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Abstract. Let ∆(x) denote the error term in the Dirichlet divisor problem, and E(T ) the error
term in the asymptotic formula for the mean square of |ζ(1

2 + it)|. If E∗(t) = E(t)− 2π∆∗(t/2π)
with ∆∗(x) = −∆(x) + 2∆(2x)− 1

2∆(4x), then we obtain the asymptotic formula
∫ T

0

(E∗(t))2 dt = T 4/3P3(log T ) + Oε(T 7/6+ε),

where P3 is a polynomial of degree three in log T with positive leading coefficient. The exponent
7/6 in the error term is the limit of the method.

1. Introduction

As usual, let the error term in the classical Dirichlet divisor problem be

(1.1) ∆(x) =
∑
n≤x

d(n)− x(log x + 2γ − 1),

and

(1.2) E(T ) =

∫ T

0

|ζ(1
2

+ it)|2 dt− T

(
log

( T

2π

)
+ 2γ − 1

)
,

where d(n) is the number of divisors of n, ζ(s) is the Riemann zeta-function, and
γ = −Γ′(1) = 0.577215 . . . is Euler’s constant. In view of Atkinson’s classical
explicit formula for E(T ) (see [1] and [2, Chapter 15]) it was known long ago that
there are analogies between ∆(x) and E(T ). However, instead of the error-term
function ∆(x) it is more exact to work with the modified function ∆∗(x) (see Jutila
[5], [6] and Meurman [9]), where

(1.3) ∆∗(x) := −∆(x) + 2∆(2x)− 1
2
∆(4x) = 1

2

∑
n≤4x

(−1)nd(n)− x(log x + 2γ − 1),

which is a better analogue of E(T ) than ∆(x). Jutila (op. cit.) investigated both
the local and global behaviour of the difference

E∗(t) := E(t)− 2π∆∗( t

2π

)
,
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and in particular in [6] he proved that

(1.4)

∫ T

0

(E∗(t))2 dt ¿ T 4/3 log3 T.

On the other hand, we have the asymptotic formulas
∫ x

0

∆2(y) dy = Ax3/2 + F (x),

A =
1

6π2

∞∑
n=1

d2(n)n−3/2, F (x) ¿ x log4 x,

(1.5)

and
∫ T

0

E2(t) dt = BT 3/2 + R(T ),

B =
2

3
(2π)−1/2

∞∑
n=1

d2(n)n−3/2, R(T ) ¿ T log4 T,

(1.6)

and an analogous formula to (1.5) holds if ∆(x) is replaced by ∆∗(x), since Lemma 2
below is the analogue of the truncated Voronoï formula for ∆(x), and a full Voronoï
formula for ∆∗(x) follows from the corresponding Voronoï formula for ∆(x) (see
e.g., [2, Chapter 3]) and (1.3). Note that we have

∞∑
n=1

d2(n)n−3/2 =
ζ4(3/2)

ζ(2)
.

The bounds in (1.5) and (1.6) are at present the sharpest ones known, and the
history is given in [3, Chapter 2]. The bounds with log5 instead of log4 were in-
dependently obtained by Motohashi and Meurman [10]. The actual bound in (1.5)
is due to Preissmann [11], and the bound in (1.6) was noticed independently by
Preissmann (loc. cit.) and the author [3]. This follows by using a variant of the
so-called Hilbert’s inequality (see [3], eq. (2.101)]). Further results on F (x) were
obtained by Lau and Tsang (see [7] and [13]). In particular, in [13] Tsang has shown
that, for almost all x and a suitable constant κ,

(1.7) F (x) = − 1

4π2
x log2 x + κx log x + O(x),

and he conjectured that (1.7) holds unconditionally. Thus (1.5) seems to be close
to best possible, and very likely the same holds for (1.6).

For an extensive discussion of E(T ) see the author’s monographs [2], [3]. The
significance of (1.4) is that it shows that E∗(t) is in the mean square sense much
smaller than either E(t) or ∆∗(t). It is expected that E(t) and ∆∗(t) are ‘close’ to
one another in order, but this has never been satisfactorily established, although
Jutila [5] obtained significant results in this direction. It is also conjectured that
E∗(T ) ¿ε T 1/4+ε, ∆∗(x) ¿ε x1/4+ε, the latter being a consequence of the classical
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conjecture ∆(x) ¿ε x1/4+ε in the Dirichlet divisor problem. In fact, Lau and Tsang
[8] recently proved that α = α∗, where

α = inf
{

a : ∆(x) ¿ xa
}

, α∗ = inf
{

a∗ : ∆∗(x) ¿ xa∗
}

.

In the first part of the author’s work [4] the bound in (1.4) was complemented
with the new bound

(1.8)

∫ T

0

(E∗(t))4 dt ¿ε T 16/9+ε;

neither (1.4) or (1.8) seem to imply each other. Here and later ε denotes positive
constants which are arbitrarily small, but are not necessarily the same ones at each
occurrence, while a ¿ε b means that the ¿-constant depends on ε. In the second
part of the same work (op. cit.) it was proved that

(1.9)

∫ T

0

|E∗(t)|5 dt ¿ε T 2+ε,

and some further results on higher moments of |E∗(t)| were obtained as well. The
aim of this note is to show that the bound in (1.4) is of the correct order of magni-
tude. The result is the asymptotic formula, contained in

Theorem 1. We have

(1.10)

∫ T

0

(E∗(t))2 dt = T 4/3P3(log T ) + Oε(T
7/6+ε),

where P3(y) is a polynomial of degree three in y with positive leading coefficient,
and all the coefficients may be evaluated explicitly.

From (1.10) and Hölder’s inequality for integrals we obtain the following

Corollary 1. If A ≥ 2 is fixed, then

(1.11)

∫ T

0

|E∗(t)|A dt À T 1+A/6(log T )3A/2.

Note that there is a discrepancy between the bound in (1.11) (for A = 4 and
A = 5), and the upper bounds in (1.8) and (1.9). The true order of the integrals
in (1.8) and (1.9) is difficult to determine. If, as usual, f(x) = Ω(g(x)) means that
lim

x→∞
f(x)/g(x) 6= 0, then from Theorem 1 we immediately obtain

Corollary 2. We have

(1.12) E(T ) = 2π∆∗( T

2π

)
+ Ω(T 1/6 log3/2 T ).

Thus equation (1.12) shows that E(T ) and ∆∗( T
2π

)
cannot be too ‘close’ to one

another in order. A reasonable conjecture, compatible with the classical conjectures
E∗(T ) ¿ε T 1/4+ε, ∆∗(x) ¿ε x1/4+ε, is that one has

(1.13) E(T ) = 2π∆∗( T

2π

)
+ Oε(T

1/4+ε).
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2. The necessary lemmas

In this section we shall state three lemmas which are necessary for the proof of
Theorem 1. The first two are Atkinson’s classical explicit formula for E(T ) (see [1]
or e.g., [2] or [3]) and the Voronoï-type formula for ∆∗(x), which is the analogue
of the classical truncated Voronoï formula for ∆(x). The third is an asymptotic
formula involving d2(n).

Lemma 1. Let 0 < A < A′ be any two fixed constants such that AT < N <
A′T , and let N ′ = N ′(T ) = T/(2π) + N/2− (N2/4 + NT/(2π))1/2. Then

(2.1) E(T ) = Σ1(T ) + Σ2(T ) + O(log2 T ),

where

(2.2) Σ1(T ) = 21/2(T/(2π))1/4
∑
n≤N

(−1)nd(n)n−3/4e(T, n) cos(f(T, n)),

(2.3) Σ2(T ) = −2
∑

n≤N ′
d(n)n−1/2(log T/(2πn))−1 cos

(
T log

( T

2πn

)
− T + 1

4
π

)
,

with

f(T, n) = 2T arsinh
(√

πn/(2T )
)

+
√

2πnT + π2n2 − 1
4
π

= −1
4
π + 2

√
2πnT + 1

6

√
2π3n3/2T−1/2

+ a5n
5/2T−3/2 + a7n

7/2T−5/2 + . . . ,

(2.4)

e(T, n) = (1 + πn/(2T ))−1/4
{

(2T/πn)1/2 arsinh
(√

πn/(2T )
)}−1

= 1 + O(n/T ) (1 ≤ n < T ),
(2.5)

and arsinh x = log(x +
√

1 + x2 ).

Lemma 2. [2, Chapter 15] We have, for 1 ¿ N ¿ x,

(2.6) ∆∗(x) =
1

π
√

2
x

1
4

∑
n≤N

(−1)nd(n)n−
3
4 cos(4π

√
nx− 1

4
π) + Oε(x

1
2
+εN− 1

2 ).

Lemma 3. For a > −1
2
a constant we have

(2.7)
∑
n≤x

d2(n)na = xa+1P3(log x; a) + Oε(x
a+1/2+ε),

where P3(y; a) is a polynomial of degree three in y whose coefficients depend on a,
and whose leading coefficient equals 1/(π2(a + 1)). All the coefficients of P3(y; a)
may be explicitly evaluated.

Proof. One can obtain (2.7) by partial summation from [2, eq. (14.30)], but
a direct proof seems in order. From the Perron inversion formula (see e.g., the
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Appendix of [2]) we have, for 1 ¿ T ¿ x,

(2.8)
∑
n≤x

d2(n) =
1

2πi

∫ 1+ε+iT

1+ε−iT

ζ4(s)

ζ(2s)s
xs ds + Oε(x

1+εT−1),

since d2(n) is generated by ζ4(s)/ζ(2s) (op. cit., eq. (1.106)). The segment of inte-
gration in (2.8) is replaced by segments joining the points 1 + ε ± iT, 1

2
+ ε ± iT .

There is a pole of the integrand at s = 1 of degree four, making a contribution of
xP3(log x) by the residue theorem, where P3(y) is a generic polynomial of degree
three in y. The leading coefficient of P3 is found to be 1/π2 (see [2, eq. (5.24)]).
From ζ(1

2
+it) ¿ t1/6 the contribution of the vertical segments [1

2
+ε±iT, 1+ε±iT ]

is found to be ¿ε x1+εT−1 + x1/2+εT−1/3. By using the elementary bound
∫ T

0

|ζ(1
2

+ ε + it)|4 dt ¿ε T

for the integral over the segment joining the points 1
2

+ ε± iT , one arrives at

(2.9)
∑
n≤x

d2(n) = xP3(log x) + Oε(x
1/2+ε)

on taking T =
√

x in (2.8), from which (2.7) follows by partial summation. Note
that we cannot rule out the existence of zeros of ζ(s) in the region 1

2
< <e s < 1.

Therefore the error terms in (2.9) and (2.7) are essentially the best ones that we can
obtain without assuming some hypotheses on the zeros of ζ(s), like e.g., the famous
Riemann Hypothesis (that all complex zeros of ζ(s) are on <e s = 1

2
). ¤

3. The proof of Theorem 1

It is sufficient to prove the formula (1.10) with the integral over [T, 2T ] and
then to replace T by T2−j and to sum all the results over j = 1, 2, . . . . We use
Lemma 1 and Lemma 2 with N = T to deduce that, for T ≤ t ≤ 2T ,

(3.1) E∗(t) = S1(t) + S2(t) + S3(t),

where

S1(t) =
√

2

(
t

2π

)1/4 ∑
n≤T

(−1)nd(n)n−3/4

{
e(t, n) cos f(t, n)

− cos(
√

8πnt− 1
4
π)

}
dt

S2(t) = −2
∑

n≤c1T

d(n)n−1/2

(
log

t

2πn

)−1

cos

(
t log

t

2πn
− t +

π

4

)
,

S3(t) = Oε(T
ε),

(3.2)
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where c1 (> 0) is to be found from the definition of N ′ in Lemma 1. We have

(3.3)
∫ 2T

T

S2
1(t) dt ¿ T 4/3 log3 T,

∫ 2T

T

{S2
2(t) + S2

3(t)} dt ¿ε T 1+ε.

The first bound is in fact embodied in the proof of (1.4), since it is S1(t) that
makes the major contribution to the integral in question. This can be seen if one
follows the proof of (1.4) in [6] or in [2], and the same holds for the estimate in (3.3)
containing S2(t), while the estimate containing S3(t) is trivial. From (3.1)–(3.3) and
the Cauchy–Schwarz inequality for integrals it transpires that

(3.4)
∫ 2T

T

(E∗(t))2 dt =

∫ 2T

T

S2
1(t) dt + Oε(T

7/6+ε).

By using the method of Meurman [10] the error term in (3.4) could be improved to
Oε(T

1+ε), but it is the exponent 7/6 in (3.11) that cannot be improved at present.
Squaring out S1(t) it is seen that the integral on the right-hand side of (3.4) equals

√
2

π

∑
n≤T

d2(n)n−3/2

∫ 2T

T

t1/2

{
e(t, n) cos f(t, n)− cos(

√
8πnt− 1

4
π)

}2

dt

+

√
2

π

∑

m6=n≤T

(−1)m+nd(m)d(n)(mn)−3/4

∫ 2T

T

t1/2 · · · ,

(3.5)

where the main contribution comes from the ‘diagonal’ terms m = n, while the
terms with m 6= n will contribute to the error term in (3.4). The terms in the first
sum in (3.5) for which n > T 2/3 trivially contribute ¿ε T 7/6+ε. The contribution of
the second sum in (3.5) (with m 6= n) is ¿ε T 1+ε. This follows e.g., by the method
of [2, Chapter 15] or [3, Chapter 2] for the mean square of E(t). Therefore (3.5)
leads to

∫ 2T

T

(E∗(t))2 dt =

√
2

π

∑

n≤T 2/3

d2(n)n−3/2

∫ 2T

T

t1/2

{
e(t, n) cos f(t, n)

− cos(
√

8πnt− 1
4
π)

}2

dt + Oε(T
7/6+ε),

(3.6)

and furthermore we use (see (2.5)) e(t, n) = 1+O(n/T ) in (3.6) to see that we may
replace e(t, n) by unity, with the ensuing error term absorbed by the error term in
(3.6). To manage the cosines in (3.6) we use the elementary identity

(cos α− cos β)2 = 1− cos(α− β) + {1
2
cos 2α + 1

2
cos 2β − cos(α + β)}

with α = f(t, n), β =
√

8πnt− 1
4
π. By the first derivative test (cf. [2, Lemma 2.1]) it

is seen that the terms coming from curly braces contribute ¿ T to (3.6). Likewise
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the values of n in cos(α− β) for which T 1/2 < n ≤ T 2/3 contribute

¿
∑

n>T 1/2

d2(n)n−3/2T 1/2T 3/2n−3/2 =
∑

n>T 1/2

d2(n)n−3T 2 ¿ T log3 T.

For the terms n ≤ T 1/2 in cos(α− β) we use the series expansion

(3.7) cos(α− β) = cos(x0 + h) = cos x0 +
∞∑

m=1

hm

m!
cos(x0 + 1

2
πm)

with (a1 = 1
6

√
2π3, see (2.4))

x0 = a1n
3/2t−1/2, h = a3n

5/2t−3/2 + a5n
7/2t−5/2 + . . . .

We truncate the series over m so that the tail, by trivial estimation, makes a total
contribution which is ¿ T . This is possible because

h ¿ n5/2T−3/2 ¿ T−1/4 (T ≤ t ≤ 2T, 1 ≤ n ≤ T 1/2).

The contribution of the finitely many remaining terms in the sum over m in (3.7)
is estimated by the first derivative test, and it is

¿
∑

n≤T 1/2

d2(n)n−3/2T 1/2n5/2T−3/2n−3/2T 3/2 ¿ T 3/4 log3 T.

Finally it follows from (3.6) that we obtain, since 1− cos γ = 2 sin2(1
2
γ),

∫ 2T

T

(E∗(t))2 dt =

√
8

π

∑

n≤T 2/3

d2(n)n−3/2

∫ 2T

T

t1/2 sin2(1
2
a1n

3/2t−1/2) dt

+ Oε(T
7/6+ε).

(3.8)

If we use the bound

sin2(1
2
a1n

3/2t−1/2) ¿ n3T−1 (T ≤ t ≤ 2T ),

then the contribution of the terms with n < T 4/15 in (3.8) is seen to be

¿
∑

n≤T 4/15

d2(n)n−3/2n3T−1

∫ 2T

T

t1/2 dt ¿ T 1/2
∑

n≤T 4/15

d2(n)n3/2

¿ T 1/2(T 4/15)5/2 log3 T = T 7/6 log3 T.

Hence (3.8) reduces to
∫ 2T

T

(E∗(t))2 dt =

√
8

π

∑

T 4/15≤n≤T 2/3

d2(n)n−3/2

∫ 2T

T

t1/2 sin2(1
2
a1n

3/2t−1/2) dt

+ Oε(T
7/6+ε).

(3.9)

In the integral above we make the change of variable
1
2
a1n

3/2t−1/2 = y, dt = −1
2
a2

1n
3y−3 dy.
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We set z = (4(y/a1)
2T )1/3 so that, after changing the order of integration and

summation, the main term on the right-hand side of (3.9) becomes
√

2

π

∑

T 4/15≤n≤T 2/3

d2(n)n−3/2

∫ 1
2
a1n3/2T−1/2

1
2
a1n3/2(2T )−1/2

a1n
3/2

y
· a2

1n
3

2y3
· sin2 y dy

=

√
1

2π
a3

1

∫ 1
2
a1T 1/2

2−3/2a1T−1/10

∑

max(T 4/15,z)≤n≤min(T 2/3,21/3z)

d2(n)n3 · sin2 y

y4
dy.

(3.10)

The range of summation for n is the interval [z, 21/3z] if

y ∈ J, J :=

[
1

2
a1T

−1/10,
1

2
√

2
a1T

1/2

]
.

If we replace the interval of integration in the second integral in (3.10) by J , then
by using | sin y| ≤ min(1, |y|) it follows that the error that is made is ¿ε T 7/6+ε.
Now we use Lemma 3 with a = 3 to obtain that the integral over J equals, with
suitable constants dj,

∫ 1
2
√

2
a1T 1/2

1
2
a1T−1/10

(
T 4/3y8/3

3∑
j=0

dj logj(y2/3T 1/3) + Oε(T
7/6+εy7/3)

)
sin2 y

y4
dy

= T 4/3

∫ 1
2
√

2
a1T 1/2

1
2
a1T−1/10

(
3∑

j=0

dj3
−j logj(y2T )

)
sin2 y

y4/3
dy + Oε(T

7/6+ε).

(3.11)

Replacing the segment of integration in the integral on the right-hand side of (3.11)
by (0, ∞), we make an error which is ¿ε T 7/6+ε. Namely, for 0 < α < 1 < β, j =
0, 1, . . . fixed, we have

(3.12)

∫ β

α

sin2 y

y4/3
logj dy =

∫ ∞

0

sin2 y

y4/3
logj dy + O(α5/3) + O(β−1/3 logj β),

where we used again | sin y| ≤ min(1, |y|). Hence the expression in (3.11) becomes,
on using (3.12) with α = 1

2
a1T

−1/10, β = 2−3/2a1T
1/2,

T 4/3

3∑
j=0

bj logj T + Oε(T
7/6+ε)

with some constants bj (b3 > 0) which may be explicitly evaluated, and (1.10)
follows from (3.9) and (3.11). With some more effort one could improve the error
term in (1.10) to O(T 7/6 logC T ), by using the method of Meurman [10] (see also
[3, Chapter 2]) and improving the error term in Lemma 3 (see Ramachandra and
Sankaranarayanan [12]) to O(xa+1/2 log5 x log log x), but the exponent 7/6 is the
limit of the method.
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