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Abstract. In the metric space setting, our aim in this paper is to deal with the boundedness
of Hardy–Littlewood maximal functions in generalized Lebesgue spaces Lp( · ) when p( · ) satisfies
a log-Hölder condition. As an application of the boundedness of maximal functions, we study
Sobolev’s embedding theorem for variable exponent Riesz potentials on metric space.

1. Introduction

Let X be a metric space with a metric d . Write d(x, y) = |x−y| for simplicity.
We denote by B(x, r) the open ball centered at x ∈ X of radius r > 0. Let µ
be a Borel measure on X . Assume that 0 < µ(B) <∞ and there exist constants
C > 0 and s ≥ 1 such that

(1.1)
µ(B′)

µ(B)
≥ C

(

r′

r

)s

for all balls B = B(x, r) and B′ = B(x′, r′) with x′ ∈ B and 0 < r′ ≤ r . Note
that µ is a doubling measure on X , that is, there exists a constant C ′ > 0 such
that

(1.2) µ
(

B(x, 2r)
)

≤ C ′µ
(

B(x, r)
)

for all x ∈ X and r > 0.
We define the Riesz potential of order α for a locally integrable function f

on X defined by

Uαf(x) =

∫

X

|x− y|αf(y)

µ
(

B(x, |x− y|)
) dµ(y).
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Here α > 0. Following Orlicz [26] and Kováčik and Rákosńık [19], we consider a
positive continuous function p( · ) on X and a function f satisfying

∫

X

|f(y)|p(y) dµ(y) < ∞.

In this paper we treat p( · ) such that p > 1 on X and p satisfies a log-Hölder
condition:

|p(x) − p(y)| ≤
a1 log

(

log(1/|x− y|)
)

log(1/|x− y|)
+

a2

log(1/|x− y|)

whenever |x − y| < 1
4 , where a1 and a2 are nonnegative constants. If a1 > 0,

then we can not expect the usual boundedness of maximal functions in Lp( · ) ,

according to the recent works by Diening [3], [4], Pick and R
◦
užička [27] and Cruz-

Uribe, Fiorenza and Neugebauer [2]. Our typical example is a variable exponent
p( · ) on X such that

p(x) = p0 +
a1 log

(

log
(

1/%K(x)
))

log
(

1/%K(x)
) +

a2

log
(

1/%K(x)
)

when %K(x) is small, where p0 > 1, a1 ≥ 0, a2 ≥ 0 and %K(x) denotes the
distance of x from a compact subset K of X .

Our first task is then to establish the boundedness of Hardy–Littlewood max-
imal functions from Lp( · ) to some Orlicz classes, as an extension of Harjulehto–
Hästö–Pere [13] with a1 = 0 in metric setting and the authors’ [11, Theorem 2.4]
in Euclidean setting. As an application of the boundedness of maximal functions,
we establish Sobolev’s embedding theorem for variable exponent Riesz potentials
on metric space; in the case a1 = 0, see also Diening [4] and Kokilashvili–Samko
[17], [18],

In the borderline case of Sobolev’s theorem, we are concerned with exponential
integrabilities of Trudinger type, which extend the results by Edmunds–Gurka–
Opic [5], [6], Edmunds–Krbec [7] and the authors’ [9], [22]. We also discuss the
pointwise continuity of Riesz potentials defined in the n -dimensional Euclidean
space, as an extension of the authors [9], [23], [24].

For related results, see Adams–Hedberg [1], Heinonen [16], Musielak [25] and

R
◦
užička [28].

2. Variable exponents

Throughout this paper, let C denote various constants independent of the
variables in question.
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Let G be a bounded open set in X . In this section let us assume that p( · )
is a positive continuous function on G satisfying:

(p1) 1 < p−(G) = infG p(x) ≤ supG p(x) = p+(G) <∞ ;

(p2) |p(x) − p(y)| ≤
a1 log

(

log(1/|x− y|)
)

log(1/|x− y|)
+

a2

log(1/|x− y|)
,

whenever |x − y| < 1
4

, x ∈ G and y ∈ G , for some constants a1 ≥ 0 and
a2 ≥ 0.

Example 2.1. Let F be a closed subset of G . For a ≥ 0 and b ≥ 0, consider

p(x) = p0 + ωa,b

(

%F (x)
)

,

where 1 < p0 <∞ , %F (x) denotes the distance of x from F and

ωa,b(t) =
a log

(

log(1/t)
)

log(1/t)
+

b

log(1/t)

for 0 < t ≤ r0 (< 1
4); set ωa,b(t) = ωa,b(r0) when t > r0 and ωa,b(0) = 0. Then

we can find r0 > 0 sufficiently small that p satisfies (p1) and (p2).

For a proof, we prepare the following result.

Lemma 2.2. Let ω be a nonnegative continuous function on the interval

[0, r0] such that

(i) ω(0) = 0;
(ii) ω′(t) ≥ 0 for 0 < t ≤ r0;

(iii) ω′′(t) ≤ 0 for 0 < t ≤ r0 .

Then

(2.1) ω(s+ t) ≤ ω(s) + ω(t) for s, t ≥ 0 and s+ t ≤ r0 .

It is easy to find r0 ∈
(

0, 1
4

)

such that ωa,b satisfies (i)–(iii) on [0, r0] .
Let

1/p′(x) = 1 − 1/p(x).

Then, noting that

(2.2)

p′(y) − p′(x) =
p(x) − p(y)

(

p(x) − 1
)(

p(y) − 1
)

=
p(x) − p(y)
(

p(x) − 1
)2 +

{p(x) − p(y)}2

(

p(x) − 1
)2(

p(y) − 1
)

,

we have the following result.

Lemma 2.3. There exists a positive constant c such that

|p′(x) − p′(y)| ≤ ωa,c(|x− y|) whenever x ∈ G and y ∈ G ,

where a = a(x) = a1

(

p(x) − 1
)−2

.
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3. Boundedness of maximal functions

Define the Lp( · )(G) norm by

‖f‖p( · ) = ‖f‖p( · ),G = inf

{

λ > 0 :

∫

G

∣

∣

∣

∣

f(y)

λ

∣

∣

∣

∣

p(y)

dµ(y) ≤ 1

}

and denote by Lp( · )(G) the space of all measurable functions f on G with
‖f‖p( · ) <∞ .

By the decay condition (1.1), we have

(3.1) µ
(

B(x, r)
)

≥ Crs

for all x ∈ G and 0 < r < dG , where dG denotes the diameter of G . For
f ∈ Lp( · )(G), define the maximal function

Mf(x) = sup
r>0

1

µ
(

B(x, r)
)

∫

G∩B(x,r)

|f(y)| dµ(y)

= sup
0<r<dG

1

µ
(

B(x, r)
)

∫

G∩B(x,r)

|f(y)| dµ(y).

Our first aim is to discuss the boundedness of the maximal functions.

Theorem 3.1. Let a > a1 when a1 > 0 and a = 0 when a1 = 0 . Set

A(x) = as/p(x)2 . If ‖f‖p( · ) ≤ 1 , then
∫

G

{

Mf(x)
(

log
(

e+Mf(x)
))−A(x)}p(x)

dµ(x) ≤ C.

When a1 = 0, Theorem 3.1 was proved by Harjulehto–Hästö–Pere [13], which
is an extension of Diening [3]. For the boundedness of maximal functions in general
domains, see Cruz-Uribe, Fiorenza and Neugebauer [2].

Remark 3.2. Set Φ(r, x) =
{

r
(

log(e+ r)
)−A(x)}p(x)

for r > 0 and x ∈ G .
Then Theorem 3.1 assures the existence of C > 0 such that

∫

G

Φ
(

Mf(x)/C, x
)

dµ(x) ≤ 1 whenever ‖f‖p( · ) ≤ 1.

As in Edmunds and Rákosńık [8], we define

‖f‖Φ = ‖f‖Φ,G = inf

{

λ > 0 :

∫

G

Φ
(

|f(x)|/λ, x
)

dµ(x) ≤ 1

}

;

then it follows that

‖Mf‖Φ ≤ C‖f‖p( · ) for f ∈ Lp( · )(G).

Theorem 3.1 is proved along the same lines as in the authors’ [11, Theorem
2.4], but we give a proof of Theorem 3.1 for the readers’ convenience.

To complete the proof, we prepare the following lemma.
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Lemma 3.3. Let f be a nonnegative measurable function on G with ‖f‖p( · )

≤ 1 . Then

Mf(x) ≤ C
{

Mg(x)1/p(x)
(

log
(

e+Mg(x)
))A1(x)

+ 1
}

,

where g(y) = f(y)p(y) and A1(x) = a1s/p(x)2 .

Proof. Let f be a nonnegative measurable function on G with ‖f‖p( · ) ≤ 1.
First note that

(3.2)

∫

G

f(y)p(y) dµ(y) ≤ 1.

Then, if r ≥ r0 , then

(3.3)
1

µ
(

B(x, r)
)

∫

B(x,r)

f(y) dµ(y) ≤
1

µ
(

B(x, r)
)

∫

B(x,r)

{1+f(y)p(y)} dµ(y) ≤ C

by our assumption.
For 0 < k ≤ 1 and r > 0, we have by Lemma 2.3

1

µ
(

B(x, r)
)

∫

B(x,r)

f(y) dµ(y)

≤ k

{

1

µ
(

B(x, r)
)

∫

B(x,r)

(1/k)p′(y) dµ(y) +
1

µ
(

B(x, r)
)

∫

B(x,r)

f(y)p(y) dµ(y)

}

≤ k{(1/k)p′(x)+ω(r) + F},

where F =
(

µ
(

B(x, r)
))−1 ∫

B(x,r)
f(y)p(y) dµ(y) and ω(r) = ωa,c(r) as in Exam-

ple 2.1. Here, considering

k = F−1/{p′(x)+ω(r)} = F−1/p′(x)+β(x)

with β(x) = ω(r)/
{

p′(x)
(

p′(x) + ω(r)
)}

when F ≥ 1, we have

1

µ
(

B(x, r)
)

∫

B(x,r)

f(y) dµ(y) ≤ 2F 1/p(x)Fω(r)/p′(x)2 ;

if F < 1, then we can take k = 1 to obtain

1

µ
(

B(x, r)
)

∫

B(x,r)

f(y) dµ(y) ≤ 2.
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Hence it follows that

(3.4)
1

µ
(

B(x, r)
)

∫

B(x,r)

f(y) dµ(y) ≤ 2
{

F 1/p(x)Fω(r)/p′(x)2 + 1
}

.

If r ≤ F−1 , then we see from (3.4) that

1

µ
(

B(x, r)
)

∫

B(x,r)

f(y) dµ(y) ≤ C
{

F 1/p(x)
(

log(e+ F )
)A1(x)

+ 1
}

.

If r0 > r > F−1 , then we have by the lower bound (3.1)

F 1/p(x)+ω(r)/p′(x)2 ≤ Cµ
(

B(x, r)
)−1/p(x)

r−sω(r)/p′(x)2

×

{
∫

B(x,r)

f(y)p(y) dµ(y)

}1/p(x)+ω(r)/p′(x)2

.

In view of (3.2), we find

F 1/p(x)+ω(r)/p′(x)2

≤ Cµ
(

B(x, r)
)−1/p(x)(

log(1/r)
)A1(x)

{
∫

B(x,r)

f(y)p(y) dµ(y)

}1/p(x)+ω(r)/p′(x)2

≤ Cµ
(

B(x, r)
)−1/p(x)(

log(1/r)
)A1(x)

{
∫

B(x,r)

f(y)p(y) dµ(y)

}1/p(x)

≤ Cµ
(

B(x, r)
)−1/p(x)

(logF )A1(x)

{
∫

B(x,r)

f(y)p(y) dµ(y)

}1/p(x)

= CF 1/p(x)(logF )A1(x).

Now we have established

(3.5)
1

µ
(

B(x, r)
)

∫

B(x,r)

f(y) dµ(y) ≤ C
{

F 1/p(x)
(

log(e+ F )
)A1(x)

+ 1
}

for all r > 0 and x ∈ G , which completes the proof.

Proof of Theorem 3.1. Let p1(x) = p(x)/p1 for 1 < p1 < p
−

(G). Then
Lemma 3.3 yields

{Mf(x)}p1(x) ≤ C
{

Mg(x)
(

log
(

e+Mg(x)
))ã1s/p1(x)

+ 1
}
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for x ∈ G , where g(y) = f(y)p1(y) and ã1 = a1/p1 . Letting a > a1 when a1 > 0
and a = 0 when a1 = 0, we set A(x) = as/p(x)2 . Then we can choose p1 so that
a1p1 ≤ a and

{Mf(x)}p(x) ≤ C
{

Mg(x)
(

log
(

e+Mg(x)
))A(x)p(x)/p1

+ 1
}p1

,

which yields

{

Mf(x)
(

log
(

e+Mf(x)
))−A(x)}p(x)

≤ C{Mg(x) + 1}p1 .

Now Theorem 3.1 follows from the boundedness of maximal functions in Lp1 (in
the case of constant exponent).

Remark 3.4. Let p( · ) be a positive continuous function on G such that
1 ≤ p(x) ≤ p+(G) < ∞ . Then, as in Harjulehto–Hästö–Pere [13], we can prove
the following weak type result for maximal functions:

|Ef (t)| ≤ C

∫

G

∣

∣

∣

∣

f(y)

t

∣

∣

∣

∣

p(y)

dµ(y)

whenever t > 0 and f ∈ Lp( · )(G), where Ef (t) = {x ∈ G : Mf(x) ≥ t} ; see also
Cruz-Uribe, Fiorenza and Neugebauer [2, Theorem 1.8].

To prove this, we may assume that t = 1. We have for k > 1

1

µ
(

B(x, r)
)

∫

B(x,r)

|f(y)| dµ(y)

≤ k

{

1

µ
(

B(x, r)
)

∫

B(x,r)

(1/k)p′(y) dµ(y) +
1

µ
(

B(x, r)
)

∫

B(x,r)

|f(y)|p(y) dµ(y)

}

≤ k
{

(1/k)(p+)′ + F
}

,

where F =
(

µ
(

B(x, r)
))−1 ∫

B(x,r)
|f(y)|p(y) dµ(y). Here, considering k = F−1/(p+)′

when F < 1, we find
1 ≤ 2F 1/p+ ,

so that
(

1
2

)p+
≤M

(

|f |p( · )
)

(x) for x ∈ Ef (1),

which proves the required assertion.

Remark 3.5. For 0 < r < 1
2

, let

G = {x = (x1, x2) : 0 < x1 < 1, −1 < x2 < 1}.
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Define

p(x1, x2) =

{

p0 + a1

(

log
(

log(1/x2)
))

/ log(1/x2) when 0 < x2 ≤ r0,
p0 when x2 ≤ 0;

and p(x1, x2) = p(x1, r0) when x2 > r0 . Setting

G(r) = {x = (x1, x2) : 0 < x1 < r, −r < x2 < 0},

we consider
fr(y) = χG(r)(y)

and set gr = fr/‖fr‖p( · ),G , where χE denotes the characteristic function of a

measurable set E . Then we claim for 0 < r < 1
2r0 :

(i) ‖fr‖p( · ),G = r2/p0 ;

(ii) M(gr)(x) ≥ C1r
−2/p0 for 0 < x1 < r and r < x2 < 2r ;

(iii)

∫

G

{

M(gr)(x)
(

log
(

e+ M(gr)(x)
))−A(x)}p(x)

dx ≥ C2

(

log(1/r)
)2(a1−a)/p0

for

A(x) = 2a/p(x)2 ,

so that the conclusion of Theorem 3.1 does not hold for 0 < a < a1 .

4. Sobolev’s inequality

For 0 < α < s , we consider the Riesz potential Uαf of f ∈ Lp( · )(G) defined
by

Uαf(x) =

∫

G

|x− y|αf(y)

µ
(

B(x, |x− y|)
) dµ(y);

recall that s is the decay constant in (1.1). In this section, suppose p( · ) satisfies
(p1), (p2) and

(p3) p+(G) < s/α.

Let
1/p](x) = 1/p(x) − α/s.

In what follows we establish Sobolev’s inequality for α -potentials on G , as
an extension of the case of constant exponent which was discussed by Haj lasz
and Koskela [12] and Heinonen [16]; for the Euclidean case, see the books by
Adams and Hedberg [1] and the second author [21]. In the next two sections,
we are concerned with the exponential integrability, which extends the results by
Edmunds, Gurka and Opic [5], [6], and the authors [22].

Now we show our result, which gives an extension of Diening [4]; for further
investigations we also refer the reader to the results by Kokilashvili–Samko [17],
[18], where the index α is a variable exponent.
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Theorem 4.1. Letting a > a1 when a1 > 0 and a = 0 when a1 = 0 , we

set A(x) = as/p(x)2 . Suppose p+(G) < s/α . Let f be a nonnegative measurable

function on G with ‖f‖p( · ) ≤ 1 . Then

∫

G

{

Uαf(x)
(

log
(

e+ Uαf(x)
))−A(x)}p](x)

dµ(x) ≤ C.

In spite of the fact that the proof of Theorem 4.1 is quite similar to that of
Theorem 3.4 in [11], we give a proof of Theorem 4.1 for the readers’ convenience.

For this purpose, we prepare the following two lemmas.

Lemma 4.2. Let f be a nonnegative measurable function on G with ‖f‖p( · )

≤ 1 . Then

∫

G\B(x,δ)

|x− y|αf(y)

µ
(

B(x, |x− y|)
) dµ(y) ≤ Cδ−s/p](x) log(1/δ)A1(x)

for x ∈ G and 0 < δ < 1
4
, where A1(x) = a1s/p(x)2 as before.

Proof. Let f be a nonnegative measurable function on G with ‖f‖p( · ) ≤ 1.
Then, for k > 1, we have

∫

G\B(x,δ)

|x− y|αf(y)

µ
(

B(x, |x− y|)
) dµ(y)

≤ k

{
∫

G\B(x,δ)

(

|x− y|α

kµ
(

B(x, |x− y|)
)

)p′(y)

dµ(y) +

∫

G\B(x,δ)

f(y)p(y) dµ(y)

}

≤ k

{
∫

G\B(x,δ)

(

|x− y|α

kµ
(

B(x, |x− y|)
)

)p′(y)

dµ(y) + 1

}

.

Consider the set

E =
{

y ∈ G : |x− y|α/
(

kµ
(

B(x, |x− y|)
))

> 1
}

.

Note here that by (1.2), (3.1) and Lemma 2.3
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∫

E\B(x,δ)

(

|x− y|α

kµ
(

B(x, |x− y|)
)

)p′(y)

dµ(y)

≤

∫

E\B(x,δ)

(

|x− y|α

kµ
(

B(x, |x− y|)
)

)p′(x)+ω(|x−y|)

dµ(y)

≤ C
∑

j

∫

B(x,2jδ)\B(x,2j−1δ)

(

(2jδ)α

kµ
(

B(x, 2jδ)
)

)p′(x)+ω(2jδ)

dµ(y)

≤ Ck−p′(x)−ω(δ)
∑

j

(2jδ)α(p′(x)+ω(2jδ))
(

µ(B(x, 2jδ)
)−(p′(x)+ω(2jδ))+1

≤ Ck−p′(x)−ω(δ)
∑

j

(2jδ)(α−s)(p′(x)+ω(2jδ))+s

≤ Ck−p′(x)−ω(δ)

∫ ∞

δ

t(α−s)(p′(x)+ω(t))+st−1 dt

≤ Ck−p′(x)−ω(δ)δ(α−s)(p′(x)+ω(δ))+s

≤ Ck−p′(x)−ω(δ)δp′(x)(α−s/p(x))
(

log(1/δ)
)(s−α)a1/(p(x)−1)2

= Ck−p′(x)−ω(δ)δ−p′(x)s/p](x)
(

log(1/δ)
)(s−α)a1/(p(x)−1)2

,

where ω(r) = ωa,c(r). Now, letting k = δ−s/p](x)
(

log(1/δ)
)A1(x)

, we see that

∫

E\B(x,δ)

(

|x− y|α

kµ
(

B(x, |x− y|)
)

)p′(y)

dµ(y) ≤ C.

Further we find

∫

G\E

(

|x− y|α

kµ
(

B(x, |x− y|)
)

)p′(y)

dµ(y) ≤ C.

Consequently it follows that

∫

G\B(x,δ)

|x− y|αf(y)

µ
(

B(x, |x− y|)
) dµ(y) ≤ Cδ−s/p](x)

(

log(1/δ)
)A1(x)

for x ∈ G and 0 < δ < 1
4

, as required.
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Lemma 4.3. Let f be a nonnegative measurable function on G with ‖f‖p( · )

≤ 1 . Then

Uαf(x) ≤ C
{

Mf(x)p(x)/p](x)
(

log
(

e+Mf(x)
))a1α/p(x)

+ 1
}

.

Proof. To give the required estimate, we borrow the idea of Hedberg [15]. In
fact, for x ∈ G and 0 < δ < 1

4
we have by Lemma 4.1

Uαf(x) =

∫

G∩B(x,δ)

|x− y|αf(y)

µ
(

B(x, |x− y|)
) dµ(y) +

∫

G\B(x,δ)

|x− y|αf(y)

µ
(

B(x, |x− y|)
) dµ(y)

≤ CδαMf(x) + Cδ−s/p](x)
(

log(1/δ)
)A1(x)

.

Considering δ = Mf(x)−p(x)/s
(

log
(

e + Mf(x)
))a1/p(x)

when Mf(x) is large
enough, we obtain the required inequality.

Proof of Theorem 4.1. Let a > a1 > 0 or a = a1 = 0, and set A(x) =
as/p(x)2 . Then Lemma 4.3 yields

{

Uαf(x)
(

log
(

e+Uαf(x)
))−A(x)

}p](x)

≤ C
[

{

Mf(x)
(

log
(

e+Mf(x)
))−A(x)}p(x)

+1
]

,

which together with Theorem 3.1 completes the proof.

Remark 4.4. In Remark 3.5, we see that

Uαgr(x) ≥ C3r
−2/p](x)

(

log(1/r)
)A1(x)

for 0 < x1 < r and r < x2 < 2r , where A1(x) = 2a1/p(x)2 . Hence we have

∫

G

{

Uαgr(x)
(

log
(

e+ Uαgr(x)
))−A(x)}p](x)

dx ≥ C4

(

log(1/r)
)2(a1−a)/p0

,

where A(x) = 2a/p(x)2 . This implies that the conclusion of Theorem 4.1 does
not hold when a < a1 .

Remark 4.5. By Theorem 4.1 we see that Uαf ∈ Lp( · )(G) whenever f ∈
Lp( · )(G). Then, as was pointed out by Lerner [20], the inequality

∫

G

|Uαf(x)|p(x) dµ(x) ≤ C

∫

G

|f(y)|p(y) dµ(y)

holds whenever f ∈ Lp( · )(G) if and only if p is constant, under the additional
assumption that

µ(E) = sup
{

µ(K) | K ⊂ E, K : compact
}
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for every measurable set E ⊂ X . In fact, the if part is clear. We here assume that p
is not constant. Then we can find numbers p1 and p2 such that 1 ≤ p1 < p2 <∞ ,
and both E1 = {x ∈ G : p(x) ≤ p1} and E2 = {x ∈ G : p(x) ≥ p2} have positive
µ measure. Further by our assumption, there exist compact sets Ki , i = 1, 2,
such that Ki ⊂ Ei . If f = kχK1

with k > 1, then

Uαf(x) ≥ Ckµ(K1) for x ∈ K2 ,

so that
∫

G

|Uαf(x)|p(x) dµ(x) ≥ Ckp2µ(K2).

On the other hand,
∫

G

|f(x)|p(x) dµ(x) ≤ kp1µ(K1).

If the inequality holds, then we should have

kp2 ≤ Ckp1 ,

which gives a contradiction by letting k → ∞ .
In the same manner, we see that the inequality

∫

G

{Mf(x)}p(x) dµ(x) ≤ C

∫

G

|f(y)|p(y) dµ(y)

holds whenever f ∈ Lp( · )(G) if and only if p is constant.

Remark 4.6. Let ω(r) be a continuous function on (0,∞) such that

ω(r) =
a1 log

(

log(1/r)
)

log(1/r)
+

a2

log(1/r)

for 0 < r ≤ r0 < 1
4

, with a1 > 0 and a2 > 0; set ω(r) = ω(r0) for r > r0 .
Consider a variable exponent p( · ) on the unit ball B in Rn defined by

p(x) = p0 + ω
(

%(x)
)

,

where 1 < p0 < n/α and %(x) = 1−|x| . Take r0 so small that p(x) < n/α for all
x ∈ B . In view of Theorem 4.1, we see that if a > a1 and A(x) = an/p(x)2 , then

∫

B

{

Uαf(x)
(

log
(

e+ Uαf(x)
))−A(x)

}p](x)

dx ≤ C

whenever f is a nonnegative measurable function on B with ‖f‖p( · ) ≤ 1.
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5. Exponential integrability

For fixed x0 ∈ G , let us assume that an exponent p(x) is a continuous function
on G satisfying

(5.1) p(x) > p0 when x 6= x0

and

(5.2)

∣

∣

∣

∣

p(x) −

{

p0 +
a log

(

log(1/|x0 − x|)
)

log(1/|x0 − x|)

}
∣

∣

∣

∣

≤
b

log(1/|x0 − x|)

for x ∈ B(x0, r0), where 0 < r0 <
1
4 , p0 = s/α , 0 < a ≤ (s− α)/α2 and b > 0.

Our aim in this section is to give an exponential integrability of Trudinger
type. Before doing so, we prepare several lemmas. In view of (2.2) and (5.2), we
have the following result.

Lemma 5.1. There exist C > 0 and 0 < r0 <
1
4

such that

(5.3) p′(y) ≤ p′0 − ω(|x0 − y|)

for all y ∈ B0 = B(x0, r0) , where p′0 = p0/(p0 − 1) = s/(s − α) and ω is a

nonnegative nondecreasing function on (0,∞) such that

ω(r) =
aα2

(s− α)2
log

(

log(1/r)
)

log(1/r)
−

C

log(1/r)

when 0 < r ≤ r0 ; set ω(r) = ω(r0) when r > r0 as before.

Lemma 5.2. If 0 < a < (s− α)/α2 , then

∫

B0\B(x,δ)

(

|x− y|α

µ
(

B(x, |x− y|)
)

)p′(y)

dµ(y) ≤ C
(

log(1/δ)
)1−aα2/(s−α)

and if a = (s− α)/α2 , then

∫

B0\B(x,δ)

(

|x− y|α

µ
(

B(x, |x− y|)
)

)p′(y)

dµ(y) ≤ C log
(

log(1/δ)
)

for x ∈ B0 and 0 < δ < δ0 , where 0 < δ0 <
1
4
.
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Proof. First consider the case 0 < a < (s − α)/α2 . Let E =
{

y ∈ B0 :

|x − y|α/µ
(

B(x, |x− y|)
)

> 1
}

for fixed x ∈ B0 . Let j0 be the smallest integer
such that 2j0δ > 2r0 . Since |x− y| ≤ 3|x0 − y| for y ∈ B0 \B(x0, |x0 − x|/2), we
have by (1.2), (3.1) and (5.3)

I1 =

∫

E\{B(x0,|x0−x|/2)∪B(x,δ)}

(

|x− y|α

µ
(

B(x, |x− y|)
)

)p′(y)

dµ(y)

≤ C

j0
∑

j=1

∫

B(x,2jδ)\B(x,2j−1δ)

(

(2jδ)α

µ
(

B(x, 2jδ)
)

)p′

0−ω(2j−1δ/3)

dµ(y)

≤ C

j0
∑

j=1

(2jδ)α(p′

0−ω(2j−1δ/3))
(

µ
(

B(x, 2jδ)
))−(p′

0−ω(2j−1δ/3))+1

≤ C

j0
∑

j=1

(2jδ)(α−s)(p′

0−ω(2j−1δ/3))+s

≤ C

j0
∑

j=1

(

log 1/(2jδ)
)−aα2/(s−α)

≤ C

∫ 3r0

δ

(

log(1/t)
)−aα2/(s−α)

t−1 dt ≤ C
(

log(1/δ)
)1−aα2/(s−α)

for 0 < δ < δ0 , since 1 − aα2/(s− α) > 0.
Next we give an estimate for

I2 =

∫

B(x0,|x−x0|/2)\B(x,δ)

(

|x− y|α

µ
(

B(x, |x− y|)
)

)p′(y)

dµ(y).

We may assume that 2|x − x0| > δ . Then we see from Lemma 5.1 that if y ∈
B(x0, |x− x0|/2), then p′(y) ≤ p′0 + η , where η = C/ log(1/|x0 − x|). Hence we
obtain by (1.1) and (3.1)

I2 ≤ C

∫

B(x0,|x−x0|/2)

(

|x− x0|
α

µ
(

B(x, |x0 − x|/2)
)

)p′(y)

dµ(y)

≤ C

∫

B(x0,|x−x0|/2)

{(

|x− x0|
α

µ
(

B(x, |x0 − x|/2)
)

)p′

0+η

+ 1

}

dµ(y)

≤ Cµ
(

B(x0, |x0 − x|/2)
)

{(

|x− x0|
α

µ
(

B(x, |x0 − x|/2)
)

)p′

0+η

+ 1

}

≤ C
{

|x− x0|
α(p′

0+η)µ
(

B(x0, |x0 − x|/2)
)−(p′

0+η)+1
+ 1

}

≤ C.
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Thus it follows that

∫

B0\B(x,δ)

(

|x− y|α

µ
(

B(x, |x− y|)
)

)p′(y)

dµ(y) ≤ C
(

log(1/δ)
)1−aα2/(s−α)

for 0 < δ < 1
4

, which proves the first case.

The second case a = (s− α)/α2 is similarly proved.

Lemma 5.3. Let f be a nonnegative measurable function on B0 with

‖f‖p( · ) ≤ 1 . If β1 > β =
(

1 − aα2/(s− α)
)

/p′0 = (s− α− aα2)/s > 0 , then

(5.4)

∫

B0\B(x,δ)

|x− y|αf(y)

µ
(

B(x, |x− y|)
) dµ(y) ≤ C

(

log(1/δ)
)β1

for x ∈ B0 and 0 < δ < δ0 , where 0 < δ0 <
1
4 .

Proof. Take p1 such that 1 < p1 < p′0 and β1 > γ =
(

1−aα2/(s−α)
)

/p1 > β .
We may assume that p′(y) > p1 for y ∈ B0 .

Let f be a nonnegative measurable function on B0 with ‖f‖p( · ) ≤ 1. For

k > 1 and 0 < δ < 1
4

, we have by Lemma 5.2

∫

B0\B(x,δ)

|x− y|αf(y)

µ
(

B(x, |x− y|)
) dµ(y)

≤ k

{
∫

B0\B(x,δ)

(

|x− y|α

kµ
(

B(x, |x− y|)
)

)p′(y)

dµ(y) +

∫

B0\B(x,δ)

f(y)p(y) dµ(y)

}

≤ k
{

Ck−p1
(

log(1/δ)
)1−aα2/(s−α)

+ 1
}

.

Now, considering k such that k−p1

(

log(1/δ)
)1−aα2/(s−α)

= 1, we have

∫

B0\B(x,δ)

|x− y|αf(y)

µ
(

B(x, |x− y|)
) dµ(y) ≤ C

(

log(1/δ)
)γ

≤ C
(

log(1/δ)
)β1

,

as required.

In what follows we show that (5.4) remains true with β1 replaced by β =
(s− α− aα2)/s .

Lemma 5.4. Let f be a nonnegative measurable function on B0 with

‖f‖p( · ) ≤ 1 . If β = (s− α− aα2)/s > 0 , then

∫

B0\B(x,δ)

|x− y|αf(y)

µ
(

B(x, |x− y|)
) dµ(y) ≤ C

(

log(1/δ)
)β

for x ∈ B0 and 0 < δ < δ0 , where 0 < δ0 <
1
4
.
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Proof. Let f be a nonnegative measurable function on B0 with ‖f‖p( · ) ≤ 1.

Let η =
(

log(1/δ)
)− log log(1/δ)

for small δ , say 0 < δ < δ0 <
1
4

. Then note from
Lemma 5.3 that

(5.5)

∫

B0\B(x,η)

|x− y|αf(y)

µ
(

B(x, |x− y|)
) dµ(y) ≤ C

(

log(1/η)
)β1

≤ C
(

log(1/δ)
)β
.

Letting k =
(

log(1/δ)
)β

and B(x) = B(x0, |x0 − x|/2), we find

kω(η/3) ≤ C,

so that we obtain from Lemmas 5.1 and 5.2 that
∫

B(x,η)\{B(x,δ)∪B(x)}

(

|x− y|α

kµ
(

B(x, |x− y|)
)

)p′(y)

dµ(y)

≤

∫

B(x,η)\{B(x,δ)∪B(x)}

{(

|x− y|α

kµ
(

B(x, |x− y|)
)

)p′

0−ω(|x−y|/3)

+ 1

}

dµ(y)

≤ Ck−p′

0

∫

B0\B(x,δ)

(

|x− y|α

µ
(

B(x, |x− y|)
)

)p′

0−ω(|x−y|/3)

dµ(y) + C

≤ Ck−p′

0

(

log(1/δ)
)1−aα2/(s−α)

+ C ≤ C.

Hence it follows from the proof of Lemma 5.3 that

(5.6)

∫

B(x,η)\{B(x,δ)∪B(x)}

|x− y|αf(y)

µ
(

B(x, |x− y|)
) dµ(y) ≤ C(log(1/δ))β.

Next we show that

(5.7)

∫

B(x)\B(x,δ)

|x− y|αf(y)

µ
(

B(x, |x− y|)
) dµ(y) ≤ C

(

log(1/δ)
)β
.

Since a > 0, we have by the latter half of the proof of Lemma 5.2
∫

B(x)\B(x,δ)

|x− y|αf(y)

µ
(

B(x, |x− y|)
) dµ(y)

≤

∫

B(x)\B(x,δ)

(

|x− y|α

µ
(

B(x, |x− y|)
)

)p′(y)

dµ(y) +

∫

B(x)\B(x,δ)

f(y)p(y) dµ(y)

≤ C.

Now we claim from (5.5), (5.6) and (5.7) that
∫

B0\B(x,δ)

|x− y|αf(y)

µ
(

B(x, |x− y|)
) dµ(y) ≤ C

(

log(1/δ)
)β
.

Thus the proof is completed.
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Lemma 5.5. Let f be a nonnegative measurable function on B0 with

‖f‖p( · ) ≤ 1 . If β = (s− α− aα2)/s > 0 , then

Uαf(x) ≤ C
(

log
(

e+Mf(x)
))β

for x ∈ B0 .

Proof. We see from Lemma 5.4 that

Uαf(x) =

∫

B(x,δ)

|x− y|αf(y)

µ
(

B(x, |x− y|)
) dµ(y) +

∫

B0\B(x,δ)

|x− y|αf(y)

µ
(

B(x, |x− y|)
) dµ(y)

≤ CδαMf(x) + C
(

log(1/δ)
)β
.

Here, letting

δ =
(

Mf(x)
)−1/α(

log
(

e+Mf(x)
))β/α

when Mf(x) is large enough, we have

Uαf(x) ≤ C
(

log
(

e+Mf(x)
))β

,

as required.

It follows from Lemma 5.5 that

exp
(

C−1
(

Uαf(x)
)1/β)

≤ e+Mf(x)

whenever f is a nonnegative measurable function on B0 with ‖f‖p( · ) ≤ 1. By
the classical fact that Mf ∈ Lp−(B0), we establish the following exponential
inequality of Trudinger type.

Theorem 5.6. Let 0 < a < (s− α)/α2 . If β = (s− α− aα2)/s , then there

exist positive constants c1 and c2 such that

∫

B0

exp
(

c1
(

Uαf(x)
)1/β)

dµ(x) ≤ c2

for all nonnegative measurable functions f on B0 with ‖f‖p( · ) ≤ 1 .

Remark 5.7. Let B0 be a ball in the n -dimensional space Rn . If f is a
nonnegative measurable function on B0 such that

∫

B0

f(y)p(y) dy <∞,

then we claim by applying an idea by Hästö [14] that

(5.8)

∫

B0

f(y)n/α
(

log
(

e+ f(y)
))aα

dy < ∞.
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In fact, if y ∈ E =
{

x ∈ B0 : f(x) ≥ |x0 − x|−α
(

log
(

e+ |x0 − x|−1)
)−1}

, then

f(y)p(y) ≥ Cf(y)n/α
(

log
(

e+ f(y)
))aα

so that
∫

E

f(y)n/α
(

log
(

e+ f(y)
))aα

dy <∞,

which proves (5.8), since 0 < a < (n − α)/α2 . With the aid of Edmunds–Krbec
[7] and the authors [22] we also obtain Theorem 5.6 in the Euclidean case.

Finally we are concerned with the case a = (s− α)/α2 .

Lemma 5.8. Let f be a nonnegative measurable function on B0 with

‖f‖p( · ) ≤ 1 . If a = (s− α)/α2 , then

Uαf(x) ≤ C
(

log
(

e+ log
(

e+Mf(x)
)))p′

0 for x ∈ B0 .

Proof. Let f be a nonnegative measurable function on B0 with ‖f‖p( · ) ≤ 1.

For k > 1 and 0 < δ < δ0 <
1
4 , we have by applications of the arguments in the

proof of Lemma 5.4
∫

B0\B(x,δ)

|x− y|αf(y)

µ
(

B(x, |x− y|)
) dµ(y) ≤ C

(

log
(

log(1/δ)
))1/p′

0 .

Consequently it follows that

Uαf(x) =

∫

B(x,δ)

|x− y|αf(y)

µ
(

B(x, |x− y|)
) dµ(y) +

∫

B0\B(x,δ)

|x− y|αf(y)

µ
(

B(x, |x− y|)
) dµ(y)

≤ CδαMf(x) + C
(

log
(

log(1/δ)
))1/p′

0 .

Here let
δ = Mf(x)−1/α

(

log
(

e+ log
(

e+Mf(x)
)))1/{αp′

0}

when Mf(x) is large enough. Then we have

Uαf(x) ≤ C
(

log
(

e+ log
(

e+Mf(x)
)))1/p′

0 ,

as required.

By Lemma 5.8 and the fact that Mf ∈ Lp0(B0), we establish the following
double exponential inequality for f ∈ Lp( · )(B0).

Theorem 5.9. If a = (s−α)/α2 , then there exist positive constants c1 and

c2 such that
∫

B0

exp
(

exp
(

c1
(

Uαf(x)
)s/(s−α)))

dµ(x) ≤ c2

for all nonnegative measurable functions f on B0 with ‖f‖p( · ) ≤ 1 .

Remark 5.10. In case f belongs to more general variable exponent Lebesgue
spaces, we will be expected to discuss the corresponding exponential integrability
as in Edmunds, Gurka and Opic [5], [6]. But we do not go into details any more.
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6. Exponential integrability, II

In this section, let B = B(0, 1) be the unit ball in Rn . We consider a variable
exponent p( · ) on B which is a continuous function on B satisfying

(6.1) p(x) > p0 on B

and

(6.2)

∣

∣

∣

∣

p(x) −

{

p0 +
a log

(

log
(

1/%(x)
))

log
(

1/%(x)
)

}
∣

∣

∣

∣

≤
b

log
(

1/%(x)
)

when %(x) < r0 , where 0 < r0 <
1
4 , a > 0, b > 0, p0 = n/α and %(x) = 1 − |x|

denotes the distance of x from the boundary ∂B .
For f ∈ Lp( · )(B), the Riesz potential of order α , 0 < α < n , is defined by

Uαf(x) =

∫

B

|x− y|α−nf(y) dy.

If a > (n− α)/α2 , then we see from Theorem 7.7 below that

|Uαf(x) − Uαf(z)| ≤ C
(

log(1/|x− z|)
)(n−α−aα2)/n

whenever x, z ∈ B and |x− z| < 1
2

; for this fact, see also [10, Theorem 4.3].

In what follows, when 0 < a ≤ (n−α)/α2 , we discuss exponential inequalities
of Uαf as in Section 5.

As in Lemma 5.1, we have the following result.

Lemma 6.1. There exist positive constants t0 <
1
4 and C such that

p′(x) ≤ p′0 − ω
(

%(x)
)

for x ∈ B , where ω(t) =
(

aα2/(n− α)2
)

log
(

log(1/t)
)

/ log(1/t) − C/ log(1/t) for

0 < t ≤ t0 and ω(t) = ω(t0) for t > t0 .

Lemma 6.2. If 0 < a < (n− α)/α2 , then

I ≡

∫

B\B(x,r)

|x− y|(α−n)p′(y) dy ≤ C
(

log(1/r)
)γ

for all x ∈ B and 0 < r < 1
2
, where γ = 1 − aα2/(n− α) .
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Proof. First consider the case 1
2%(x) ≤ r < 1

2 . Letting E1 =
{

y ∈ B\B(x, r) :

|%(x) − %(y)| > 2r
}

, we find by polar coordinates,

I1 ≡

∫

E1

|x− y|(α−n)p′(y) dy

≤ C

∫

{t:|t−%(x)|>2r}

|t− %(x)|(α−n)(p′

0−ω(t))+n−1 dt

≤ C

∫

{t:t>2r}

t(n−α)ω(t)−1 dt

≤ C

∫ 1/2

2r

(

log(1/t)
)−aα2/(n−α)

t−1 dt+ C ≤ C
(

log(1/r)
)γ
.

Letting E2 =
{

y ∈ B \B(x, r) : |%(x)− %(y)| ≤ 2r
}

, we find by polar coordinates,

I2 ≡

∫

E2

|x− y|(α−n)p′(y) dy

≤ C

∫

{t:|t−%(x)|≤2r}

r(α−n)p′

0+n−1 dt ≤ Cr−1

∫ 4r

0

dt ≤ C.

Hence it follows that
∫

B\B(x,r)

|x− y|(α−n)p′(y) dy ≤ C
(

log(1/r)
)γ

when 1
2
%(x) ≤ r < 1

2
. In particular, we obtain

(6.3)

∫

B\B(x,%(x)/2)

|x− y|(α−n)p′(y) dy ≤ C
(

log
(

1/%(x)
))γ

.

Next consider the case 0 < r < 1
2%(x). Let E3 = B

(

x, 1
2%(x)

)

\ B(x, r). In
view of Lemma 6.1, we find

p′(y) ≤ p′0 − ω
(

%(x)
)

+ C/ log
(

1/%(x)
)

≤ p′0 − ω1(|x− y|)

for y ∈ E3 , where ω1(t) = ω(t) − C/ log(1/t) for small t > 0. Hence, we see that

I3 ≡

∫

E3

|x− y|(α−n)p′(y) dy

≤

∫

E3

|x− y|(α−n){p′

0−ω1(|x−y|)} dy

≤ C

∫ %(x)/2

r

(

log(1/t)
)−aα2/(n−α)

t−1 dt ≤ C
(

log(1/r)
)γ
.

In view of (6.3), we establish
∫

B\B(x,r)

|x− y|(α−n)p′(y) dy ≤ C
(

log(1/r)
)γ

when 0 < r < 1
2
%(x). Thus the required result is proved.
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As in the proof of Lemma 5.4, we can prove the following result.

Lemma 6.3. Let f be a nonnegative function on B such that ‖f‖p( · ) ≤ 1 .

If 0 < a < (n− α)/α2 and β = γ/p′0 = (n− α− aα2)/n , then

∫

B\B(x,r)

|x− y|α−nf(y) dy ≤ C
(

log(1/r)
)β

whenever 0 < r < 1
2 .

We see from Lemma 6.3 that

Uαf(x) =

∫

B(x,δ)

|x− y|α−nf(y) dy +

∫

B\B(x,δ)

|x− y|α−nf(y) dy

≤ CδαMf(x) + C
(

log(1/δ)
)β
.

Here, letting

δ =
(

Mf(x)
)−1/α(

log
(

e+Mf(x)
))β/α

when Mf(x) is large enough, we have

Uαf(x) ≤ C
(

log
(

e+Mf(x)
))β

,

so that
exp

(

C−1
(

Uαf(x)
)1/β)

≤ e+Mf(x)

whenever f is a nonnegative measurable function on B0 with ‖f‖p( · ) ≤ 1. By the
classical fact that Mf ∈ Lp0(B), we establish the following exponential inequality
of Trudinger type.

Theorem 6.4. Let 0 < a < (n− α)/α2 . If β = (n−α− aα2)/n , then there

exist positive constants c1 and c2 such that

∫

B

exp
(

c1
(

Uαf(x)
)1/β)

dx ≤ c2

for all nonnegative measurable functions f on B with ‖f‖p( · ) ≤ 1 .

Finally we are concerned with the case a = (n−α)/α2 . The following can be
proved in the same way as Lemma 5.4.

Lemma 6.5. Let f be a nonnegative function on B such that ‖f‖p( · ) ≤ 1 .

If a = (n− α)/α2 , then

∫

B\B(x,r)

|x− y|(α−n)p′(y)f(y) dy ≤ C
(

log
(

log(1/r)
))(n−α)/n

for small r > 0 .
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As in the proof of Theorem 6.4, we establish the following double exponential
inequality for f ∈ Lp( · )(B).

Theorem 6.6. If a = (n−α)/α2 , then there exist positive constants c1 and

c2 such that
∫

B

exp
(

exp
(

c1
(

Uαf(x)
)n/(n−α)))

dx ≤ c2

for all nonnegative measurable functions f on B with ‖f‖p( · ) ≤ 1 .

7. Continuity

Let G be a bounded open set in the n -dimensional space Rn , and fix x0 ∈ G .
In this section, we deduce the continuity at x0 of Riesz potentials Uαf when
f ∈ Lp( · )(G) with p( · ) satisfying

∣

∣

∣

∣

p(x) −

{

n

α
+
a log

(

log(1/|x0 − x|)
)

log(1/|x0 − x|)

}
∣

∣

∣

∣

≤
b

log(1/|x0 − x|)
,

where a > (n− α)/α2 , b > 0 and x runs over the small ball B0 = B(x0, r0).
Consider a positive continuous nonincreasing function ϕ on the interval (0,∞)

such that

(ϕ)
(

log(1/t)
)−ε0

ϕ(t) is nondecreasing on (0, r0] for some ε0 > 0 and r0 > 0;

set ϕ(r) = ϕ(r0) for r > r0 . We see from condition (ϕ) that ϕ satisfies the
doubling condition.

Set

Φ(r) =

(
∫ r

0

ϕ(t)−α2/(n−α)t−1 dt

)(n−α)/n

.

Our final goal is to establish the following result, which deals with the conti-
nuity of α -potentials in Rn .

Theorem 7.1. Let p( · ) satisfy

p(x) =
n

α
+

logϕ(|x0 − x|)

log(1/|x0 − x|)
for x ∈ B0 = B(x0, r0)

and f ∈ Lp( · )(B0) . If Φ(1) <∞ , then Uαf is continuous at x0 ; in this case,

|Uαf(x) − Uαf(z)| ≤ CΦ(|x− z|)

whenever x, z ∈ B
(

x0,
1
2
r0

)

.

Remark 7.2. Let ϕ(r) =
(

log(e + 1/r)
)a

. Then Φ(1) < ∞ if and only if
a > (n− α)/α2 , so that Theorem 7.1 gives an extension of the authors’ [9].

For a proof of Theorem 7.1, we may assume that x0 = 0 without loss of
generality. Before the proof we prepare the following two results.
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Lemma 7.3. For x ∈ B
(

0, 1
2r0

)

and small δ > 0 ,

∫

B(x,δ)

|x− y|p
′(y)(α−n) dy ≤ C

∫ δ

0

ϕ(r)−α2/(n−α)r−1 dr.

Proof. First note from (2.2) and (ϕ) that

p′(y) ≤ p′0 − ω(|y|) for y ∈ B0 ,

where p′0 = n/(n−α) and ω(r) =
(

α2/(n−α)2
)(

logϕ(r)
)

/ log(1/r)−C/ log(1/r)
for 0 < r ≤ r0 ; set ω(r) = ω(r0) for r > r0 . If 0 < δ ≤ 1

2 |x| , then we have

∫

B(x,δ)

|x− y|p
′(y)(α−n) dy ≤

∑

j

∫

B(x,2−j+1δ)\B(x,2−jδ)

|x− y|p
′(y)(α−n) dy

≤
∑

j

(2−jδ)(α−n)(p′

0−ω(2−jδ))σn(2−j+1δ)n

≤ C
∑

j

ϕ(2−jδ)−α2/(n−α)

≤ C

∫ δ

0

ϕ(r)−α2/(n−α)r−1 dr,

where σn denotes the volume of the unit ball. Similarly, if 1
2
|x| < δ < 1

3
r0 , we

have
∫

B(x,δ)\B(x,|x|/2)

|x− y|p
′(y)(α−n) dy ≤ C

∫

B(0,3δ)

|y|p
′(y)(α−n) dy

≤ C

∫ 3δ

0

ϕ(r)−α2/(n−α)r−1 dr.

Therefore it follows from the doubling property that

∫

B(x,δ)

|x− y|p
′(y)(α−n) dy ≤ C

∫ δ

0

ϕ(r)−α2/(n−α)r−1 dr

when 0 < δ < 1
3r0 . Now the proof is completed.

Lemma 7.4. Let f be a nonnegative measurable function on B0 with

‖f‖p( · ) ≤ 1 . Then

∫

B0\{B(0,δ)∪B(x,δ)}

|x− y|α−n−1f(y) dy ≤ Cδ−1ϕ(δ)−α2/n

for x ∈ B
(

0, 1
2
r0

)

and small δ > 0 .
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Proof. Let f be a nonnegative measurable function on B0 with ‖f‖p( · ) ≤ 1.
For k > 1 we have

∫

B0\{B(0,δ)∪B(x,δ)}

|x− y|α−n−1f(y) dy

≤ k

{
∫

B0\{B(x,δ)∪B(0,δ)}

(|x− y|α−n−1/k)p′(y) dy

+

∫

B0\{B(x,δ)∪B(0,δ)}

f(y)p(y) dy

}

≤ k

{
∫

B0\{B(x,δ)∪B(0,δ)}

(|x− y|α−n−1/k)p′(y) dy + 1

}

.

In view of the assumption of ϕ , we obtain

∫

B0\{B(x,δ)∪B(0,δ)}

(|x− y|α−n−1/k)p′(y) dy

≤ C

{
∫

B0\{B(x,δ)∪B(0,δ)}

(|x− y|α−n−1/k)p′

0−ω(δ) dy + 1

}

≤ C

{

k−p′

0+ω(δ)

∫ ∞

δ

t(α−n−1)(p′

0−ω(δ))+nt−1 dt+ 1

}

≤ Ck−p′

0+ω(δ)δ(α−n−1)(p′

0−ω(δ))+n.

Considering k such that k−p′

0+ω(δ)δ(α−n−1)(p′

0−ω(δ))+n = 1, we see that

∫

B0\{B(0,δ)∪B(x,δ)}

|x− y|α−n−1f(y) dy ≤ Cδ−1ϕ(δ)−α2/n,

as required.

Proof of Theorem 7.1. Let f be a nonnegative measurable function on B0

with ‖f‖p( · ) ≤ 1. For 0 < k < 1, we have by Lemma 7.3

∫

B(x,δ)

|x− y|α−nf(y)dy

≤ k

∫

B(x,δ)

{

(|x− y|α−n/k)p′(y) + f(y)p(y)
}

dy

≤ k

{

k−n/(n−α)

∫

B(x,δ)

|x− y|(α−n)p′(y) dy + 1

}

≤ k
{

Ck−n/(n−α)Φ(δ)n/(n−α) + 1
}
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whenever x ∈ B
(

0, 1
2r0

)

and 0 < δ < 1
2r0 . Now, considering k = Φ(δ), we find

(7.1)

∫

B0∩B(x,δ)

|x− y|α−nf(y) dy ≤ CΦ(δ).

Hence, if x, z ∈ B
(

0, 1
2r0

)

and |x− z| < 1
4r0 , then we have

(7.2)

∫

B(x,2|x−z|)

|x− y|α−nf(y) dy ≤ CΦ(|x− z|).

On the other hand we have
∫

B0\B(x,2|x−z|)

∣

∣|x− y|α−n − |z − y|α−n
∣

∣f(y) dy

≤ C|x− z|

∫

B0\B(x,2|x−z|)

|x− y|α−n−1f(y) dy

= C|x− z|

{
∫

B0\{B(x,2|x−z|)∪B(0,2|x−z|)}

|x− y|α−n−1f(y) dy

+

∫

{B0∩B(0,2|x−z|)}\B(x,2|x−z|)

|x− y|α−n−1f(y) dy

}

.

It follows from Lemma 7.4 that
∫

B0\{B(x,2|x−z|)∪B(0,2|x−z|)}

|x− y|α−n−1f(y) dy ≤ C|x− z|−1ϕ(|x− z|)−α2/n.

Moreover we see from (7.1) that
∫

{B0∩B(0,2|x−z|)}\B(x,2|x−z|)

|x− y|α−n−1f(y) dy

≤ C|x− z|−1

∫

B0∩B(0,2|x−z|)

|y|α−nf(y) dy ≤ C|x− z|−1Φ(|x− z|).

Since ϕ(r)−α2/n ≤ CΦ(r) by the doubling property of ϕ , we obtain
∫

B0\B(x,2|x−z|)

∣

∣|x− y|α−n − |z − y|α−n
∣

∣f(y) dy ≤ CΦ(|x− z|).

Further we obtain by (7.2)
∫

B(x,2|x−z|)

|z − y|α−nf(y) dy ≤ CΦ(|x− z|).

Now, we establish
|Uαf(x) − Uαf(z)| ≤ CΦ(|x− z|),

as required.
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Remark 7.5. If Φ(1) = ∞ , then we can find f ∈ Lp( · )(B0) such that
Uαf(0) = ∞ , which means that Uαf is not continuous at 0.

For this purpose set

ψ(r) =

∫ 1

r

ϕ(t)−α2/(n−α)t−1 dt

and
f(y) = |y|−(n−α)/(p(y)−1)ψ(|y|)−1.

Take r0 so small that ψ(r) > e when 0 < r < r0 . Note that

r−(n−α)p/(p−1)+n = r−(n−αp)/(p−1) = ϕ(r)−α/(p−1)

for r = |y| and p = p(y). By (ϕ) we have

ϕ(r)−α/(p−1) ≥ Cϕ(r)−α2/(n−α),

so that

Uαf(0) =

∫

B0

|y|α−n−(n−α)/(p(y)−1)ψ(|y|)−1 dy

≥ C

∫ r0

0

ϕ(t)−α2/(n−α)ψ(t)−1 dt/t = ∞

since ψ(0) = ∞ by our assumption.
On the other hand, taking a number δ such that 1 < δ < n/α and noting by

(ϕ) that

ϕ(r)−α/(p−1) ≤ Cϕ(r)−α2/(n−α),

we have
∫

B0

f(y)p(y) dy =

∫

B0

|y|−(n−α)p(y)/(p(y)−1)ψ(|y|)−p(y) dy

≤ C

∫ r0

0

ϕ(t)−α2/(n−α)ψ(t)−δ dt/t <∞

since 1 < δ < n/α ≤ p(y) and ψ(0) = ∞ , as required.

Finally, we consider a variable exponent p( · ) on the unit ball B such that

(7.3) p(x) = p0 +
logϕ

(

%(x)
)

log
(

e/%(x)
)

for x ∈ B , where p0 = n/α ; assume as above that

p(x) > p0 on B .

Theorem 7.6. If Φ(1) <∞ and f ∈ Lp( · )(B) , then

|Uαf(x) − Uαf(z)| ≤ CΦ(|x− z|)

whenever x, z ∈ B .
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For a proof of Theorem 7.6, it suffices to show that

∫

B(x,δ)

|x− y|p
′(y)(α−n) dy ≤ C

∫ δ

0

ϕ(r)−α2/(n−α)r−1 dr

for x ∈ B and small δ > 0, as in Lemma 7.3. We obtain, in fact, this inequality
in the same way as in Lemmas 6.2 and 7.3.

Remark 7.7. We do not know the best condition which assures the continuity
of Riesz potentials in the metric space setting.
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[13] Harjulehto, P., P. Hästö, and M. Pere: Variable exponent Lebesgue spaces on
metric spaces: the Hardy–Littlezood maximal operator. - Real Anal. Exchange 30,
2004/2005, 87–104.
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