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Abstract. The Schrédinger equation, i0;u + Au = 0, with initial datum f contained in a
Sobolev space H*(R™), has solution e®2 f. We give sharp conditions under which sup, |e®? f| is
bounded from H*(R) to LI(R) for all ¢, and give sharp conditions under which supy.,.; [e"*2 f|
is bounded from H*(R) to LI(R) for all ¢ # 2. In higher dimensions, we show that sup, [e"*® f|

and supg,. [e"2 f| are bounded from H*(R") to L4(R") only if s > £ — m

1. Introduction

The Schrédinger equation, i0,u + Au = 0, in R™!, with initial datum f con-
tained in a Sobolev space H*(R™), has solution €2 f which can be formally written
as

1) 0 (o) = [ Fleermioe e ag

We will consider the Schrodinger maximal operators S* and S**, defined by

S*f = sup [e"®f] and S™f =sup e fl.
0<t<1 teR
The minimal regularity of f under which e®®f converges almost everywhere
to f, as t tends to zero, has been studied extensively. By standard arguments, the
problem reduces to the minimal value of s for which

(2) 15" fllzany < Cogs|LFll s ey

holds, where B™ is the unit ball in R".

In two dimensions, that is one spatial dimension, Carleson [4] (see also [10])
showed that (2) holds when s > 1/4. Dahlberg and Kenig [6] showed that this is
sharp in the sense that it is not true when s < 1/4.
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In three dimensions, significant contributions have been made by Bourgain |1, 2],
Moyua, Vargas and Vega [12, 13|, and Tao and Vargas |21, 22|. The best known
result is due to Lee [11] who showed that (2) holds when s > 3/8.

In higher dimensions, Sjolin [15] and Vega [23, 24| independently showed that
(2) holds when s > 1/2. It is conjectured that, in all dimensions, the minimal value
of s for which (2) holds is 1/4.

Replacing the unit ball B™ in (2) by the whole space R", we consider the global
estimates

(3) 157 fll Lan) < Chgosll f]
and

(4) 15 fllLomry < Crgsllf]

In one spatial dimension, Kenig, Ponce and Vega 9] proved that (4) holds when
g = 4 and s = 1/4. This was extended by Giilkan |7] who proved that (4) holds
when ¢ € [4,00) if and only if s > 1/2 — 1/¢, and it is well known that (4) holds
when ¢ = oo if and only if s > 1/2 (see [19]). Sjolin [16] proved that if ¢ = 2,
then (4) does not hold for any s, and we will show that this is also the case when
q € (2,4). Thus, we have the following theorem.

Theorem 1. Let n = 1. Then (4) holds if and only if ¢ € [4,00) and s >
1/2—1/q, or ¢ =00 and s > 1/2.

The following theorem extends a result of Vega [23, 8| (see also [17]) by the
endpoint s = 1/¢ in the range q € (2,4).

Theorem 2. Let n = 1 and q € (2,00). Then (3) holds if and only if s >
max{1/q, 1/2 —1/q}.

Vega [23, 8| (see also [16]) proved that (3) holds when ¢ = 2 and s > 1/2, and
this is not true when ¢ = 2 and s < 1/2, or for any value of s when ¢ < 2. As
in Theorem 1, when ¢ = oo, (3) holds if and only if s > 1/2 (see [19]). Thus, in
order to have complete results in Theorem 2, the only case that remains undecided
isqg=2s=1/2.

In higher dimensions, we show that (3) holds only if

n
> —
"= o+ 1)
We note that the minimal s is thus strictly greater than 1/4 when n > 2. A plausible
conjecture is that these are indeed the minimal values of s that can appear in (3).

Throughout, C' will denote an absolute constant whose value may change from

line to line.

Hs (Rn)

Hs (Rn) .

2. The positive results

First, we consider one spatial dimension, and extend the argument of Carleson as
in [14]. We employ the Kolmogorov—Seliverstov—Plessner method and the following
two lemmas. The first is proved by a very slight modification of a lemma due to
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Sjolin [20]; the details are omitted. The second is proved by refining the ideas of
Carleson.

Lemma 1. Let z,t € R and o € [1/2,1). Then there is a constant C such that

27 (cE—t£2)
/ C x| < —(i .
r (1+E)° [t

Lemma 2. Let z € R, t € [-1,1] and « € [1/2,1]. Then there is a constant C

such that
2mi(wE—1€?)
/ R e < ©
r (L+[E])e

Proof. Splitting the integral in two and taking the complex conjugate if nec-
essary we can suppose that z > 0, and consider the integral over (0,00). When
r < 4 and a < 1, we are done by Lemma 1, so we can suppose that x > 4 and

1/x < C/a”.
When ¢ < 0, there exist ¢1, ¢o € (0,00) such that

/oo 627Ti(x§—t§2)
e 4 <

o (L+]E)e

by the Bonnet form of the second mean value theorem for integrals. The derivative

of the phase, x — 2t£, is monotone, and bounded below by x, so by van der Corput’s

lemma,
oo 2mi(zE—tE?)
|, T
o (L+1¢))
and we are done.
Now we suppose that ¢ > 0, and make the change of variables ¢ — £+ 1, so that

00 e27ri(z§ft§2)
[
o (T+]Ehe

As x + 2t > z, it will suffice to show that

) 627Ti(x§7t§2)
| e

/C1 cos (2m(z€ — t€?)) df’ +
0

/62 sin (2m(z€ — t€%)) d€|,
0

00 e2wi((w+2t)§7t§2)
/ de| .
1

ga

Changing variables again, £ — /£¢, and denoting 24 = x/v/t, we are required to

show that
1 00 627ri(2A§f£2)
11—« / « df
Vi Vi ¢
Note that A > 2, as we have that x > 4.
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Consider first the integral over (v/¢, A/2). By the change of variables, £ — A€,
we are required to show that

1

xl—a

A2/2 e2mi(26—€%/A?)
/:(: /2 3

The derivative of the phase, 2 — 2£/A?, is bounded below by one on (x/2, A%/2), so
that, by the mean value theorem and van der Corput’s lemma,

A?)2 2mi(26—€%/A%)
11 / e p Q < g |
T z/2 é‘a Zz xe
and we are done.
Finally, we are required to show that
1 0o 2mi(2A£—£2) C
1—« / i ey dé < o
Vit A/2 § x

By the mean value theorem, and the fact that modulus of the second derivative of
the phase is bounded below by one,

0o _2mi(2AE—€2 2a-1
b / &df L OvE /C 224 —¢?) dg‘ <C
\/%1701 A)2 £ - ae A)2 n
and we are done. O

The following theorem is an endpoint improvement of result of Vega [23, 8] (see
also [17]) in the range (2,4).

Theorem 3. Let n = 1. If g € [4,00) and s > 1/2 — 1/q, then (4) holds. If
q € (2,00) and s > max{1/q, 1/2 — 1/q}, then (3) holds.

Proof. By duality, it will suffice to show that

/ @A f (2 w(z) da
R

< Gl Byl
for all positive w € LY (R), where the measurable function ¢ maps into R when we
are considering the bound (4) and into (0, 1) when we consider (3).
By Fubini’s theorem and the Cauchy-Schwarz inequality, the left hand side of
this inequality is bounded by
2 dé

/If 1+ 1)) A+

Thus, by writing the squared 1ntegral as a double integral, it will suffice to show that

/ / / 2mil@=yE= (@)=t (1 )w(y) d dy dé 5 < Gllwlie g
e ) (1+¢))*

27rz (x&—t(x)€?) (SL’) dr




Global estimates for the Schrédinger maximal operator 429

By Lemma 1, we have

e2mi((z—y)§—(t(z)—t())€?) C
/ 2 dg| < 1-2
R (1 +[€))* |z —y[t=%
when ¢ takes values in R, and 2s € [1/2,1), and by Lemmas 1 and 2, we have
C

de| <

e2mi((z—y)E—(t(z)—t(y)E?)
/R - |I _ y|max{2s,1—2s}

(1+[€)*

when ¢ takes values in (0, 1). Thus, by Fubini’s theorem, the left hand side of (5) is
bounded by a constant multiple of

e

w(z)w(y)
/R, /l:{ |I’ _ y|max{2571—25} dx dy

in the second. Finally, by Holder’s inequality and the Hardy-Littlewood—Sobolev
inequality, these are bounded by

/ﬂdx
R |z — 172

where s = 1/2 — 1/q and ¢ > 4 when we are considering the bound in (4), and

w(z)
/R. |.T . |max{2s,1—25} dx

where s = max{1/q, 1/2 —1/q} and ¢ > 2 when we consider (3). O

in the first case, and

S CQHwHiq’(R)?
Li(R)

||wHLq’(R)

< Cyllwly,
Li(R)

HwHL‘I'(R) R)’

In higher dimensions, we simply interpret the known results. By modifying very
slightly the proof of Theorem 2.2 in [21] due to Tao and Vargas, the following result
is proved using bilinear restriction estimates.

Theorem 4. Let g € (2+ niﬂ,oo], p € (max{q, nq+(qn+1)},oo], and s > n(3 —
1

2) — %. Then there exists a constant C,, 4, s such that

q
||eitAf||Lq(Rn,Lp(R)) < Crgpsll f]

As usual, we define 97 by 5?\9(7) = (27|7|)*g(7), where a > 0. Observing
that 0% f = "2 f,, where f,(£) = (4n2|¢[2)2f(€), and applying the Sobolev

imbedding theorem with av > 1/p, we recover their theorem in the following corollary.

Corollary 1. Ifg € (2 + %H, oo] and s > n(1/2 —1/q), then (3) and (4) hold.

We will see below that these kind of global bounds do not hold when ¢ < 2.
Thus, for completeness, we provide sufficient conditions, albeit not sharp, for the
remaining values of ¢ in (3).

Theorem 5. Ifq € [2,2+ %H] and s > 3/q — 1/2, then (3) holds.

Hs (Rn) .
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Proof. Carbery [3] and Cowling [5] independently proved that if ¢ = 2 and
s > 1, then (3) holds. Considering H® to be a weighted L? space, we can interpolate
between this and the bound in Corollary 1 to get the result. U

3. The negative results

First of all, we consider one spatial dimension and complete the proof of Theo-
rem 1. The novelty in the following is that if n = 1 and ¢ € (2,4), then (4) cannot
hold for any value of s.

Theorem 6. Let n = 1. If (4) holds, then q € [4,00) and s > 1/2 —1/q, or
q=o0 and s> 1/2.

The following theorem is due to Sjolin [17], but it will also follow easily from
the following proof of Theorem 6.

Theorem 7. Let n = 1. If (3) holds then q € [2,00) and s > max{1/q, 1/2 —
1/q}, or g =00 and s > 1/2.

Proof. By a change of variables,

L (2 £ iweter)
27r/f(27r)6 o dg"

Define A = [N, N + N*], where N > 1 and X € (—o0, 1], and consider f4 defined

by fa(€/2m) = "Ny 4(€). We will show that for a range of values of z, a time
t(x) can be chosen so that the phase,

62(€) = (w = N™HE — t(2)&?,
is roughly constant on A. With the phase roughly constant, we have

S™ f(x) = sup

teR

S fa(z) > C

/ (HE=N D) ge| > o)A,
A

As A is an interval of length N*, in order to insure that the phase is roughly
constant, we impose the condition |¢’(£)| < N~* on A. This insures that for all N
and A, there exists a 6, such that

O, —1/2 < ¢.(§) <0, +1/2.
As ¢ (§) =z — N — 2t(z)&, the condition can be rewritten as

T 2N Ha) < —
26 -2
for all £ € A. Define a and b by
r— 2N x
a(x) 21615 2 an () Inf 2%
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To be able to choose the time #(x) we require that a(x) < b(z). This is clear
when z € [0,2N ], so we suppose that x > 2N~*. Now, when z > 2N,

-2
a(zr) = % and b(x) = m,
so that we can choose a t(x) when
r—2N* T
2N T 2(N+ NN

This condition can be rewritten as x < 2N~ +2N'172* 5o we will consider the set
E = [0, N1=2].
As S** f4 > C|A| on E, we see that

1S fallagry > CIA| | E|.
On the other hand,

I.fal

1/2
e ( Ja+ WS) < CJAMA(1+ N + NV,

so that, as ||S™ fal|Lam) < C||fallasm), we have
[A||E|Y" < CIA]'Y?(1+ N + NY)*.
Recalling that |A| = N* and |E| = N*~2*, we see that

1-2X\

NN ¢ <CON°,
so that, letting N tend to infinity,

1 1 2
23
q 2 q

for all A € (—o0,1]. When ¢ < 4, we let \ tend to —oo to obtain a contradiction for
all s. Letting A = 1 we recover the fact that s > 1/2 —1/q.

Finally, by a well-known counterexample (see [19]), s > 1/2 is necessary when
q = oo, and we are done.

In order to prove results for S*, we have the added requirement that
la(), b(x)] N1 (0,1) £ 0
for all x € E. We have that a(z) < 1 when
x — 2N

<1
2N ’

which we rewrite as
T < 2N 42N

When A < 0, this is an added restriction so we reanalyze in this case. Redefining a
smaller £ = [0,2N + 2N %], we see that

NA/Q(N+N—>\)1/q S CN?
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for all A € (—o0, 0], so that, letting NV tend to infinity,

When ¢ < 2, we see by (7) that, letting A tend to —oo, we have a contradiction
for all s. If we let A =0 in (6), we see that s > 1/¢, and from before, when A = 1,
we have that s > 1/2 —1/q.

Again, by the well-known counterexample (see [19]), s > 1/2 is necessary when
q = 0o, and so we are done. l

Remark 1. We note that taking A = 1/2 in the above proof, E = [0, 1], the
time ¢(z) can be chosen to be a member of (0,1) for all x € E, and s > 1/4 for all
q, so we recover the fact that s > 1/4 is necessary in (2). It is easy to generalise
this to higher dimensions. Indeed, it can be shown that g defined by

g= Z_Qj)([22i,22f+2j—3]x[1,9/8]n—1,
j=2
where a € (2s+1/2,1) and s < 1/4, is a member of H*(R") such that ¢ g diverges
on the set [8/9,1]" as ¢ tends to zero.

We now consider higher dimensions. A corollary of the following theorems is

that the minimal value of s that can appear in (3) or (4) is greater than or equal to

% — m Again, both theorems will follow from the same proof.

It can be seen by scaling that if ¢ < 2 or s < n(1/2 —1/q), then (4) does not
hold. The novelty in Theorem 8 is that if ¢ € (2,24 2/n), then (4) cannot hold for
any value of s. That ¢ cannot equal 2 is due to Sjolin [16].

Theorem 8. If (4) holds, then q € [2+4 2,00) and s > n(1/2—1/q), or ¢ = 0o
and s > n/2.

Theorem 9. If (3) holds, then q € [2,00) and s > max{1/q, n(1/2 —1/q)}, or
q=oc and s >n/2.

Proof. We consider S** and argue as in the proof of Theorem 6. Define A by
A=[N,N + N\,

where N > 1 and \ € (—o00, 1], and consider f4 defined by f4(£/27) = e ™Va €y 4 (),
where Ny = (N*,...,N7).

In order to show that the phase in (1) is roughly constant on A, we will need
that the partial derivatives of the phase are small. More precisely, we require that

|2 — N7* = 2t(2)¢;] < N7,
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for all 7 = 1,...,n. Rewriting this condition, for each = we need to choose a t(z)
so that R

2¢; 2¢;
forall ¢ € Aand j =1,...,n. Define a and b by

and b(x) = inf inf 25

(@) = o
a(z) = sup sup 1<j<neeA 26,

1<j<ngea 2§

To be able to choose the time ¢(z) we need that a(x) < b(z). As before, we
require that z; > 0 and

Tj— 2N T,
< Y
2N ~ 2(N + N
for all j,k =1...n. We rewrite this as

-2

for all j,k = 1...n. Now, the set E defined by these conditions, is the convex
solid body with vertices (0,...,0), 2(N'72* + N=)(1,...,1), and 2N *¢; for all
Jj =1,...,n, where e; are the standard basis vectors. Thus,

|E| > CNAD N2,
As S** f4 > C|A| on E, we see that
1S fall Loy = CJA||E|M9.
As before,

I.fal

so that, as ||S™ fallzemr) < C||fallms@n), we have
[AIIEIY < CIAI2(1+ N + NV,
Recalling that |[A] = N™ and |E| > CN'~("*DA e see that

1—(n+1)A

NEN ¢«  <CN®

1/2
HmmsO(Aa+mw) < CJA2(1+ N + N,

for all A € (—o0, 1], so that

2 q

When ¢ < 24 2/n, we let A tend to —oo to obtain a contradiction for all s, and
letting A = 1 we recover the fact that s > n(1/2 —1/q). We also note for later that
by letting A = 0, we have s > 1/q.

By a well-known counterexample (see [19]), s > n/2 is necessary when ¢ = oo,
so we have finished the proof of Theorem 8.
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In order to prove results for S*, we have the added requirement that

la(x), b(x)] N (0,1) # 0
for all x € E. Now, we can ensure that a(z) < 1 when
zj— 2N~
2N
for all 7 =1...n, which we rewrite as
z; < 2N~ 4+ 2N.

When A < 0, this is an added restriction so we reanalyze the case when A tends to
negative infinity. As before, we consider the set E defined by

<1

0<z; <2N "+ min {% QN}
for all j,k =1...n. It is clear from here that
|E| > CN~,
so that, as before,
NMEN"ME< ON?
Letting N tend to infinity, we have

1 1
sZnA(———),
2 q

so that when ¢ < 2, we can let \ tend to —oo to obtain a contradiction for all s.
From before we have that s > n(1/2—1/q) and s > 1/q are necessary conditions,

and by the well-known counterexample (see [19]), s > n/2 is necessary when ¢ = oo,

and so we are done. O

The authors would like to thank Fernando Soria and Oscar Blasco for helpful
conversations.
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