))

can be bounded by r−1
j d

(
(Yj, sj), (Ŷ j , ŝj)

)
, we can conclude, by letting j → ∞ ,

that
d
(
(Y, s), (Ẑ , τ̂)

)
≤ d

(
(Y, s), (Ŷ , ŝ)

)
≤ Cε

for a universal constant C . By the same line of thought

d
(
(Z, τ), (Ẑ , τ̂)

)
≤ d

(
(Z, τ), (Ŷ , ŝ)

)
+ d

(
(Ẑ , τ̂), (Ŷ , ŝ)

)

≤ d
(
(Z, τ), (Ŷ , ŝ)

)
+ d

(
(Y, s), (Ŷ , ŝ)

)
≤ C̃ε.

In total we have proved that for any (Z, τ) ∈ ∂Ω∞ and for any ε > 0 there exists

(Ẑ , τ̂) ∈ Σ∞ such that d
(
(Z, τ), (Ẑ , τ̂)

)
≤ ε . This argument proves that (Z, τ) is

in the closure of the set Σ∞ . But the closure of the set Σ∞ equals, as we have
proven above, the closure of the support of ω∞ . The latter equals the support of
ω∞ as the support is closed. Based on this we can conclude that (Z, τ) ∈ Σ∞ and
that ∂Ω∞ ⊂ Σ∞ .

Left is to prove that Σ∞ ⊂ ∂Ω∞ . We let (Ẑ , τ̂) ∈ Σ∞ . By construction
there exists a sequence (Zj , τj) such that (Zj , τj) ∈ ∂Ω and

(Z̃j , τ̃j) :=
(
(Zj −Xj)/rj, (τj − tj)/r

2
j

)
→ (Ẑ , τ̂).
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In order to argue as in the proof of Theorem 4.1 in [KT2] we start by fixing M
and by considering arbitrary % > 0. Let n̂(Zj , τj, %rj) be the normal of the plane
through (Zj , τj), associated with the scale %rj , which appears in the definition of
Reifenberg flatness in Definition 1. We define

A%rj
(Zj , τj) =

(
Zj + %rjn̂(Zj, τj, %rj), τj

)
,

Ã%rj
(Zj , τj) =

(
Zj − %rjn̂(Zj, τj, %rj), τj

)

where we assume that A%rj
(Zj , τj) ∈ Ω and Ã%rj

(Zj , τj) ∈ Rn+1 \ Ω. Choosing
M large enough we can conclude that

C%rj/M

(
A%rj

(Zj , τj)
)
⊂ Ω, d

(
A%rj

(Zj, τj), (Zj, τj)
)
≤ %rj,

C%rj/M

(
Ã%rj

(Zj , τj)
)
⊂ Rn+1 \ Ω, d

(
Ã%rj

(Zj , τj), (Zj, τj)
)
≤ %rj .

We also define

Aj(%) =
((
Zj + %rjn̂(Zj , τj, %rj) −Xj

)
r−1
j , (τj − tj)r

−2
j

)
,

Ãj(%) =
((
Zj − %rjn̂(Zj , τj, %rj) −Xj

)
r−1
j , (τj − tj)r

−2
j

)
.

Then
C%/M

(
Aj(%)

)
⊂ Ωj , d

(
Aj(%), (Z̃j , τ̃j)

)
≤ %,

C%/M

(
Ãj(%)

)
⊂ Rn+1 \ Ωj , d

(
Ãj(%), (Z̃j , τ̃j)

)
≤ %.

Going to the limit we can conclude that, for every % > 0, there exist points
A∞(%) ∈ Ω∞ and Ã∞(%) ∈ Rn+1 \ Ω∞ such that

C%/M

(
A∞(%)

)
⊂ Ω∞, d

(
A∞(%), (Ẑ , τ̂)

)
≤ %,

C%/M

(
Ã∞(%)

)
⊂ Rn+1 \ Ω∞, d

(
Ã∞(%), (Ẑ , τ̂)

)
≤ %.

If we let % → 0 we can therefore conclude that (Ẑ , τ̂) ∈ ∂Ω∞ and hence that
Σ∞ ⊂ ∂Ω∞ . In total we have proven that Σ∞ = ∂Ω∞ .

Left is to estimate the Reifenberg constant of ∂Ω∞ . To do this we again
let (Ẑ , τ̂) ∈ ∂Ω∞ and consider r > 0. By construction there exists a sequence
(Zj , τj) such that (Zj , τj) ∈ ∂Ω and

(Z̃j , τ̃j) :=
(
(Zj −Xj)/rj, (τj − tj)/r

2
j

)
→ (Ẑ , τ̂).

Let ε > 0. As ∂Ω is δ0 -Reifenberg flat there exists, for each j , an n -dimensional
plane P̂ j = P̂(Zj , τj, rjr), containing (Zj , τj) and a line parallel to the t axis,
having unit normal n̂j = n̂(Zj, τj, rjr) such that

D
(
∂Ω ∩ Crjr(Zj , τj), P̂j ∩ Crjr(Zj , τj)

)
≤ rjr(δ0 + ε).
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Also as ∂Ωj → ∂Ω∞ in the parabolic Hausdorff distance sense there exists j0 ≥ 1
such that if j ≥ j0 then

D
(
∂Ωj ∩ Cr(Ẑ , τ̂), ∂Ω∞ ∩ Cr(Ẑ , τ̂)) < εr, d

(
(Z̃j , τ̃j), (Ẑ , τ̂)

)
< εr.

We define a new plane Λj := P̂(Zj , τj, rjr)− (Zj , τj) + (Ẑ , τ̂). Note that this is a

plane containing (Ẑ , τ̂). Then,

D
(
∂Ω∞ ∩ Cr(Ẑ , τ̂),Λj ∩ Cr(Ẑ , τ̂)

)
≤ D

(
∂Ω∞ ∩ Cr(Ẑ , τ̂), ∂Ωj ∩ Cr(Ẑ , τ̂)

)

+D
(
∂Ωj ∩ Cr(Ẑ , τ̂),Λj ∩ Cr(Ẑ , τ̂)

)
.

Left is therefore to estimate D
(
∂Ωj ∩ Cr(Ẑ , τ̂),Λj ∩ Cr(Ẑ , τ̂)

)
. As

d
(
(Z̃j , τ̃j), (Ẑ , τ̂)

)
< εr,

we have
∂Ωj ∩ Cr(Ẑ , τ̂) ⊂ ∂Ωj ∩ Cr(1+ε)(Z̃j , τ̃j).

But by construction of the plane Λj we get

D
(
∂Ωj ∩ Cr(1+ε)(Z̃j , τ̃j), P̂(Z̃j , τ̃j, r) ∩ Cr(1+ε)(Z̃j , τ̃j)

)
< r(1 + ε)(2δ0 + ε)

< 4δ0r + 2εr.

Summing up we can conclude that

D
(
∂Ω∞ ∩ Cr(Ẑ , τ̂),Λj ∩ Cr(Ẑ , τ̂)

)
≤ 4δ0r + 2εr.

As ε is arbitrary this completes the proof.

To continue we proceed with the proof of Lemma 17.

Proof. Recall that from the argument of the proof of Lemma 16 it follows
that ωj → ω∞ and that the support of ω∞ coincides with ∂Ω∞ . Let φ ∈

C∞
0

(
Rn+1 \ (X̂, t̂)

)
and define φj(Y, s) = φ

(
r−1
j (Y − Xj), r

−2
j (s − tj)

)
. By the

Riesz representation formula we have

∫

∂Ω

φj(Y, s) dω(X̂, t̂, Y, s) =

∫

Ω

G(X̂, t̂, Z, τ)(∆φj − ∂τφj) dZ dτ.

If we let (X̂j , t̂j) =
(
r−1
j (X̂ −Xj), r

−2
j (t̂− tj)

)
, then by a change of variables,

∫

∂Ωj

φ(Y, s) dωj(X̂j , t̂j, Y, s) =

∫

Ωj

uj(Z, τ)(∆φ− ∂τφ) dZ dτ
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where ωj and uj were introduced above the statement of the lemma. Defining
uj ≡ 0 on the complement of Ωj we can conclude, using the same argument as in
the proof of Lemma 14, that {uj} is a uniformly bounded sequence on compacts.
By the Arzela–Ascoli theorem, uj → u∞ uniformly on compact subsets, and u∞
is a positive adjoint caloric function in Ω∞ such that u∞ = 0 on ∂Ω∞ . By weak
convergence we can therefore conclude that

∫

∂Ω∞

φ(Y, s) dω∞(Y, s) =

∫

Ω∞

u∞(Y, s)(∆− ∂s)φ(Y, s) dY ds

for all φ ∈ C∞
0 (Rn+1).

Finally we will now explore the information contained in the condition

log k(X̂1, t̂1, X̂2, t̂2, · ) ∈ VMO
(
dω1(X̂1, t̂1, · )

)
.

Lemma 18. Let Ω be a δ0 -Reifenberg flat domain with δ0 > 0 small and de-

fine Ω1 = Ω and Ω2 = Rn+1 \ Ω. We also let (X̂i, t̂i) ∈ Ωi , for i ∈ {1, 2} , and de-

fine ωi(X̂i, t̂i, · ) to be the caloric measure defined with respect to Ωi . Assume that

ω2(X̂2, t̂2, · ) is absolutely continuous with respect to ω1(X̂1, t̂1, · ) on ∂Ω and that

the Radon–Nikodym derivative k(X̂1, t̂1, X̂2, t̂2, · ) = dω2(X̂2, t̂2, · )/dω1(X̂1, t̂1, · )

is such that log k(X̂1, t̂1, X̂2, t̂2, · ) ∈ VMO
(
dω1(X̂1, t̂1, · )

)
. If, using the notation

of Lemma 17, ωi
j → ωi

∞ for i ∈ {1, 2} then

ω1
∞ ≡ ω2

∞.

Proof. To prove the lemma we prove that for any φ ∈ C∞
0 (Rn+1), φ ≥ 0, we

have ∫

∂Ω∞

φ dω1
∞ =

∫

∂Ω∞

φ dω2
∞.

In the following we write k(Y, s) = k(X̂1, t̂1, X̂2, t̂2, Y, s), ω1(E) = ω1(X̂1, t̂1, E)

and ω2(E) = ω2(X̂2, t̂2, E). Applying Lemma 12 there exists α ∈ (0, 1) and a

constant C = C(n, δ0, A) such that for all (X, t) ∈ ∂Ω, r < r0 , |X−X̂i|2 ≤ A(t̂i−
t) for some A ≥ 2 and for i ∈ {1, 2} , min{t̂1, t̂2} − t ≥ 8r2 and E ⊂ ∆(X, t, r),

ω2(E)

ω2
(
∆(X, t, r)

) ≤ C

(
ω1(E)

ω1
(
∆(X, t, r)

)
)α

.

Let φ ∈ C∞
0 (Rn+1) and recall that in our blow-up argument we considered

a sequence of points (Xj, tj) ∈ ∂Ω → (X̃ , t̃) ∈ ∂Ω and a sequence of scales

{rj} , rj → 0, and we assumed for simplicity that (X̃ , t̃) = (0, 0). Let ∆j =
∆(Xj, tj , rj). In the following we will assume that supp φ ⊂ CM (0, 0) for some
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M > 1 and that φ ≥ 0. Let ε > 0 be given. As log k( · , · ) ∈ VMO(dω1) there
exists, by the John–Nirenberg inequality, j0 such that for j ≥ j0 , there exists
Gj ⊂ ∆(Xj , tj,Mrj) := ∆̃j , ω1(∆̃j) ≤ (1 + ε)ω1(Gj) and such that for every
(Y, s) ∈ Gj

(1 − ε)
1

ω1(∆̃j)

∫

∆̃j

k dω1 ≤ k(Y, s) ≤ (1 + ε)
1

ω1(∆̃j)

∫

∆̃j

k dω1.

Using this inequality we have,

(1 − ε)ω1(∆j ∩Gj) ≤
ω2(∆j ∩Gj)ω

1(∆̃j)

ω2(∆̃j)
≤ (1 + ε)ω1(∆j ∩Gj).

In the following CM will denote constants which depend on M and other param-
eters but are independent of j . Using these inequalities and the consequence of
the VMO condition stated above, the constant A can be chosen uniformly and
independent of j as rj → 0 and as the sequence (Xj, tj) converges to a point

located below (X̂1, t̂1) as well as (X̂2, t̂2), we have

ω2(∆j)

ω1(∆j)
=
ω2(∆j ∩Gj)

ω1(∆j)
+
ω2(∆j \Gj)

ω1(∆j)

≤ (1 + ε)
ω1(∆j ∩Gj)

ω1(∆j)

ω2(∆̃j)

ω1(∆̃j)
+
ω2(∆j \Gj)

ω1(∆j)

≤ (1 + ε)
ω2(∆̃j)

ω1(∆̃j)
+
ω2(∆j)

ω1(∆j)

(
ω1(∆j \Gj)

ω1(∆j)

)α

≤ (1 + ε)
ω2(∆̃j)

ω1(∆̃j)
+ CMεαω

2(∆j)

ω1(∆j)
.

By similar deductions

ω2(∆j)

ω1(∆j)
≥
ω2(∆j ∩Gj)

ω1(∆j)
≥ (1 − ε)

ω1(∆j ∩Gj)

ω1(∆j)

ω2(∆̃j)

ω1(∆̃j)

= (1 − ε)

(
1 −

ω1(∆j \Gj)

ω1(∆j)

)
ω2(∆̃j)

ω1(∆̃j)

≥ (1 − ε)(1 − CMε)
ω2(∆̃j)

ω1(∆̃j)
.

To continue we define Ĝj =
{(
r−1
j (Y − Xj), r

−2
j (s − tj)

)
: (Y, s) ∈ Gj

}
, Êj =

∆(0, 0,M) \ Ĝj . Using this notation we can conclude that for (Y, s) ∈ Ĝj ,

(1 − ε)Ij ≤ kj(Y, s) ≤ (1 + ε)Ij , Ij :=
ω1(∆j)

ω1(∆̃j)

ω2(∆̃j)

ω2(∆j)
.
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Based on the deductions above we can conclude that

I−1
j ≤

ω1(∆̃j)

ω2(∆̃j)

[
(1 + ε)

ω2(∆̃j)

ω1(∆̃j)
+ CMεαω

2(∆j)

ω1(∆j)

]
≤ (1 + CMεα)

and
Ij ≤ (1 − ε)−1(1 − CMε)−1.

In total it follows there exist two functions A(ε) and B(ε) such that if j ≥ j0
then

A(ε) ≤ Ij ≤ B(ε).

Furthermore, A(ε) → 1 and B(ε) → 1 as ε→ 0. Continuing we have that

(1 − ε)Ij

∫

Ĝj

φ dω1
j ≤

∫

Ĝj

φkj dω
1
j ≤ (1 + ε)Ij

∫

Ĝj

φ dω1
j .

Note that ∫

∂Ωj

φ dω2
j =

∫

∂Ωj

φkj dω
1
j =

∫

Ĝj

φkj dω
1
j +

∫

Êj

φkj dω
1
j

≤ (1 + ε)Ij

∫

Ĝj

φ dω1
j + ‖φ‖∞ω

2
j (Êj)

≤ (1 + ε)Ij

∫

∂Ωj

φ dω1
j + CMεα‖φ‖∞.

Similarly
∫

∂Ωj

φ dω2
j ≥

∫

Ĝj

φkj dω
1
j ≥ (1 − ε)Ij

∫

Ĝj

φ dω1
j

= (1 − ε)Ij

∫

∂Ωj

φ dω1
j − (1 − ε)Ij

∫

Êj

φ dω1
j

≥ (1 − ε)Ij

∫

∂Ωj

φ dω1
j − CM (1 − ε)Ijε‖φ‖∞.

Based on this we can conclude that∫

∂Ωj

φ dω2
j ≤ (1 + ε)B(ε)

∫

∂Ωj

φ dω1
j + CMεα‖φ‖∞,

∫

∂Ωj

φ dω2
j ≥ (1 − ε)A(ε)

∫

∂Ωj

φ dω1
j − CM (1 − ε)B(ε)ε‖φ‖∞.

Hence ∫

∂Ω∞

φ dω2
∞ = lim

j→∞

∫

∂Ωj

φ dω2
j = lim

j→∞

∫

∂Ωj

φ dω1
j =

∫

∂Ω∞

φ dω2
∞.

This completes the proof of the lemma.
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4.2. Classification of global solutions and the proof of Theorem 1

Lemma 19. Assume that the original domain Ω is δ0 -Reifenberg flat with

δ0 small enough. Assume furthermore that the assumptions in Lemma 18 are

fulfilled and, using the notation of Lemma 17, ui
j → ui

∞ for i ∈ {1, 2} . Define

for (Y, s) ∈ Rn+1 , u∞(Y, s) = u1
∞(Y, s) − u2

∞(Y, s) , where u1
∞(Y, s) ≡ 0 in Ω2

∞ ,

u2
∞(Y, s) ≡ 0 in Ω1

∞ . Then u∞ is a linear function in the space variables and Ω∞

is a half space containing a line parallel to the time-axis.

Proof. Applying Lemma 18 we can conclude that ω1
∞ ≡ ω2

∞ and that for all
φ ∈ C∞

0 (Rn+1)

∫

∂Ωi
∞

φ(Y, s) dωi
∞(Y, s) =

∫

Ωi
∞

ui
∞(Y, s)(∆− ∂s)φ(Y, s) dY ds.

Hence
∫

Rn+1

u∞(Y, s)(∆− ∂s)φ(Y, s) dY ds =

∫

Ω1
∞

u1
∞(Y, s)(∆− ∂s)φ(Y, s) dY ds

−

∫

Ω2
∞

u2
∞(Y, s)(∆− ∂s)φ(Y, s) dY ds

= 0.

As u∞ is continous, it is weakly adjoint caloric in Rn+1 and therefore adjoint
caloric in Rn+1 . By a change of the time direction we can assume that u∞ is
caloric in Rn+1 . We also note that u∞(0, 0) = 0. By standard estimates for the
heat equation we have that

max
Cr/2(0,0)

|Dk
ZD

l
τu∞(Z, τ)| ≤

Ckl

rk+2l
max

Cr(0,0)
|u∞(Z, τ)|.

As, according to Lemma 16, ∂Ω∞ is Reifenberg flat we define for (X, t) ∈ ∂Ω,
r > 0

A1
r(X, t) = (X + rn̂, t) ∈ Ω∞, A2

r(X, t) = (X − rn̂, t) ∈ Rn+1 \ Ω∞.

Here n̂ = n̂(X, t, r). Using this notation we have by the backward in time Harnack
principle in Lemma 8 that

max
Cr(0,0)

|u∞(Z, τ)| ≤ Cmax
{
u1
∞

(
A1

r(0, 0)
)
, u2

∞

(
A2

r(0, 0)
)}
.

Using Lemmas 7 and 9 we have

rnu1
∞

(
A1

r(0, 0)
)

ω1
∞

(
∆(0, 0, r)

) ∼
rnu2

∞

(
A2

r(0, 0)
)

ω2
∞

(
∆(0, 0, r)

) ∼ 1.
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Hence as ω1
∞ ≡ ω2

∞ we can conclude that u1
∞

(
A1

r(0, 0)
)
∼ u2

∞

(
A2

r(0, 0)
)
. As,

according to Lemma 16, Ω∞ is 4δ0 -Reifenberg flat we can apply Lemma 13 to
appropriate functions defined in Ω∞ . In particular according to Lemma 13, given
ε > 0, there exists δ̂0 = δ̂0(n, ε) > 0 and a constant C = C(n, ε) such that if

δ0 ≤ δ̂0 and r̂ ≤ r then

C−1

(
r̂

r

)1+ε

u1
∞

(
A1

r(0, 0)
)
≤ u1

∞

(
A1

r̂(0, 0)
)
≤ C

(
r̂

r

)1−ε

u1
∞

(
A1

r(0, 0)
)
.

If we choose r̂ = 1 we can conclude that

u1
∞

(
A1

r(0, 0)
)
≤ Cu1

∞

(
A1

1(0, 0)
)
r1+ε.

In total we can conclude that

max
Cr/2(0,0)

|Dk
ZD

l
τu∞(Z, τ)| ≤

Ckl

rk+2l
u1
∞

(
A1

r(0, 0)
)
≤

Ckl

rk+2l−1−ε
u1
∞

(
A1

1(0, 0)
)
.

By letting r → ∞ we get Dk
ZD

l
τu∞(Z, τ) = 0 for all (Z, τ) ∈ Rn+1 and all (k, l)

such that k+2l−1− ε > 0. We can therefore conclude that u∞ is in fact a linear
function in the space variables and Ω∞ is a half space containing a line parallel
to the time-axis.

We can now prove Theorem 1 using Lemma 19. According to Definition 1,
if ∂Ω is δ0 Reifenberg flat, then given any (X̃ , t̃) ∈ ∂Ω, R > 0, there exists an

n -dimensional plane P̂ = P̂(X̃ , t̃, R), containing (X̃ , t̃) and a line parallel to the

t -axis, having unit normal n̂ = n̂(X̃ , t̃, R) such that

{
(Y, s) + rn̂ ∈ CR(X̃ , t̃) : (Y, s) ∈ P̂ , r > δ0R

}
⊂ Ω,

{
(Y, s)− rn̂ ∈ CR(X̃ , t̃) : (Y, s) ∈ P̂ , r > δ0R

}
⊂ Rn+1 \ Ω.

We therefore introduce the quantity

Θ(X̃ , t̃, R) :=
1

R
inf
P̂

D
[
∂Ω ∩ CR(X̃ , t̃), P̂ ∩ CR(X̃ , t̃)

]

where the infimum is taken over all n -dimensional planes P̂ = P̂(X̃ , t̃, R), con-

taining (X̃ , t̃) and a line parallel to the t -axis. For any compact set K ⊂ Rn+1

we also introduce

ΘK(R) := sup
(X̃ ,t̃)∈K

Θ(X̃ , t̃, R).
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If (X, t) ∈ ∂Ω, r > 0, then the statement that Cr(X, t) ∩ ∂Ω is Reifenberg flat
with vanishing constant in the parabolic sense is equivalent to the statement that

lim
r̂→0

ΘCr(X,t)∩∂Ω(r̂) = 0.

To prove Theorem 1 we assume, using the notation of the theorem, that (X, t) ∈
∂Ω, t̂2 > t+ 4r2 and that

lim
r̂→0

ΘCr(X,t)∩∂Ω(r̂) = β

for some β > 0. We intend to prove that this is impossible and that β = 0. Let
(Xj, tj) ∈ Cr(X, t) ∩ ∂Ω, (Xj, tj) → (X̂, t̂) ∈ Cr(X, t) ∩ ∂Ω and rj be a sequence
of real numbers tending to zero such that

lim
j→∞

Θ(Xj , tj, rj) = β.

By a translation argument we can without loss of generality assume that (X̂, t̂) =
(0, 0) and that (0, 0) ∈ Cr(X, t) ∩ ∂Ω. Define the domains,

Ωi
j =

{(
r−1
j (X −Xj), r

−2
j (t− tj)

)
: (X, t) ∈ Ωi

}
.

Then according to Lemma 16 we can assume that Ωi
j → Ωi

∞ , ∂Ωi
j → ∂Ωi

∞ in

the parabolic Hausdorff distance sense uniformly on compact subsets of Rn+1 .
Furthermore, Ω∞ = Ω1

∞ and Ω2
∞ = Rn+1 \ Ω∞ are Reifenberg flat domains. We

can furthermore apply Lemmas 18 and 19 in order to conclude that Ω∞ is a half
space containing a line parallel to the time-axis. Still our assumption above gives
at hand that

Θ∞(0, 0, 1) := β > 0

where Θ∞(0, 0, 1) is defined with respect to ∂Ω∞ . Clearly this is a contradiction
and we can conclude that Cr(X, t)∩∂Ω is Reifenberg flat with vanishing constant.
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domains. - Ann. Sci. École Norm. Sup. (to appear).

[KT3] Kenig, C., and T. Toro: Free boundary regularity below the continous threshold: 2-
phase problems. - Preprint, 2004.

[KW] Kaufmann, R., and J.M. Wu: Parabolic measure on domains of class Lip1/2 . - Compos.
Math. 65, 1988, 201–207.

[LM] Lewis, J., and M. Murray: The method of layer potentials for the heat equation in
time-varying domains. - Mem. Amer. Math. Soc. 114, 1995, no. 545.

[LS] Lewis, J., and J. Silver: Parabolic measure and the Dirichlet problem for the heat
equation in two dimensions. - Indiana Univ. Math. J. 37, 1988, 801–839.

[N] Nyström, K.: The Dirichlet problem for second order parabolic operators. - Indiana Univ.
Math. J. 46, 1996, 183–245.

[S] Stein, E.: Harmonic Analysis. - Princeton Math. Ser. 43, Princeton University Press,
1993.

Received 19 May 2005


