
Annales Academiæ Scientiarum Fennicæ
Mathematica
Volumen 31, 2006, 479–494

MAY THE CAUCHY TRANSFORM OF

A NON-TRIVIAL FINITE MEASURE VANISH

ON THE SUPPORT OF THE MEASURE?

Xavier Tolsa and Joan Verdera
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Departament de Matemàtiques, Spain; jvm@mat.uab.es

Abstract. Consider a finite complex Radon measure µ in the plane whose Cauchy transform
vanishes µ -almost everywhere on the support of µ . It looks like, excluding some trivial cases, µ
should be the zero measure. We show that this is the case if certain additional conditions hold.

1. Introduction

Let µ be a finite complex Radon measure in the plane and let C (µ) = (1/z)?µ
be its Cauchy transform. Being the convolution of the locally integrable function
1/z with a finite measure, C (µ) is a locally integrable function (with respect
to planar Lebesgue measure dA) and thus it is defined almost everywhere with
respect to dA . Let S be the closed support of the measure µ . For z ∈ S , the
value C (µ)(z) does not need to be defined µ -almost everywhere, because µ may
be singular with respect to dA . We set

Cε(µ)(z) =

∫

|z−w|>ε

dµ(w)

z − w

and

C (µ)(z) = lim
ε→0

Cε(µ)(z) = P.V.

∫

dµ(w)

z − w
,

whenever the principal value integral exists. Notice that for z /∈ S the above
limit exists everywhere and coincides with the value of the locally integrable func-
tion C (µ).

Melnikov and Volberg raised the following question. Assume that C (µ) exists
and vanishes µ -almost everywhere on S . Does it then follow that µ = 0?

A first remark is that the answer is obviously no for a point mass. On the
other hand, we do not know any example without point masses that provides a
negative answer.
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A second remark is that if for any reason C (µ) turns out to be continuous
everywhere and S is compact, then the answer is yes, just by the maximum
principle. This happens, for instance, if the Newtonian Potential (1/|z|) ? µ is
continuous and S is compact; in particular, if µ = f dA with f a compactly
supported function in ∈ Lp(C), p > 2.

In this paper we provide two sufficient conditions that ensure that the answer
to our problem is positive. In fact we strongly believe that the answer should be
yes except for the case of measures with point masses.

Theorem 1. Let µ = fdA with f a complex valued function in L1(dA) and

assume that C (f dA) vanishes dA -almost everywhere on the support of f . Then

f = 0 dA -almost everywhere.

To state the next result we need to introduce some notation and recall some
well-known facts.

Given a positive Radon measure µ in the plane the total Menger curvature
(see [Mel]) of µ is

c2(µ) =

∫ ∫ ∫

1

R(z, w, ζ)2
dµ(z) dµ(w) dµ(ζ),

where R(z, w, ζ) is the radius of the disc through z, w and ζ (the inverse of
R(z, w, ζ) is called the Menger curvature of the triple (z, w, ζ)).

The one-dimensional fractional maximal function of µ is defined by

M1µ(z) = sup
r>0

µD(z, r)

r
,

where D(z, r) is the open disc with center z and radius r .
We will also use the standard Hardy–Littlewood maximal operator associated

to area measure, namely

M2µ(z) = sup
r>0

µD(z, r)

πr2

and the Hardy–Littlewood maximal operator associated to a positive Radon mea-
sure µ

Mµf(z) = sup
r>0

1

µ
(

D(z, r)
)

∫

D(z,r)

|f(w)| dµ(w), f ∈ L1
loc(µ),

where z is in the support of µ .
The upper one-dimensional density of µ is θ∗µ(x) = lim supr→0 µ

(

D(x, r)
)

/r .
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It is a deep theorem of Léger [Lé] that if c2(µ) < ∞ and 0 < θ∗µ(z) < ∞ ,
µ -almost everywhere, then µ vanishes out of a rectifiable set, that is, out of a
countable union of rectifiable curves.

Using this, it was proved in [To1] that if c2(µ) < ∞ and M1µ(z) < ∞
µ -almost everywhere, then the principal value integral C (µ)(z) exists µ -almost
everywhere. To get readily a more complete and symmetric statement, set θµ(z) =
limr→0 µ

(

D(x, r)
)

/r , whenever the limit exists.
We now obtain the following: if µ is a finite positive Radon measure on C

such that c2(µ) < ∞ and
∫

(M1µ)2 dµ < ∞ , then θµ(z) and the principal value
integral C (µ)(z) exist µ -almost everywhere. Indeed, let F = {z ∈ C : θ∗

µ(z) > 0} .
From the results in [Lé] it follows that F is rectifiable. Since M1µ(x) < ∞ , µ -
a.e., there exists a non negative function f such that µ|F is absolutely continuous
with respect to length measure on F and has density f . By the rectifiability of
F and Lebesgue’s differentiation theorem, θµ(z) exists and coincides with f(z)
at µ -almost all z ∈ F . On the other hand, for z /∈ F we have θµ(z) = 0. The
existence of C (µ) in the principal value sense µ almost everywhere follows now
from the results in [MaMe] and [To1].

The surprising new relevant fact is that we can moreover obtain the following
precise identity.

Theorem 2. Assume that µ is a positive finite Radon measure with c2(µ) <
∞ and

∫

(M1µ)2 dµ < ∞ . Then we have

(1) ‖C (µ)‖2
L2(µ) = lim

ε→0
‖Cεµ‖2

L2(µ) =
π2

3

∫

θµ(z)2 dµ(z) +
1

6
c2(µ),

where C (µ) is understood in the principal value sense.

In particular, if C (µ) = 0 µ -almost everywhere, then µ = 0 .

Notice that the latter statement follows readily from the former, because if
C (µ) vanishes µ -almost everywhere, then the total Menger curvature of µ is zero,
which means that µ is supported on a straight line. Since the density θµ(z)
also vanishes µ -almost everywhere and µ is absolutely continuous with respect to
length on that line, µ must be the zero measure.

Let us remark that the identity (1) has already been proved in [To4, Lemma 6]
in the particular case where µ is the arc length measure on a finite collection of
pairwise disjoint compact segments.

For some recent results concerning principal values of Cauchy integrals, see
[Ma1], [MaP], [To2] and [JP]. See also [Ma2, Section 6] for other related open
problems and [To3] for another connected question.

Section 1 contains the proof of Theorem 1 and Section 2 the proof of Theo-
rem 2. We use standard notation and terminology. In particular, the letter C will
denote a constant that does not depend on the relevant parameters involved and
that may vary from one occurrence to another. The notation A . B is equivalent
to A ≤ CB .
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2. Proof of Theorem 1

The next lemma is folklore. We include a proof for the reader’s convenience.

Lemma 3. Let ν be a positive finite Radon measure. Then
∣

∣

∣

∣

{

w ∈ C :

(

1

|z| ? ν

)

(w) > t

}
∣

∣

∣

∣

≤ C
‖ν‖2

t2
,

where |E| denotes the area of the set E .

Proof. Set

E =

{

w ∈ C :

(

1

|z| ? ν

)

(w) > t

}

.

Then

|E| ≤
∫

E

1

t

(

1

|z| ? ν

)

(w) dA(w) =
1

t

∫
(

1

|z| ? χE dA

)

(ζ) dν(ζ).

We now take R = |E|1/2 and write:
(

1

|z| ? χE dA

)

(ζ) =

∫

D(ζ,R)

1

|ζ − z| χE(z) dA(z) +

∫

C\D(ζ,R)

1

|ζ − z| χE(z) dA(z).

The first integral is estimated by 2πR and the second by |E|/R = |E|1/2 . Hence

|E| ≤ C
1

t
|E|1/2 ‖ν‖,

which proves the lemma.

Let µ be a complex finite Radon measure and set

F (z) =
1

π
C (µ)(z) =

1

π

∫

1

z − w
dµ(w),

µ̃(z) = lim
ε→0

µD(z, ε)

πε2
,

and

Bµ(z) = − 1

π
P.V.

∫

dµ(w)

(z − w)2
.

Notice that the above expressions exist dA -almost everywhere. Indeed, µ̃ coin-
cides dA -almost everywhere with the absolutely continuous part of µ (and thus
vanishes if µ is singular with respect to dA) and B(µ) is the Beurling transform
of µ . We are interested in the differentiability properties of F . Recall that

∂F

∂z̄
= µ and

∂F

∂z
= Bµ,

in the sense of distributions. Thus we set for w 6= z

Q(w, z) = Qµ(w, z) =
|F (w) − F (z) − Bµ(z)(w − z) − µ̃(z)(w − z̄)|

|w − z| .

It is not true that F is differentiable at dA -almost all points z , but the following
weaker substitute result is available (the method is inspired by [St, Chapter 8]).
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Lemma 4. For dA -almost all z ∈ C we have

lim
ε→0

1

ε
sup
t>0

t
∣

∣{w ∈ D(z, ε) : Qµ(w, z) > t}
∣

∣

1/2
= 0.

Proof. Notice that the conclusion of the lemma holds if µ is of the form
ϕ dA , with ϕ a compactly supported infinitely differentiable function, or if µ is
supported on a closed set of zero area. Therefore the set of measures for which the
conclusion of the lemma holds is dense in the space of all finite complex Radon
measures endowed with the total variation norm. Consider the sub-linear operator

Tµ(z) = sup
ε>0

1

ε
sup
t>0

t
∣

∣{w ∈ D(z, ε) : Qµ(w, z) > t}
∣

∣

1/2
.

By the opening remark it is clearly enough to show that T satisfies the weak type
inequality

∣

∣{z ∈ C : Tµ(z) > t}
∣

∣ ≤ C

t
‖µ‖,

which follows from

(2) Tµ(z) ≤ C {M2µ(z) + B∗µ(z)}, z ∈ C,

where B∗ stands for the maximal Beurling transform, that is,

B∗µ(z) = sup
ε>0

|Bεµ(z)|

and

Bεµ(z) =
1

π

∫

|w−z|>ε

dµ(w)

(z − w)2
.

To prove (2) take z = 0, w 6= 0 and set δ = |w| . Then

|F (w) − F (0) − Bµ(0)w − µ̃(0)w|
≤ |F (w) − F (0) − B2δµ(0)w| + |w| |B2δµ(0) − Bµ(0)|+ |w|M2µ(0)

≤ |F (w) − F (0) − B2δµ(0)w| + 2|w|B∗µ(0) + |w|M2µ(0)

and, since we can assume without loss of generality that µ is a positive measure,

|F (w) − F (0) − B2δµ(0)w| ≤ 1

π

∫

|ζ|<2δ

∣

∣

∣

∣

1

w − ζ
+

1

ζ

∣

∣

∣

∣

dµ(ζ)

+
1

π

∫

|ζ|>2δ

∣

∣

∣

∣

1

w − ζ
+

1

ζ
+

w

ζ2

∣

∣

∣

∣

dµ(ζ) = I + II.
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We first estimate the term II . Observe that if |ζ| > 2δ then

∣

∣

∣

∣

1

w − ζ
+

1

ζ
+

w

ζ2

∣

∣

∣

∣

≤ |w|2
|w − ζ||ζ|2 ≤ 2

|w|2
|ζ|3 .

Thus

π II ≤
∫

|ζ|>2δ

2
|w|2
|ζ|3 dµ(ζ) ≤ C|w|M2µ(0),

where in the last inequality we use the standard idea of decomposing the domain
of integration in annuli centered at 0 whose distance to 0 is of the order of δ 2n .

The term I is π times the integral

∫

|ζ|<2δ

|w|
|w − ζ| |ζ| dµ(ζ) = |w|

(

1

|ζ| ? χD(0,2δ)
dµ

|ζ|

)

(w).

Since δ = |w| we obtain using Lemma 3

t

ε

∣

∣

∣

∣

{

w ∈ D(0, ε) :

(

1

|ζ| ? χD(0,2δ)
dµ

|ζ|

)

(w) > t

}
∣

∣

∣

∣

1/2

≤ t

ε

∣

∣

∣

∣

{

w ∈ D(0, ε) :

(

1

|ζ| ? χD(0,2ε)
dµ

|ζ|

)

(w) > t

}
∣

∣

∣

∣

1/2

≤ C

ε

∫

D(0, 2ε)

dµ(ζ)

|ζ| ≤ CM2µ(0),

where in the last inequality we decompose again the domain of integration in
annuli centered at 0 whose distance to 0 is of the order of ε 2−n .

Proof of Theorem 1. Let S be the closed support of the function f and set
E = {z ∈ S : F (z) = 0 and f(z) 6= 0} , so that we have to show that |E| = 0. We
will prove that almost all points of E are not points of density of S . Take a point
z ∈ E which is a Lebesgue point of f and at which the conclusion of Lemma 4
holds. Assume that z = 0 and consider the R -linear mapping L: C → C defined
by L(w) = aw + bw , where a = Bµ(0), µ = fdA and b = f(0). Since b 6= 0 L is
not identically 0. We distinguish two cases.

Case 1: the kernel of L is {0} . Then for some δ > 0 we have

(3)
|aw + bw|

|w| ≥ δ, |w| = 1.

Write, as in the proof of Lemma 4,

F (z) =
1

π
C (µ)(z),
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where µ = f dA , and

Q(w) =
|F (w) − aw − bw|

|w| , w 6= 0.

Take t = 1
2δ (in fact, any other any positive number t less than δ would work).

Taking into account that F vanishes on S dA -almost everywhere and (3), we
obtain

t2
∣

∣{w ∈ D(0, ε) : Q(w) > t}
∣

∣

ε2
=

t2
∣

∣{w ∈ D(0, ε) ∩ S : Q(w) > t}
∣

∣

ε2

+
t2

∣

∣{w ∈ D(0, ε) \ S : Q(w) > t}
∣

∣

ε2

≥ t2|D(0, ε) ∩ S|
ε2

.

Thus Lemma 4 tells us that |D(0, ε) ∩ S|/ε2 tends to 0 with ε , which means that
0 is not a point of density of S .

Case 2: the kernel of L is one-dimensional. Assume without loss of generality
that L(1) = 0. Then L(w) = aw − aw = a2i Im(w). Thus, on the cone K =
{

w ∈ C : | Im(w)| ≥ |w|/
√

2
}

, we have the inequality

|aw + bw|
|w| = 2|a| | Im(w)|

|w| ≥
√

2 |a| = δ > 0,

where the last identity is a definition of δ . Take now any positive number t less
than δ . As before we have

t2
∣

∣{w ∈ D(0, ε) : Q(w) > t}
∣

∣

ε2
≥ t2|D(0, ε) ∩ S ∩ K|

ε2

and therefore by Lemma 4

lim
ε→0

|D(0, ε) ∩ S ∩ K|
ε2

= 0.

On the other hand

|D(0, ε) ∩ S \ K|
πε2

≤ |D(0, ε) \ K|
πε2

≤ 1

2
,

and hence 0 is not a point of density of S .
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3. Proof of Theorem 2

To prove Theorem 2 we will need some preliminary lemmas. The first one is
the following well-known estimate.

Lemma 5. Let µ be a positive Radon measure on C , and z ∈ C . For

0 < r1 < r2 ≤ ∞ , we have

∫

r1≤|z−w|≤r2

1

|z − w|2 dµ(w) ≤ C

r1
sup

r1≤R≤r2

µ
(

D(z, R)
)

R
≤ C

M1µ(z)

r1
.

The next lemma is also easy.

Lemma 6. Let µ be a positive Radon measure on C , and z ∈ C such that

θµ(z) = 0 . Then,

lim
r→0

r

∫

|z−w|≥r

1

|z − w|2 dµ(w) = 0.

Proof. Let K > 1 be some big constant. For any r > 0, by the preceding
lemma we have

∫

|z−w|≥r

r

|z − w|2 dµ(w) =

∫

r≤|z−w|≤Kr

r

|z − w|2 dµ(w)

+

∫

|z−w|>Kr

r

|z − w|2 dµ(w)

. sup
r≤R≤Kr

µ
(

D(z, R)
)

R
+

1

K
M1µ(z).

As a consequence,

lim sup
r→0

∫

|z−w|≥r

r

|z − w|2 dµ(w) .
1

K
M1µ(z).

Since M1µ(z) < ∞ and K is arbitrary, the lemma follows.

The following version of Cotlar’s inequality has been proved in [Vo, Lemma
5.1] (to be precise, there are some little differences between [Vo, Lemma 5.1] and
the following result; however the arguments are almost the same):

Lemma 7. Let µ be a positive Radon measure on C . Then, at µ -a.e. z ∈ C

we have

sup
ε≥δ

|Cεµ(z)| ≤ C {Mµ(Cδµ)(z) + M1µ(z)},

where the constant C does not depend on δ .
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Notice that in this lemma one does not need to assume the L2(µ) boundedness
of the Cauchy integral operator.

Recall the identity proved in [MeV]:

(4)

‖Cεµ‖2
L2(µ) =

1

6

∫ ∫ ∫

|z−w|>ε
|z−ζ|>ε
|w−ζ|>ε

c(z, w, ζ)2 dµ(z) dµ(w) dµ(ζ)

+

∫ ∫ ∫

|z−w|≤ε
|z−ζ|>ε
|w−ζ|>ε

1

(ζ − z)(ζ − w)
dµ(z) dµ(w) dµ(ζ).

It is well known that the last integral in (4) is bounded above by C
∫

(M1µ)2 dµ .
Indeed, for z , w , ζ such that |z − w| ≤ ε , |z − ζ| > ε and |w − ζ| > ε we have
|z − ζ| ≈ |w − ζ| , and so by Lemma 5, for any given z we get

(5)

∫ ∫

|z−w|≤ε
|z−ζ|>ε
|w−ζ|>ε

1

|ζ − z| |ζ − w| dµ(w)dµ(ζ) .

∫ ∫

|z−w|≤ε
|z−ζ|>ε
|w−ζ|>ε

1

|ζ − z|2 dµ(w)dµ(ζ)

≤ µ
(

D(z, ε)
)

∫

|z−ζ|>ε

1

|ζ − z|2 dµ(ζ)

. µ
(

D(z, ε)
)M1µ(z)

ε
≤ M1µ(z)2,

and our claim follows. So by the assumptions in the theorem, it turns out that
‖Cεµ‖L2(µ) is bounded uniformly on ε > 0. As a consequence, by the preceding
version of Cotlar’s inequality and monotone convergence, we have ‖C ∗µ‖L2(µ) <
∞ , where C ∗µ(z) = supε>0 |Cεµ(z)| . By dominated convergence this implies

‖C µ‖L2(µ) = lim
ε→0

‖Cεµ‖L2(µ) < ∞.

The identity (4) also tells us that

lim
ε→0

‖Cεµ‖2
L2(µ) =

1

6
c2(µ) + lim

ε→0

∫ ∫ ∫

|z−w|≤ε
|z−ζ|>ε
|w−ζ|>ε

1

(ζ − z)(ζ − w)
dµ(z) dµ(w) dµ(ζ).

Therefore, in order to prove the theorem we only have to show that the triple
integral on the right side above converges to 1

3π2
∫

θµ(z)2 dµ . By the assumption
∫

M1µ
2 dµ < ∞ , (5), and dominated convergence, to prove this statement it

suffices to show that at µ -a.e. z ∈ C we have

(6) lim
ε→0

∫ ∫

|z−w|≤ε
|z−ζ|>ε
|w−ζ|>ε

1

(ζ − z)(ζ − w)
dµ(w) dµ(ζ) =

π2

3
θµ(z)2.
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If θµ(z) = 0 this is easy: from (5) we get

∫ ∫

|z−w|≤ε
|z−ζ|>ε
|w−ζ|>ε

1

|ζ − z| |ζ − w| dµ(w) dµ(ζ) . µ
(

D(z, ε)
)M1µ(z)

ε
,

which tends to 0 because M1µ(z) < ∞ .
Suppose now that θµ(z) > 0. In this case z belongs to the rectifiable set

F introduced above. We want to reduce the problem to the case where µ is
supported on a Lipschitz graph. To this end, recall that there is a countable family
of Lipschitz graphs Γn and a set Z with µ(Z) = 0 such that F ⊂

⋃

n Γn ∪Z . Let
z be a density point of Γn (i.e. µ

(

D(z, r) \ Γn)/µ(D(z, r)
)

→ 0 as r → 0). Let
us see that

(7) lim
ε→0

∫ ∫

|z−w|≤ε
|z−ζ|>ε
|w−ζ|>ε

w /∈Γn or ζ /∈Γn

1

(ζ − z)(ζ − w)
dµ(w) dµ(ζ) = 0.

By estimates analogous to the ones in (5) it is straightforward to check that

(8) lim
ε→0

∫ ∫

|z−w|≤ε

|z−ζ|>ε1/2

|w−ζ|>ε

1

|ζ − z| |ζ − w| dµ(w) dµ(ζ) = 0.

So we may assume that |z − ζ| ≤ ε1/2 in the integral in (7). We consider first the
case w /∈ Γn :

∫ ∫

|z−w|≤ε

ε<|z−ζ|≤ε1/2

|w−ζ|>ε
w /∈Γn

1

|ζ − z| |ζ − w| dµ(w) dµ(ζ)

. µ
(

D(z, ε) \ Γn

)

∫

|z−ζ|>ε

1

|z − ζ|2 dµ(ζ)

≤ µ
(

D(z, ε) \ Γn

)M1µ(z)

ε

=
µ
(

D(z, ε) \ Γn

)

µ
(

D(z, ε)
)

µ
(

D(z, ε)
)

ε
M1µ(z)

≤ µ
(

D(z, ε) \ Γn

)

µ
(

D(z, ε)
) M1µ(z)2 → 0 as ε → 0,

assuming M1µ(z) < ∞ . The case ζ /∈ Γn is similar. The details are left to the
reader.

By (7), when proving (6) for z ∈ F , we may assume that µ is supported on
a Lipschitz graph Γn . We show that (6) holds in this case in a separate lemma.
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Lemma 8. Let Γ be a Lipschitz graph and µ a Radon measure supported

on it such that µ = g dH 1
|Γ and µ(Γ) < ∞ . Then,

(9) lim
ε→0

∫ ∫

|z−w|≤ε
|z−ζ|>ε
|w−ζ|>ε

1

(ζ − z)(ζ − w)
dµ(w) dµ(ζ) =

π2

3
g(z)2

at µ -a.e. z ∈ Γ .

Proof. First we consider the case where Γ coincides with the real line and µ =
H 1

|R . The proof of (9) in this situation is basically contained in [To4, Lemma 7].
However, for completeness we will also show the detailed calculations here. We
may assume that z = 0. By (8), showing that (9) holds is equivalent to proving
that

I1
ε :=

∫ ∫

|y|≤ε

ε<|z|≤ε1/2

|y−z|>ε

1

z(z − y)
dy dz → π2

3
as ε → 0 ,

where dy and dz denote the usual integration with respect to Lebesgue measure
in R . On the other hand, by symmetry it is easy to check that

I1
ε = 2

∫ ∫

0<y≤ε

ε<|z|≤ε1/2

|y−z|>ε

1

z(z − y)
dy dz.

Thus

I1
ε = 2

∫ ε

0

(
∫ −ε

−ε1/2

1

z(z − y)
dz +

∫ ε1/2

y+ε

1

z(z − y)
dz

)

dy.

Since a primitive of 1/
(

z(z−y)
)

(with respect to z ) is y−1 log |1−y/z| , it follows
that

I1
ε = 2

∫ ε

0

[

2

y
log

∣

∣

∣
1 +

y

ε

∣

∣

∣
+

1

y
log

∣

∣

∣
1 − y

ε1/2

∣

∣

∣
− 1

y
log

∣

∣

∣
1 +

y

ε1/2

∣

∣

∣

]

dy.

If we split the integral into two parts and we change variables, we get

(10) I1
ε = 4

∫ 1

0

1

t
log |1 + t| dt + 2

∫ ε1/2

0

1

t

(

log |1 − t| − log |1 + t|
)

dt.

It is well known that
∫ 1

0

1

t
log |1 + t| dt =

π2

12
.

On the other hand, the last integral in (10) tends to 0 as ε → 0 because the
function inside the integral is bounded in

(

0, 1
2

]

. Thus I1
ε → 1

3π2 as ε → 0, and
so the lemma holds for Γ = R and µ = H

1
|R .
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Consider now the case of a general Lipschitz graph. Let A be a Lipschitz
function such that Γ =

{(

s, A(s)
)

: s ∈ R
}

. Assume that z ∈ Γ is a Lebesgue

point of g with respect to H 1
|Γ , that M1µ(z) < ∞ , that

(

s, A(s)
)

= z and that
A is differentiable at s . Moreover, without loss of generality, we may suppose also
that s = 0 and A(0) = A′(0) = 0 and that 0 is a Lebesgue point of A′ , since the
term 1/

[

(ζ − z)(ζ − w)
]

is invariant by translations and rotations1 of z, w, ζ . By
(8), showing that (9) holds for this z is equivalent to proving that

lim
ε→0

∫ ∫

|w|≤ε

ε<|ζ|≤ε1/2

|w−ζ|>ε

1

ζ(ζ − w)
dµ(w) dµ(ζ) =

π2

3
g(0)2.

To prove this we will compare the integral above with

g(0)2
∫ ∫

|s|≤ε

ε<|t|≤ε1/2

|s−t|>ε

1

t(t − s)
ds dt,

where ds and dt denote the usual Lebesgue measure on R . The latter integral
converges to 1

3π2 , as shown above. Let us denote γ(s) = s + i A(s). We have

∣

∣

∣

∣

∫ ∫

|w|≤ε

ε<|ζ|≤ε1/2

|w−ζ|>ε

1

ζ(ζ − w)
dµ(w) dµ(ζ)− g(0)2

∫ ∫

|s|≤ε

ε<|t|≤ε1/2

|s−t|>ε

1

t(t − s)
ds dt

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ ∫

|w|≤ε

ε<|ζ|≤ε1/2

|w−ζ|>ε

1

ζ(ζ − w)
dµ(w) dµ(ζ)

−
∫ ∫

|w|≤ε

ε<|ζ|≤ε1/2

|w−ζ|>ε

g(0)

ζ(ζ − w)
dH

1
|Γ(w) dµ(ζ)

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ ∫

|w|≤ε

ε<|ζ|≤ε1/2

|w−ζ|>ε

g(0)

ζ(ζ − w)
dH

1
|Γ(w) dµ(ζ)

−
∫ ∫

|w|≤ε

ε<|ζ|≤ε1/2

|w−ζ|>ε

g(0)2

ζ(ζ − w)
dH

1
|Γ(w) dH

1
|Γ(ζ)

∣

∣

∣

∣

1 One needs a rotation in order to get A′(0) = 0. However a little problem (easy to fix) may
appear: when one rotates a Lipschitz graph one obtains the Lipschitz graph of another function
if the rotation angle is small enough. To ensure that the rotation angle is small, if necessary one
can assume that the Lipschitz constant of the graph is small, or even one can suppose that A′ is

continuous and then argue locally, etc.
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+

∣

∣

∣

∣

∫ ∫

|w|≤ε

ε<|ζ|≤ε1/2

|w−ζ|>ε

g(0)2

ζ(ζ − w)
dH

1
|Γ(w) dH

1
|Γ(ζ)

−
∫ ∫

|γ(s)|≤ε

ε<|γ(t)|≤ε1/2

|γ(s)−γ(t)|>ε

g(0)2

γ(t)
(

γ(t)− γ(s)
)

ds dt

∣

∣

∣

∣

+ g(0)2
∫ ∫

|γ(s)|≤ε

ε<|γ(t)|≤ε1/2

|γ(s)−γ(t)|>ε

∣

∣

∣

∣

1

γ(t)
(

γ(t) − γ(s)
)

− 1

t(t − s)

∣

∣

∣

∣

ds dt

+ g(0)2
∣

∣

∣

∣

∫ ∫

|γ(s)|≤ε

ε<|γ(t)|≤ε1/2

|γ(s)−γ(t)|>ε

1

t(t − s)
ds dt

−
∫ ∫

|s|≤ε

ε<|t|≤ε1/2

|s−t|>ε

1

t(t − s)
ds dt

∣

∣

∣

∣

=: D1 + · · ·+ D5.

We will show that each term D1, . . . , D5 tends to 0 as ε → 0, and we will be
done.

Let us deal with D1 first:

D1 .

∫ ∫

|w|≤ε

ε<|ζ|≤ε1/2

|w−ζ|>ε

1

|ζ|2 |g(w)− g(0)| dH
1
|Γ(w) dµ(ζ)

≤
(

ε

∫

|ζ|>ε

1

|ζ|2 dµ(ζ)

)(

1

ε

∫

|w|<ε

|g(w)− g(0)| dH
1
|Γ(w)

)

.

The first factor on the right side is bounded above by M1µ(0), and the last factor
tends to 0 because 0 is a Lebesgue point of g . Thus D1 → 0 as ε → 0.

We now consider the term D2 . Using again the fact that 0 is a Lebesgue
point of g , we get

D2 .

∫ ∫

|w|≤ε

ε<|ζ|≤ε1/2

|w−ζ|>ε

g(0)

|ζ|2 |g(ζ) − g(0)| dH
1
|Γ(w) dH

1
|Γ(ζ)

. εg(0)

∫

ε<|ζ|≤ε1/2

|g(ζ)− g(0)|
|ζ|2 dH

1
|Γ(ζ)

. εg(0)
1

ε
sup

0<r<ε1/2

1

r

∫

|ζ|≤r

|g(ζ) − g(0)| dH
1
|Γ(ζ) → 0 as ε → 0,

where we applied Lemma 5 to measure |g(ζ)−g(0)| dH 1
|Γ(ζ) in the last inequality.

Let us turn our attention to D3 . We have

(11) D3 . g(0)2
∫ ∫

|γ(s)|≤ε

ε<|γ(t)|≤ε1/2

|γ(s)−γ(t)|>ε

1

γ(t)2
∣

∣(1 + A′(s)2)1/2(1 + A′(t)2)1/2 − 1
∣

∣ ds dt.
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Since A′ is bounded, we get

∣

∣(1 + A′(s)2)1/2(1 + A′(t)2)1/2 − 1
∣

∣

≤
∣

∣(1 + A′(s)2)1/2 − 1
∣

∣(1 + A′(t)2)1/2 +
∣

∣(1 + A′(t)2)1/2 − 1
∣

∣

. |A′(s)| + |A′(t)|.

We wish to replace the conditions on w = γ(s) and ζ = γ(t) in the domain of
integration of D3 by similar conditions on s and t . To this end, notice that
w = s

(

1 + o(1)
)

and ζ = t
(

1 + o(1)
)

as ε → 0 since A′(0) = 0 and |s| ≤ ε ,

|t| ≤ ε1/2 . As a consequence,

∣

∣|w − ζ| − |s − t|
∣

∣ ≤ |w − s| + |ζ − t| ≤ (|w| + |ζ|)o(1) ≤ 2|ζ|o(1) . |w − ζ|o(1)

and so |w − ζ| = |s − t|
(

1 + o(1)
)

. Therefore, for ε small enough we have

D3 . g(0)2
∫ ∫

|s|≤2ε

ε/2<|t|≤2ε1/2

|s−t|>ε/2

1

t2
(

|A′(s)| + |A′(t)|
)

ds dt

.
g(0)2

ε

∫

|s|≤2ε

|A′(s)| ds + εg(0)2
∫

ε/2<|t|≤2ε1/2

|A′(t)|
t2

dt

.
g(0)2

ε

∫

|s|≤2ε

|A′(s)| ds + g(0)2 sup
0<r≤2ε1/2

1

r

∫

|t|≤r

|A′(t)| dt.

Since A′(0) = 0 and 0 is a Lebesgue point of A′ , we deduce that D3 → 0 as
ε → 0.

Let us consider D4 . For s , t and w = γ(s), ζ = γ(t) as in the integral in
D4 we have

∣

∣

∣

∣

1

ζ(ζ − w)
− 1

t(t − s)

∣

∣

∣

∣

≤
∣

∣

∣

∣

1

ζ(ζ − w)
− 1

t(ζ − w)

∣

∣

∣

∣

+

∣

∣

∣

∣

1

t(ζ − w)
− 1

t(t − s)

∣

∣

∣

∣

≤ |ζ − t|
|ζ − w| |ζ| |t| +

|ζ − t| + |w − s|
|t| |ζ − w| |t − s|

.
o(1)

|t|2 .

Thus,

D4 . g(0)2
∫ ∫

|s|≤2ε

ε/2<|t|≤2ε1/2

|s−t|>ε/2

o(1)

t2
ds dt . g(0)2 o(1).

So D4 also tends to 0 when ε → 0.
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Finally we estimate D5 . Let S be the symmetric difference between
{

(s, t) ∈ R
2 : |w| < ε, ε < |ζ| ≤ ε1/2, |w − ζ| > ε

}

and
{

(s, t) ∈ R
2 : |s| < ε, ε < |t| ≤ ε1/2, |s − t| > ε

}

.

We have D5 . g(0)2
∫∫

S
(1/t2) ds dt . We split the integral as follows:

∫ ∫

S

1

t2
ds dt ≤

∫ ∫

{|w|≤ε}4{|s|≤ε}

ε/2<|t|≤2ε1/2

|s−t|>ε/2

· · ·+
∫ ∫

|s|≤2ε
{|ζ|>ε}4{|t|>ε}

|s−t|>ε/2

· · ·

+

∫ ∫

|s|≤2ε
|t|>ε/2

{|ζ|≤ε1/2}4{|t|≤ε1/2}
|s−t|>ε/2

· · ·

+

∫ ∫

|s|≤2ε
|t|>ε/2

{|s−t|>ε}4{|w−ζ|>ε}

· · ·

= I1 + · · · + I4.

Let us deal with I1 :

I1 . H
1
(

{s : |γ(s)| ≤ ε}4{s : |s| ≤ ε}
)

∫

|t|>ε/2

1

t2
dt

≈ 1

ε
H

1
(

{s : |γ(s)| ≤ ε}4{s : |s| ≤ ε}
)

.

Since |s − γ(s)| = |s|o(1) ≤ εo(1), we have

H
1
(

{s : |γ(s)| ≤ ε}4{s : |s| ≤ ε}
)

≤ εo(1),

and I1 → 0 as ε → 0. Consider now I2 :

I2 . ε

∫

{|ζ|>ε}4{|t|>ε}

1

t2
dt.

Since |ζ| = |γ(t)| = |t|
(

1 + o(1)
)

, we have

{t : |γ(t)| > ε}4{t : |t| > ε} ⊂ B
(

0, ε
(

1 + o(1)
))

\ B
(

0, ε(1 − o(1))
)

=: A(ε).

In the annulus A(ε) we have |t| ≈ ε . Moreover H 1
(

R ∩ A(ε)
)

≈ εo(1). So we
infer that I2 . o(1).

The estimates for the integrals I3 and I4 are analogous.

Acknowledgement. Both authors were supported by the grants MTM 2004-
00519, Acción Integrada HF2004-0208 (Ministerio de Ciencia y Tecnoloǵıa), and
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