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Abstract. We discuss 1-Ahlfors-regular connected sets in a general metric space and prove
that such sets are ‘flat’ on most scales and in most locations. Our result is quantitative, and
when combined with work of Hahlomaa, gives a characterization of 1-Ahlfors regular subsets of 1-
Ahlfors-regular curves in metric spaces. Our result is a generalization to the metric space setting of
the analyst’s (geometric) traveling salesman theorems of Jones, Okikiolu, and David and Semmes,
and it can be stated in terms of average Menger curvature.

1. Introduction

We will state our new results in subsection 1.3, but first, we will give some basic
definitions and notation, as well as a description of some known results.

1.1. Basic definitions and notation

Hausdorff length. For a set K we denote by H 1(K) the one dimensional
Hausdorff measure, which we call Hausdorff length.

. and ∼. Given two functions a and b into R we say
a . b

with constant C, when there exists a constant C = Ca,b such that
a ≤ Cb.

We say that a ∼ b if we have a . b and b . a. We will allow the constants behind
the symbols ∼ and . to depend on the 1-Ahlfors-regularity constant (which will be
defined later) and the constant A in the definition of G K (see equation (1.1)).

Balls and nets, multiresolution families. Let M be a metric space with
metric dist(·, ·). A ball B is a set

B = Ball(x, r) := {y : dist(x, y) ≤ r}
for some x ∈ M and some r > 0. The set

{y : dist(x, y) ≤ λr}
will then be denoted by λB.

We say that X ⊂ K is an ε-net for K if
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(i) for all x1, x2 ∈ X we have dist(x1, x2) > ε,
(ii) for all y ∈ K there exists x ∈ X such that dist(x, y) ≤ ε.

Hence K ⊂ ⋃
x∈X

Ball(x, ε) for an ε-net X for K.

Fix a set K. Denote by XK
n a sequence of 2−n-nets for K. Set

G K = {Ball(x,A2−n) : x ∈ XK
n , n an integer}(1.1)

for a constant A > 1. Note that we do not assume in this essay that Xn ⊂ Xn+1.
We call G K a multiresolution family. Also note that G K depends on K.

Remark 1.1. One of the results we quote (Theorem 1.4), for which we use this
definition of G K , requires the additional property that Xn ⊂ Xn+1. To get this we
may construct the sets Xn inductively, however we then require some starting point,
which we denote by n = n0. For Theorem 1.4 we also require n0 to be sufficiently
negative, namely we need 2−n0 ≥ diam(K).

Lipschitz functions, rectifiable sets, rectifiable curves. A function f :
Rk → M is said to be C-Lipschitz if for any x, y ∈ Rk such that x 6= y,

dist(f(x), f(y))

‖x− y‖ ≤ C.

A function f : Rk → M is said to be Lipschitz if it is C-Lipschitz for some C > 0. A
set is called k-rectifiable if it is contained in a countable union of images of Lipschitz
functions fj : Rk → M , except for a set of k-dimensional Hausdorff measure zero.
For more details see [Mat95], where one can also find an excellent discussion of
rectifiability in the setting of Rd, part of which carries over to other metric spaces.

A set is called a rectifiable curve if it is the image of a Lipschitz function defined
on R.

Geodesic metric spaces. A minimizing geodesic is a map τ : I → M , where
I ⊂ R is an interval, and τ preserves distances. A metric space is said to be geodesic
if any two points are the two endpoints of a minimizing geodesic.

Ahlfors-regularity. Given a set K ⊂ M we say that K is k-Ahlfors-regular if
there is a constant C > 0 so that for all x ∈ K and 0 < r < diam(K) we have

rk

C
≤ H k|K(Ball(x, r)) < Crk.

We say that a connected set Γ ⊂ M is a 1-Ahlfors-regular curve with constant
C if there is a C > 0 and a surjective C-Lipschitz function γ : [0, 1] → Γ such that
for any x ∈ Γ and 0 < r < diam(Γ) we have

H 1(γ−1 Ball(x, r)) ≤ Cr.

(In this case we automatically have r
C
≤ H 1(γ−1 Ball(x, r)).) A 1-Ahlfors-regular

curve is often called an Ahlfors-regular curve.
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The Jones β numbers. Assume we have a set K lying in Rd. Consider a ball
B. We define the Jones β∞ number as

β∞,K(B) =
1

diam(B)
inf

L line
sup

x∈K∩B
dist(x, L)

=
radius of thinnest cylinder containing K ∩B

diam(B)
.

Hence if K̂ ⊃ K then β∞,K̂(B) ≥ β∞,K(B). Note that β∞ is scale independent.
This quantity has Lp variants. Given a locally finite measure µ and 1 ≤ p < ∞, one
defines

βp,µ(B) =
1

diam(B)
inf

L line

(∫

B

dist(y, L)p dµ(y)

µ(B)

)1/p

.

Clearly

βp,µ ≤ β∞,supp(µ)(1.2)

when the left hand side is defined. We define β∞,µ = β∞,supp(µ).

Menger curvature and other useful quantities. Let x1, x2, x3 ∈ M be
three distinct points. Take x′1, x

′
2, x

′
3 ∈ C such that dist(xi, xj) = |x′i − x′j| for

1 ≤ i, j ≤ 3. If x′1, x
′
2, x

′
3 are collinear then define

c(x1, x2, x3) := 0.

Otherwise, let R be the radius of the circle going through x′1, x
′
2, x

′
3. In this case

define

c(x1, x2, x3) :=
1

R
.

In any case, c(·) is called the Menger curvature.
For an ordered triple (x1, x2, x3) ∈ M 3 we define

∂1(x1, x2, x3) := dist(x1, x2) + dist(x2, x3)− dist(x1, x3).

Let {x1, x2, x3} ⊂ M be an unordered triple. Assume without loss of generality
dist(x1, x2) ≤ dist(x2, x3) ≤ dist(x1, x3). Define

∂({x1, x2, x3}) := ∂1(x1, x2, x3),

or equivalently

∂({x1, x2, x3}) = min
σ∈S3

∂1(xσ(1), xσ(2), xσ(3)) ,

where S3 is the permutation group on {1, 2, 3}. Hence we have for all {x, y, z} ⊂ M

∂({x, y, z}) ≤ diam{x, y, z}
as well as

0 ≤ ∂({x, y, z}) ≤ ∂1(x, y, z) ≤ 2 diam{x, y, z}
where non-negativity follows from the triangle inequality.
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Remark 1.2. If

dist(x, y) ≤ dist(y, z) ≤ dist(x, z) ≤ A · dist(x, y)(1.3)

then

c2(x, y, z) diam{x, y, z}3 ∼ ∂({x, y, z})
with constant depending only on A. Moreover, in a Euclidean space,

β2
∞,{x,y,z}(Ball(x, diam{x, y, z})) diam{x, y, z} ∼ ∂({x, y, z})(1.4)

with constant depending only on A.

See [Hah05] for the first part of the above remark. The second part of the
remark follows from the Pythagorean theorem.

We define β2(B) by

β2
2(B) radius(B) =

∫∫∫

(B∩Γ)3

∂({x, y, z}) radius(B)−3 dH 1(z) dH 1(y) dH 1(x).(1.5)

Note that 0 ≤ β2(B) . 1 (where the constant depends only on the 1-Ahlfors-
regularity constant).

1.2. Rd, Hilbert spaces, metric spaces. We briefly mention some results.
For more details and historical background see [Dav], [Paj02], the introduction of
[DS93], or the survey [Schar].

Theorem 1.3. [Jon90, Oki92, Sch] Let H be Rd or an infinite dimensional
Hilbert space. For any connected set Γ and any K ⊂ H such that K ⊂ Γ ⊂ H we
have ∑

G K

β2
∞,Γ(B) diam(B) . H 1(Γ).(1.6)

This was first proven for Rd with d = 2 by Jones using complex analysis, and
then extended to all d by Okikiolu, using geometric methods. The constant that
comes out of Okikiolu’s proof depends exponentially on the dimension d, but in [Sch]
it was shown that the constants do not depend on the dimension and moreover, that
the theorem holds for an infinite dimensional Hilbert space. The following converse
theorem gives a very good reason to care about the left hand side of inequality (1.6).

Theorem 1.4. [Jon90, Sch] Let H be Rd or an infinite dimensional Hilbert
space. Suppose A in the definition of G K is large enough, and assume G K satisfies
the conditions of Remark 1.1. Given a set K ⊂ H, there exists a connected set
Γ0 ⊃ K such that the length of Γ0 satisfies

H 1(Γ0) . diam(K) +
∑

G K

β2
∞,K(B) diam(B).(1.7)

This theorem was shown by Jones for Rd ([Jon90]) and, with some modifications,
the proof essentially carries over to the setting of an infinite dimensional Hilbert
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space (see [Sch]). Theorem 1.4 also has analogues for general metric spaces (see
[Hah05, Hah07]) and for Heisenberg groups (see [FFPar]).

We especially mention the following metric space generalization of Theorem 1.4
for the category of 1-Ahlfors-regular sets.

Theorem 1.5. [Hah] Let K be a 1-Ahlfors-regular set in a complete geodesic
metric space M with metric dist(·, ·). Assume further that for all z ∈ K and R > 0

∫∫∫
c2(x1, x2, x3)dH 1|K(x3) dH 1|K(x2) dH 1|K(x1) ≤ C0R

where the integral on the left hand side is over all triples x1, x2, x3 ∈ K ∩Ball(z, R)
such that

A · dist(xi, xj) ≥ diam{x1, x2, x3}.
Then there is a 1-Ahlfors-regular connected set Γ0 ⊃ K, whose constant depends
only on C0 and on the 1-Ahlfors-regularity constant of K.

The proof for this theorem is essentially contained in [Hah07]. Other results of
this type and a relevant counterexample are discussed in the survey [Schar].

Before we go on, let us mention an older result which is a special case of a much
bigger theorem by David and Semmes.

Theorem 1.6. [DS91] Let K ⊂ Rd be a 1-Ahlfors-regular set and 1 ≤ q ≤ ∞.
Then K is contained in a connected 1-Ahlfors-regular set if and only if for all z ∈ K
and 0 < R < diam(K)

∫ R

0

∫

Ball(z,R)

βq,H 1|K (Ball(x, t))2 dH 1|K(x)
dt

t
. R.(1.8)

Remark 1.7. Note that the left hand side of inequality (1.8) can be discretized
as a multiresolution sum as in the left hand side of inequality (1.6).

The purpose of this paper is to prove the converse of Theorem 1.5, and thus to
obtain a metric space analogue of Theorem 1.6.

1.3. New results. In Section 2 we show the following.

Theorem 1.8. Let Γ ⊂ M be a connected 1-Ahlfors-regular set in a metric
space. Then

∫∫∫

Γ3

∂({x, y, z}) diam{x, y, z}−3 dH 1|Γ(z) dH 1|Γ(y) dH 1|Γ(x) . H 1(Γ).(1.9)

The constant behind the symbol . depends only on the 1-Ahlfors-regularity constant
of Γ.

It follows from Theorem 1.8 that∫∫∫
c2(x, y, z) . H 1(Γ)(1.10)



442 Raanan Schul

where the integral is taken over triples x, y, z ∈ Γ such that dist(x, y) ≤ dist(y, z) ≤
dist(x, z) ≤ A · dist(x, y). The constant behind the symbol . depends only on
the choice of A (which can be given any value greater then 1) and the 1-Ahlfors-
regularity constant of Γ.

On route we show

Theorem 1.9. Let Γ ⊂ M be a connected 1-Ahlfors-regular set in a metric
space. Let K ⊂ Γ and let Ĝ K be a multiresolution family as in equation (1.1). Then
we have

∑

B∈ ˆG K

∫

B

∫

B

∫

B

∂({x, y, z}) radius(B)−3 dH 1|Γ(z) dH 1|Γ(y) dH 1|Γ(x)

. H 1(Γ).

(1.11)

The constant behind the symbol . depends only on the 1-Ahlfors-regularity constant
of Γ and the constant A in the definition of Ĝ K .

In Section 3 we use these theorems to prove the following.

Theorem 1.10. Let Γ ⊂ M be a connected 1-Ahlfors-regular set in a metric
space. Let z ∈ Γ and R > 0. Then

∫∫∫

(Γ∩Ball(z,R))3

∂({x, y, z}) diam{x, y, z}−3 dH 1|Γ(z) dH 1|Γ(y) dH 1|Γ(x) . R.(1.12)

The constant behind the symbol . depends only on the 1-Ahlfors-regularity constant
of Γ.

Theorem 1.11. Let Γ ⊂ M be a connected 1-Ahlfors-regular set in a metric
space. Let K ⊂ Γ and let Ĝ K be a multiresolution family as in equation (1.1). Then
we have for every z ∈ Γ and R > 0

∑

B∈ ˆ
G K

B⊂Ball(z,R)

∫

B

∫

B

∫

B

∂({x, y, z}) radius(B)−3 dH 1|Γ(z) dH 1|Γ(y) dH 1|Γ(x) . R.(1.13)

The constant behind the symbol . depends only on the 1-Ahlfors-regularity constant
of Γ and the constant A in the definition of Ĝ K .

Acknowledgments. The author would like to thank Immo Hahlomaa and Pertti
Mattila for providing motivation to work on this problem. In particular, email
correspondence with the former regarding Theorem 1.5 before its publication. The
author is grateful to John Garnett for many hours of listening and for his many
comments on this essay. Finally, the author is thankful for important comments
and corrections given by Immo Hahlomaa.
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2. Proof of Theorems 1.8 and 1.9

2.1. Preliminaries, notation and definitions. Assume Γ ⊂ M is a con-
nected 1-Ahlfors-regular set. If H 1(Γ) = ∞ then there is nothing to prove. Hence
we may assume H 1(Γ) < ∞. Since the statements of the theorems are invariant
under isometry, we may replace M by `∞(Γ) without loss of generality. This fol-
lows from the Kuratowski embedding (see [Hei03]). Thus we may assume that M
is complete, and that

diam(Ball(x, r)) ∼ radius(Ball(x, r)) = r.

Lemma 2.1. Assume Γ ⊂ M is connected. Then H 1(Γ) = H 1(Γclosure).

Lemma 2.2. Assume Γ ⊂ M is a closed connected set with H 1(Γ) < ∞.
Then Γ is compact.

Proofs of these lemmas can be found in the appendix of [Sch] (where they are
stated for a Hilbert space, but the proofs work in the category of a complete Metric
space).

We will denote by T the one dimensional torus R/Z.

Lemma 2.3. Let Γ ⊂ M be a compact connected set of finite H 1 measure.
Then there is a Lipschitz function γ : T → M such that Image(γ) = Γ and ‖γ‖Lip ≤
32H 1(Γ). Further, if Γ is 1-Ahlfors-regular, then

R

C
≤ H 1(γ−1(Ball(x,R))) ≤ CR ∀x ∈ Γ, 0 < R ≤ diam(Γ).(2.1)

i.e. γ will be witness to the fact that Γ is an 1-Ahlfors-regular curve. Here C is a
constant depending only on the 1-Ahlfors-regularity constant of the set Γ.

The proof of this lemma is a modification of a proof in the appendix of [Sch].
This modification is given in the appendix of this paper.

Fix γ : T → Γ as assured by the above lemma. We may assume without loss
of generality that γ is an arc-length parameterization (by re-parameterizing by arc-
length and by globally scaling the metric so that the total arc-length is 1). This
also gives us that diam(Γ) ≤ 1. We will use this fixed γ throughout this essay.

Let τ = γ|[a,b]. We denote by `(τ) the arc-length of τ . We will also use ` as a
measure on M obtained as the push-forward by γ of the Lebesgue measure on T.
By (2.1), for any integrable function f , we have that

∫
f d` ∼ ∫

f dH 1|Γ.
As K ⊂ Γ in the formulation of theorem 1.9 is fixed, we denote by Ĝ = Ĝ K .

Clearly
∫∫∫

Γ3

∂({x1, x2, x3}) diam{x1, x2, x3}−3 dH 1(x3) dH 1(x2) dH 1(x1)

.
∑

B∈ bG Γ

∫∫∫

(B∩Γ)3
∂({x1, x2, x3}) diam(B)−3 dH 1(x3) dH 1(x2) dH 1(x1).

Hence Theorem 1.9 implies Theorem 1.8.
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To prove Theorem 1.9 we will show
∑

B∈ bG

∫∫∫

(B∩γ(T))3
∂({x1, x2, x3}) diam(B)−3 d`(x3) d`(x2) d`(x1) . `(γ),(2.2)

or equivalently,
∑

B∈ bG
β2

2(B) diam(B) . H 1(Γ).

Remark 2.4. We may consider the isometric embedding e

M = `∞(Γ)
e−→`∞(Γ)× {(0, 0)} ⊂ `∞(Γ)× [−1, 1]2

and obtain a sequence of maps γn : T → `∞(Γ)× [−1, 1]2 such that γn is one-to-one,
γn → γ uniformly, ‖γn‖Lip ≤ (1+2−n) ‖γ‖Lip, and γn gives a 1-Ahlfors-regular curve
with constant uniformly comparable to that of γ. This means that we may assume
without loss of generality that γ in inequality (2.2) is one-to-one. This will be useful
for the proof of Lemma 2.11.

We define

G = {B ∈ Ĝ : H 1|Γ(4B) <
1

6
`(Γ)}.(2.3)

We first consider Ĝ r G .

Lemma 2.5.
∑

B∈ bGrG

β2
2(B) diam(B) . `(γ).

Proof. Set L = `(γ).
Consider balls B ∈ Ĝ with H 1(4B) ≥ L

6
and radius(B) ≤ AL. There are at

most C such balls at each scale, and at most C ′ scales. The constants C, C ′ depend
only on the Ahlfors regularity constant of Γ and the constant A.

Consider now balls B ∈ Ĝ with radius(B) > AL. There is at most one ball B
of each scale, and

β2
2(B) diam(B) . diam(B)−3L3 diam(B) ∼ L

L2

diam(B)2
.

Summing over all scales we get
∑

B∈ bGrG

β2
2(B) diam(B) . L. ¤

We need some more notation. Let E ⊂ M be a closed set such that
Γ ∩ (M r E) 6= ∅. We define

Λ(E) := {τ = γ|[a,b] : [a, b] ⊂ T; [a, b] a connected component of γ−1(Γ ∩ E)}.
We will freely use τ ∈ Λ(E) as both a parameterization of an arc (given by restriction
of γ), and its image. In particular, we will denote by diam(τ) the diameter of the
image of τ .
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Let B ∈ G be a ball. For τ ∈ Λ(B) we denote by τ i the extension of τ to an
arc in Λ(2iB). We set

Λi(B) := {τ i : τ ∈ Λ(B)}.(2.4)

We will only use i ∈ {0, 1, 2}.
Let τ : [a, b] → Γ be a sub-arc of γ (and hence an arc-length parameterization).

We define the quantity β̃(τ) by

β̃2(τ) diam(τ) := `(τ)−3

b∫

a

b∫

x

b∫

y

∂1(γ(x), γ(y), γ(z))dzdydx.

(This is how we define the Jones β number of an arc).
The constant ε2 below will be set in Section 2.2 and will depend on the 1-

Ahlfors-regularity constant. Consider τ ∈ Λ2(B). We call τ almost flat iff

β̃(τ) ≤ ε2β2(B).

We denote the collection of almost flat arcs in Λ2(B) by

SB := {τ ∈ Λ2(B) : β̃(τ) ≤ ε2β2(B)}.
Set

G2 := {B ∈ G : Λ2(B) ⊂ SB},
G1 := G r G2.

We note that B ∈ G1 implies the existence of an arc τB ∈ Λ2(B) with τB /∈ SB.
We will make use of this special (possibly non-unique) arc later on.

We will have Theorem 1.9 if we prove
∑

B∈Gi

β2
2(B) diam(B) . `(Γ)(2.5)

for i ∈ {1, 2}. We prove inequality (2.5) for i = 1 in Section 2.2, and for i = 2 in
Section 2.3.

2.2. Non-flat arcs. In this subsection we prove inequality (2.5) for i = 1.
We have γ : T → Γ. Identify T with [0, 1] for the purpose of defining D0—a

dyadic decomposition of T given by the standard dyadic decomposition of [0, 1]. We
also define D1—the dyadic decomposition of T corresponding to the rotation of T
by 1

3
of a full rotation, i.e. x → (x + 1

3
) mod 1, and then using the standard dyadic

decomposition of [0, 1]. The reason for these two filtrations is the following remark,
which earns this (standard) idea the name ‘the one third trick’.

Remark 2.6. Given a (possibly non-dyadic) interval J ⊂ T such that diam(J)
< 1

6
there exits an interval I such that I ∈ D0 ∪ D1, with J ⊂ I and diam(I) ≤

6 diam(J).
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We also define the arcs (mappings) γ0 : [0, 1] → Γ and γ1 : [0, 1] → Γ using the
above identifications of [0, 1] with T. They should be thought of as two ways of
cutting γ at a point. We define γi(x, y, z) := (γi(x), γi(y), γi(z)).

Let B ∈ G1. Let τ = τB /∈ SB. Let I be a dyadic interval (assured by remark
2.6) such that γi(I) ⊃ τ and diam(I) ≤ 6`(τ) . diam(τ), where i = i(τ) is one
of 0 or 1. Note that the mapping τ → I is at most K1-to-1 for some constant
K1 depending only on the 1-Ahlfors-regularity constant of Γ and the constant A in
equation (1.1). Assume that we have i(τ) = 0. For numbers r, v ∈ [0, 1] we will
look at the mapping ψv,r : [0, 1] → [0, 1] given by ψv,r(t) = v + rt mod 1. Note
that there are exactly 2k choices of ṽ and corresponding Ĩ ∈ D0 (of size 2−k) with
ψṽ,r(Ĩ) = [v, v + 2−kr].

For an interval I ⊂ [0, 1] write I = [a(I), b(I)].

Remark 2.7. When doing addition mod 1, we have (by change of variable)
for any I ′ with diam(I ′) = 2−k

∑

I∈D0

diam(I)=2−k

diam(I)−3

b(I)∫

a(I)

b(I)∫

x

b(I)∫

y

∂1 ◦ γ0(x, y, z) dz dy dx

≤ diam(I ′)−3

1∫

v=0

1∫

r=0

∫

y∈v+rI′

∂1 ◦ γ0(v + ra(I ′), y, v + rb(I ′)) dy · diam(I ′) dr dv

giving

∑

I∈D0

diam(I)=2−k

diam(I)−3

b(I)∫

a(I)

b(I)∫

x

b(I)∫

y

∂1 ◦ γ0(x, y, z) dz dy dx

≤
∑

I∈D0

diam(I)=2−k

diam(I)−3

·
1∫

v=0

1∫

r=0

∫

y∈v+rI

∂1 ◦ γ0(v + ra(I), y, v + rb(I)) dy · diam(I) dr diam(I) dv.

Let I ′ = [a, b] ∈ D0. Define

∂d(γ
0ψv,r(I ′)) := ∂1(γ

0(v + ra), γ0(v + r
a + b

2
), γ0(v + rb)).(2.6)

Lemma 2.8. Let I ∈ D0. Let v, r ∈ [0, 1] be chosen such that
ψv,r(I) = [x, z] 3 y. Then

∂1 ◦ γ0(x, y, z) ≤
∑

I′∈D,I′⊂I
y∈ψv,r(I′)

∂d(γ
0ψv,r(I ′)).
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Proof. This is just the triangle inequality reiterated. ¤

Lemma 2.9. Let r, v ∈ [0, 1] be fixed. Then
∑

I′∈D0

∂d(γ
0ψv,r(I ′)) . H 1(Γ)

Proof. We have that v + r{I ′ ∈ D0} is a dyadic filtration contained in T. The
sum in the statement of the lemma is therefore a sum of a telescoping series, whose
partial sums are bounded by the arc-length of γ. ¤

Now,

∑

I∈D0

diam(I)−3

b(I)∫

a(I)

b(I)∫

x

b(I)∫

y

∂1 ◦ γ0(x, y, z)dzdydx

≤
∑

I∈D0

diam(I)−3

1∫

v=0

1∫

r=0

∫

y∈v+rI

∂1 ◦ γ0(v + ra(I), y, v + rb(I)) dy

· diam(I) dr · diam(I) dv

≤
∑

I∈D0

diam(I)−3

1∫

v=0

1∫

r=0

∑

I′∈D0

I′⊂I

∫

y∈v+rI′

∂d(γ
0ψv,r(I ′)) · dy · diam(I) dr · diam(I) dv

=
∑

I∈D0

diam(I)−3

1∫

v=0

1∫

r=0

∑

I′∈D0

I′⊂I

∂d(γ
0ψv,r(I ′)) · rH 1(I ′) · diam(I) dr · diam(I) dv

=

1∫

v=0

1∫

r=0

∑

I∈D0

1

diam(I)

∑

I′∈D0

I′⊂I

∂d(γ
0ψv,r(I ′)) · rH 1(I ′) dr dv

=

1∫

v=0

1∫

r=0

∑

I′∈D0

∑

I⊃I′

H 1(I ′)
diam(I)

∂d(γ
0ψv,r(I ′)) · r dr dv

.
1∫

v=0

1∫

r=0

∑

I′∈D0

∂d(γ
0ψv,r(I ′)) · r dr dv

. `(Γ).

Similarly,

∑

I∈D1

diam(I)−3

b(I)∫

a(I)

b(I)∫

x

b(I)∫

y

∂1 ◦ γ1(x, y, z) dz dy dx . `(Γ)
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Hence
∑
τB

B∈G1

β̃2(τB) diam(τB) . `(Γ).

Lemma 2.10. We have inequality (2.5) for i = 1.

Proof.
∑

B∈G1

β(B)2 diam(B) .
∑

B∈G1

β̃(τB)2 diam(τB) . `(Γ). ¤(2.7)

2.3. Almost flat arcs. In this subsection we prove inequality (2.5) for i = 2.
This subsection will have two parts. We first show that for every ball B ∈ G2

there exist two special arcs, η1(B) ∈ Λ1(B) and η2(B) ∈ Λ2(B). These arcs will
have properties useful for the second part of this subsection, where we construct a
bounded weight which will in turn give us the desired result.

Part I

Lemma 2.11. Let B ∈ G2. Let ξ ∈ Λ2(B). If for every arc τi ∈ Λ1(B) we have

`(τi)
−1

∫

τi

dist(·, ξ) ≤ ε4β
2
2(B) diam(B)(2.8)

then for every triple of arcs τi, τj, τk ∈ Λ1(B) we have

diam(B)−3

∫

τi

∫

τj

∫

τk

∂({x, y, z}) d`(z) d`(y) d`(x) ≤ C2(ε
2
2 + ε4)β

2
2(B) diam(B)

where C2 is a constant which depends only on the 1-Ahlfors-regularity constant of
Γ.

Proof. Let (γ(x1), γ(x2), γ(x3)) ∈ Γ3 be an ordered triple. Let S3 be the per-
mutation group on {1, 2, 3}. We define for σ ∈ S3

∂σ(γ(x1), γ(x2), γ(x3)) := ∂1(γ(xσ(1)), γ(xσ(2)), γ(xσ(3))).

We will let σ depend on a triple x̄ = (x1, x2, x3) and we will denote this by σx̄.
Recall that ∂({·}) is a continuous function. We denote by Dτ,n the collection of

2n points in the domain of τ , evenly spaced according to arc-length. Let N0 = N0(B)
be chosen large enough so that for all τi, τj, τk ∈ (Λ1(B) ∪ {ξ}) (possibly non-
different) and n1, n2, n3 ≥ N0

(2.9)

diam(B)−3

∫

τi

∫

τj

∫

τk

∂({x, y, z}) d`(z) d`(y) d`(x)

∼ 2−n1−n2−n3

∑
x∈Dτi,n1

∑
y∈Dτj ,n2

∑
z∈Dτk,n3

∂({γ(x), γ(y), γ(z)}),
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and for all n ≥ N0

`(τi)
−1

∫

τi

dist(·, ξ) ∼ 2−n
∑

x∈Dτi,n

dist(γ(x), ξ)(2.10)

Let τ1, τ2, τ3 ∈ Λ1(B). Write

Dτ1,N0 = {O1, O2, . . .},
where

dist(γ(Oi), ξ) ≤ dist(γ(Oi+1), ξ).

Now let us assume for a moment that dist(τ1, ξ) > 0. Let N1 be chosen such that

2−N1 < dist(γ(O1), ξ).

Take N = max{N1, N0}. We define a function f with domain Dτ1,N0 taking values
of probability measures on Dξ,N as follows. We go over the Oi’s as ordered by i.
Let Fi be the set

Fi = {x′ ∈ Dξ,N : dist(γ(x′), γ(Oi)) ≤ 2 dist(γ(Oi), ξ)},
which is non-empty by our choice of N1. Define f(O1) as the uniform probability
measure on F1. Given f(O1), . . . , f(Ok−1), define f(Ok) as the probability measure
on Fk, so that the measure

∑

i≤k

f(Oi)|Fk
(2.11)

is as close as possible (in sup norm!) to 2Nk times the uniform distribution on Fk

(this is our way of ensuring that (2.11) is as uniform as possible). We have for all
x ∈ Dτ1,N0 and x′ ∈ supp(f(x)),

dist(γ(x), γ(x′)) ≤ 2 dist(γ(x), ξ).

We also have for any x′ ∈ Dξ,N

2−N0

∑
x∈Dτ1,N0

f(x){x′} ≤ C2−N(2.12)

where C is a constant which depends only on the 1-Ahlfors-regularity constant of
Γ. To see inequality (2.12), assume the contrary. Let Ok be the last element such
that f(Ok){x′} was positive. Then by construction of f(Ok), we have that for all
x′′ ∈ Fk ∑

i≤k

f(Oi){x′′} ≥
∑

i≤k

f(Oi){x′} ≥ C2−N+N0 .

Summing over Fk we get a total mass of
∑

x′′∈Fk

∑

i≤k

f(Oi){x′′} ≥ ]Fk · C2−N+N0 ≥ C2N0
dist(γ(Ok), ξ)

`(ξ)
.
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All this mass, however, came from Oi’s such that

dist(γ(Oi), γ(Ok)) ≤ 2 dist(γ(Oi), ξ) + diam(Fk) + 2 dist(γ(Ok), ξ)

≤ 10 dist(γ(Ok), ξ)

and so by enlarging C we get a contradiction to 1-Ahlfors-regularity. This gives
inequality (2.12).

We similarly define f on Dτ2,N0 and Dτ3,N0 . Now,

diam(B)−3

∫

τ1

∫

τ2

∫

τ3

∂({x, y, z}) d`(z) d`(y) d`(x)

∼ 2−N0−N0−N0

∑
x∈Dτ1,N0

∑
y∈Dτ2,N0

∑
z∈Dτ3,N0

∂({γ(x), γ(y), γ(z)})

. 2−N0(
∑

x∈Dτ1,N0

dist(γ(x), ξ) +
∑

y∈Dτ2,N0

dist(γ(y), ξ) +
∑

z∈Dτ3,N0

dist(γ(z), ξ))

+ 2−N0−N0−N0

∑
x∈Dτ1,N0

∑
y∈Dτ2,N0

∑
z∈Dτ3,N0

∑

x′∈suppf(x)

∑

y′∈suppf(y)∑

z′∈suppf(z)

f(x){x′} · (f(y){y′} · f(z){z′} · ∂({γ(x′), γ(y′), γ(z′)})

. 2−N0(
∑

x∈Dτ1,N0

dist(γ(x), ξ) +
∑

y∈Dτ2,N0

dist(γ(y), ξ) +
∑

z∈Dτ3,N0

dist(γ(z), ξ))

+ C32−N−N−N
∑

x′∈Dξ,N

∑

y′∈Dξ,N

∑

z′∈Dξ,N

∂σ(x′,y′,z′)(γ(x′), γ(y′), γ(z′)).

We have yet to specify the function σ and have total freedom in choosing its
values in S3. Choose σ(x′,y′,z′) such that σ(x′,y′,z′)(x

′, y′, z′) has increasing order when
ordered by ξ. From inequalities (2.8), (2.9), and (2.10) we now get the lemma.

The case dist(τ1, ξ) = 0 can either be assumed not to happen by using remark 2.4
or by computing the above integrals (sums) as limits of the corresponding integrals
(sums) in the loops γn from Remark 2.4. ¤

Let ξ2(B) ∈ Λ2(B) be an arc containing the center of B. We upper bound the
size of ε2 and fix ε4 in the proof of the following lemma.

Lemma 2.12. Let B ∈ G2. We have an arc ξ1(B) ∈ Λ1(B) such that

d̄(B) := `(ξ1(B))−1

∫

ξ1(B)

dist(·, ξ2(B)) ≥ ε4β
2
2(B) diam(B)

Proof. If the contrary is true then by reducing ε4 and ε2 we get a contradiction
from the previous lemma and Ahlfors-regularity (the latter bounds the number of
triples). ¤
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We define β̂(B) by

β̂2(B)`(ξ1(B)) := d̄(B) = `(ξ1(B))−1

∫

ξ1(B)

dist(·, ξ2(B))

Remark 2.13.

1 ≥ β̂(B) & √
ε4β2(B),

with constant depending only on the 1-Ahlfors-regularity constant of Γ.

Part II

Lemma 2.14. Let R > 0 be given. There is a P1 = P1(R) such that one can
write a disjoint union

G = G 1 ∪ · · · ∪ G P1

where for each 1 ≤ p1 ≤ P1 and B1, B2 ∈ G p1 with radius(B1) = radius(B2), we
have

dist(B1, B2) ≥ R · radius(B1).

Proof. By 1-Ahlfors-regularity we have for each B0 ∈ G

]{B ∈ G : (R + 1) ·B ∩ (R + 1) ·B0 6= ∅, radius(B) = radius(B0)} ≤ C1

where C1 is some constant depending only on the 1-Ahlfors-regularity constant and
the choice of A and R. We create the desired disjoint union by going over the balls
in order. We set P1 = C1. By the pigeon-hole principle a ball B can be placed in at
least one collection G p1 such that the result of the lemma will not be contradicted.

¤
The choice of R will be a consequence of Lemma 2.16. Fix 1 ≤ p1 ≤ P1(R). Let

M > 0 be any positive integer. Consider ∆p1

M ⊂ G2 ∩ G p1 defined by

∆p1

M := {B ∈ G2 ∩ G p1 : 2−M ≤ 1

2
β̂2(B) < 2−M+1}.

Write ∆p1

M = ∆p1,1
M ∪ . . . . ∪∆p1,KM

M where

∆p1,p2

M := {B ∈ ∆p1

M : radius(B) = A2−nKM+p2 , n ∈ Z}, 1 ≤ p2 ≤ KM.

Fix M > 0 and 1 ≤ p2 ≤ KM (K will be fixed later). Fix ∆ ⊂ ∆p1,p2

M a finite
subset. Take B ∈ ∆.

We define Q(B) ⊂ (1 + 4 · 2−KM)2B as follows. Set

U0 := 2B

Un+1 := Un ∪
⋃
{2B′ : B′ ∈ ∆, 2B′ ∩ Un 6= ∅, radius(B) ≥ radius(B′)}

Q(B) :=
⋃
n

Un.

Proposition 2.15. Q(B) ⊂ (1 + 4 · 2−KM)2B.

We first consider the following lemma.
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Lemma 2.16. Consider any metric space. Assume R = R > 0 is sufficiently
large. Let 0 < δ < 1

3
. Let {Bi}n

1 be a sequence of balls in this metric space so that
Bk ∩ Bk+1 6= ∅, radius(Bi) ∈ {δk : k integer}, and dist(Bi1 , Bi2) ≥ R · d for balls
Bi1 , Bi2 satisfying radius(Bi1) = radius(Bi2) = d. Then for any x ∈ ∪Bi,

dist(x, center(Bk0)) ≤ radius(Bk0)(1 + 2δ + . . . + 2kδk + . . .),

where k0 is chosen so that

radius(Bk0) =
n

max
i=1

radius(Bi).

Proof. This follows by induction on n.
– For n = 1 this is clear as dist(x, center(B1)) ≤ radius(B1).
– For n = N + 1: Consider the sequence B1, B2, . . . , Bk0−1. Let k1 be so that

radius(Bk1) = maxk0−1
i=1 radius(Bi). By induction, for any y ∈ ∪k0−1

i=1 Bi

dist(y, center(Bk1)) ≤ radius(Bk1)(1 + 2δ + . . . + 2kδk + . . .).

Hence, if R is large enough, radius(Bk1) 6= radius(Bk0), and hence radius(Bk1) <
radius(Bk0) which gives

dist(y, center(Bk1)) ≤ δ radius(Bk0)(1 + 2δ + . . . + 2kδk + . . .).

Similarly for the sequence Bk0+1, Bk0+2, . . . , Bn. We conclude

dist(x, center(Bk0)) ≤ radius(Bk0) + 2δ radius(Bk0)(1 + 2δ + . . . + 2kδk + . . .)

= radius(Bk0)(1 + 2δ(1 + 2δ + . . . + 2kδk + . . .))

= radius(Bk0)(1 + 2δ + . . . + 2kδk + . . .).

This concludes the induction. ¤
We now prove Proposition 2.15.

Proof. Recall that the number of balls in ∆ is finite. We denote by δ = 2−MK .
If K > 2 we have δ < 1

3
. Let x ∈ Q. Then there is a sequnce of balls {Bi}n

1 such
that x ∈ Bn, 1

2
Bi ∈ ∆, Bk ∩ Bk+1 6= ∅ with radius(Bi) ≤ radius(2B) and B1 = 2B.

Using Lemma 2.16 we get the desired estimate as

(1 + 2δ + . . . + 2kδk + . . .) ≤ 1 + 4 · 2−KM . ¤

The family {Q(B) : B ∈ ∆} has the property that if Q1 and Q2 are in it, then
if Q1 ∩Q2 6= ∅ we have Q1 ⊂ Q2 or Q2 ⊂ Q1.

We write

Q =

( ⋃
i

Qi

)
∪RQ(2.13)

where Qi is maximal such that Qi = Q(Bi), Bi ∈ ∆ and Qi ( Q. We choose RQ

so that all the unions in equation (2.13) are disjoint.
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Let B ∈ G be a ball. for τ ∈ Λ(B) we denote by τQ the extension of τ to an
arc in Λ(Q(B)). We set

ΛQ(B) := {τQ : τ ∈ Λ(B)}.(2.14)

Remark 2.17. We have (using regularity) that if B ∈ G2 then for all τ ∈ ΛQ(B)

β̃(τ) . ε2β2(B) . ε2

√
ε−1
4 β̂(B).

We also denote by ξ2(Q) a connected component of ξ2(B) ∩ Q which contains
the center of B. We will denote by J1(Q) and J2(Q) the index sets

J1(Q) = {i : Qi ∩ ξ1(B) 6= ∅}
J2(Q) = {i : Qi ∩ ξ2(Q) 6= ∅}.

Remark 2.18. By enlarging K if necessary, if x ∈ ξ1(B) such that
dist(x, ξ2(Q)) ≥ 1

4
2−M diam(2B) and x ∈ Qj, then j ∈ J1 r J2.

Proposition 2.19. Let B ∈ ∆ and Q = Q(B). Then

`(RQ) +
∑

j

diam(Qj) ≥ `(RQ) +
∑

j∈J1∪J2

diam(Qj) ≥ (1 + c′′β̂(B)) diam(Q)

for some constant c′′ > 0 depending only on the 1-Ahlfors-regularity of Γ.

Before we can prove this proposition we need two lemmas.

Lemma 2.20. There is a constant c > 0, independent of ε2, K, and M , so that
for any Q = Q(B) and ξ1 = ξ1(B), ξ2 = ξ2(Q) we have

`(RQ ∩ ξ1) +
∑

j∈J1rJ2

diam(Qj) ≥ c2
−M
2 diam(Q).

Proof. Let d̄ = d̄(B). Assume for a moment

`({x ∈ ξ1 : dist(x, ξ2(B)) ≥ d̄

2
}) ≤ β̂(B)`(ξ1).(2.15)

Then

(1− β̂(B))`(ξ1)
d̄

2
+ β̂(B)`(ξ1)d∞ ≥ d̄`(ξ1),

where

d∞ = sup
x∈ξ1

dist(x, ξ2(B)).

Hence

d∞β̂(B) ≥ d̄− (1− β̂(B))
d̄

2
=

d̄

2
+ β̂(B)

d̄

2
or

d∞ ≥ β̂(B)−1 d̄

2
+

d̄

2
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and hence (since ξ1 is connected and we are assuming (2.15)), the diameter of the
largest-diameter connected component of

{x ∈ ξ1 : dist(x, ξ2(B)) ≥ d̄

2
}

is at least

β̂(B)−1 d̄

2
=

1

2
β̂(B)`(ξ1).

Either way (with or without assumption (2.15)) we have

`({x ∈ ξ1 : dist(x, ξ2(Q)) ≥ d̄

2
}) ≥ `({x ∈ ξ1 : dist(x, ξ2(B)) ≥ d̄

2
}) ≥ 1

2
β̂(B)`(ξ1)

where the first inequality follows from ξ2(Q) ⊂ ξ2(B). By remark 2.18 and the
definitions of β̂ and ξ1,

`(RQ ∩ ξ1) +
∑

j∈J1rJ2

diam(Qj) & `({x ∈ ξ1 : dist(x, ξ2(Q)) ≥ d̄

2
})

≥ 1

2
β̂(B)`(ξ1) & β̂(B) diam(Q) & 2

−M
2 diam(Q).

An important thing to note is that all the similarity constants are independent of
ε2, K, and M since these are rough lower bounds. This gives

`(RQ ∩ ξ1) +
∑

j∈J1rJ2

diam(Qj) ≥ c2
−M
2 diam(Q)

with c independent of ε2, K, and M . ¤

Lemma 2.21. There is a constant ε3 > 0 (independent of M), which we can
make arbitrarily small by reducing ε2 and increasing K, such that for any Q = Q(B)
and ξ2 = ξ2(Q) we have

`(RQ ∩ ξ2) +
∑
j∈J2

diam(Qj) ≥ (1− ε32
−M
2 ) diam(Q).

Proof. Throughout the proof we assume ε2 is sufficiently small. Recall that by
construction we have

diam(Qj) ≤ (1 + 4 · 2−KM)2−KM diam(Q)

and
diam(Q) ≤ (1 + 4 · 2−MK) diam(2B).

Let ξ2.0 ∈ Λ(2B) be a subarc of ξ2(Q) containing the center of B. Let O be the
center of B, and O1, O2 the entry and exit points of ξ2.0 from 2B. Assume without
loss of generality that O1 < O < O2 as ordered by ξ2. Consider a ball Ball(O1, r),
with r ≤ radius(B). Let Or

1 ∈ ξ2 be the (unique) point such that dist(Or
1, O1) = r,

O1 < Or
1 < O, and any other such point X satisfies X < Or

1. Symmetrically, let
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Or
2 ∈ ξ2 be the (unique) point s.t. dist(Or

2, O2) = r, O < Or
2 < O2, and any other

such point X satisfies X > Or
2.

The constants r0 and Cr0 will be fixed below, independently of ε2 and M . Sup-
pose for a moment that there is no pair r1, r2 ∈ [0, r0 diam(Q)] such that

∂1(O
r1
1 , O, Or2

2 ) < Cr0ε2

√
ε−1
4 2

−M
2 diam(Q).(2.16)

Then

ε2
2β

2(B) diam(B)

& β̃2(ξ2) diam(ξ2)

& diam(B)−3(Cr0ε2

√
ε−1
4 2

−M
2 diam(Q))2 · r0 diam(Q) · r0 diam(Q)

∼ C2
r0

r2
0ε

2
2ε
−1
4 2−M diam(Q)

& C2
r0

r2
0ε

2
2β

2(B) diam(B).

Thus by setting Cr0 large enough with respect to r0 we get a contradiction. So we
let r1, r2 ∈ [0, r0 diam(Q)] be a pair such that (2.16) holds. This implies

dist(Or1
1 , Or2

2 )

≥ dist(Or1
1 , O) + dist(Or2

2 , O)− Cε2

√
ε−1
4 2

−M
2 diam(Q)

≥ radius(2B)− r1 + radius(2B)− r2 − Cε2

√
ε−1
4 2

−M
2 diam(Q)

≥ diam(Q)− r1 − r2 − 4 · 2−MK diam(Q)− Cε2

√
ε−1
4 2

−M
2 diam(Q).

If r1 ≤ 2 · 2−MK diam(Q) define ξ2.1 = ∅. If r2 ≤ 2 · 2−MK diam(Q) define
ξ2.2 = ∅. Otherwise, we define ξ2.1 or ξ2.2 as follows.

For points X,Y ∈ ξ2, we will denote by X Ã Y the subarc of ξ2 connecting X
and Y . Assume ri > 2 · 2−MK diam(Q). Let

Bi =

(
1− 2 · 2−MK diam(Q)

ri

)
Ball(Oi, ri).

By the definition of Ori
i we have that

dist (Or1
1 Ã Or2

2 , Bi) ≥ 2 · 2−MK diam(Q).

By reducing r0 the balls Ball(O1, r1) and Ball(O2, r2) have distance at least 2 ·
2−MK diam(Q) from each other. Define ξ2.i to be the largest-diameter (connected)
subarc of (Oi Ã Ori

i ) ∩Bi.
In either case, diam(ξ2.i) ≥ ri − 2 · 2−MK diam(Q).
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Denote by ξ2.3 the subarc Or1
1 Ã Or2

2 . By the above we have that no Qj intersects
2 of these subarcs, and that (by increasing K for the last inequality)

diam(ξ2.1) + diam(ξ2.2) + diam(ξ2.3)

≥ r1 − 2 · 2−MK diam(Q) + r2 − 2 · 2−MK diam(Q)

+ diam(Q)− r1 − r2 − 4 · 2−MK diam(Q)− Cε2

√
ε−1
4 2

−M
2 diam(Q)

≥ diam(Q)− 8 · 2−MK diam(Q)− Cε2

√
ε−1
4 2

−M
2 diam(Q)

≥ (1− ε32
−M
2 ) diam(Q).

Furthermore, since diam(ξ2.i ∩Qj) ≤ diam(Qj), we have

`(RQ ∩ ξ2) +
∑
j∈J2

diam(Qj) ≥ (1− ε32
−M
2 ) diam(Q). ¤

We now get Proposition 2.19:
Proof.

`(RQ) +
∑

j

diam(Qj)

≥ `(RQ ∩ ξ2) +
∑
j∈J2

diam(Qj) + `(RQ ∩ ξ1) +
∑

j∈J1rJ2

diam(Qj)

≥ (1− ε32
−M
2 ) diam(Q) + c2

−M
2 diam(Q).

As we may get ε3 arbitrarily small, we have obtained the proposition. ¤

Lemma 2.22. We have∑
B∈∆

β̂(B)2 diam(B) . 2
−M
2 H 1(Γ).

Proof. For B ∈ ∆ and Q = Q(B), we will construct a weight wQ that satisfies
(i), (ii) and (iii):

(i)
∫

Q
wQd` ≥ diam(Q),

(ii) for almost every x0 ∈ Γ,
∑

B∈∆

wQ(B)(x0) < C2
M
2 ,

(iii) supp(wQ) ⊂ Q,
where C is a constant which depends only on the 1-Ahlfors-regularity constant of
Γ.

We will construct wQ as a martingale. We denote by wQ(Z) :=
∫

Z
wQ d`. Set

wQ(Q) = diam(Q).

Assume now that wQ(Q′) is defined. We define wQ(Q′i) and wQ(RQ′), where

Q′ =
( ⋃

Q′i) ∪RQ′ ,

a decomposition as given by equation (2.13).
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Take

wQ(RQ′) =
wQ(Q′)

s′
`(RQ′)

and

wQ(Q′i) =
wQ(Q′)

s′
diam(Q′i),

where

s′ = `(RQ′) +
∑

i

diam(Q′i).

This will give us wQ. Note that s′ . `(Γ∩Q′). Clearly (i) and (iii) are satisfied. To
see (ii):

wQ(Q′i∗)
diam(Q′i∗)

=
wQ(Q′)

s′

=
wQ(Q′)

diam(Q′)
diam(Q′)

s′

=
wQ(Q′)

diam(Q′)
diam(Q′)

`(RQ′) +
∑
i

diam(Q′i)

≤ wQ(Q′)
diam(Q′)

1

1 + c′′β̂(B)
.

And so,

wQ(Q′i∗)
diam(Q′i∗)

≤ q
wQ(Q′)

diam(Q′)

with q = 1

1+c′′2
−M
2
.

Now, suppose that x ∈ QN ⊂ . . . ⊂ Q1. we get:

wQ1(QN)

diam(QN)
≤ q

wQ1(QN−1)

diam(QN−1)

≤ · · ·

≤ qN−1 wQ1(Q1)

diam(Q1)
= qN−1.

Hence, we have wQ1(x) . qN−1. This will give us (ii) as a sum of a geometric series’
since

∑
qn =

1

1− q
. 1

2
−M
2

= 2
M
2 .
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Now, ∑
B∈∆

β̂(B)2 diam(B) . 2−M
∑
B∈∆

diam(B)

. 2−M
∑
B∈∆

∫
wQ(B)(x) d`(x)

= 2−M

∫ ∑
B∈∆

wQ(B)(x) d`(x)

. 2−M

∫
2

M
2 d`(x)

. 2
−M
2 H 1(Γ). ¤

Remark 2.23. By taking an increasing sequence of ∆ → ∆p1,p2

M we get that
Lemma 2.22 holds with ∆ is replaced by ∆p1,p2

M .

We now get Theorem 1.9 since∑

B∈G2

β2
2(B)2 diam(B) .

∑

B∈G2

β̂(B)2 diam(B)

=
∞∑

M=1

∑
B∈G2

2−M≤ 1
2 β̂(B)2<2−M+1

β̂(B)2 diam(B)

.
∞∑

M=1

M2
−M
2 H 1(Γ)

. H 1(Γ).

3. Modifications for proofs of Theorems 1.10 and 1.11

In this section we give the needed modifications to obtain Theorems 1.10 and
1.11.

Consider a ball Ball(z, R) where R > 0 and z ∈ Γ. Let {Γi} be the connected
components of Γ∩Ball(z, 10R) which intersect Ball(z,R). If there is only one such
component then Theorems 1.8 and 1.9 give Theorems 1.10 and 1.11. Otherwise, all
components Γi must have diameter at least 9R, and so by 1-Ahlfors-regularity there
are at most P of them, where P depends only on the 1-Ahlfors-regularity constant
of Γ. Parameterize each Γi by γi, as assured by Lemma 2.3.

Informally speaking, the proofs we have of Theorems 1.8 and 1.9 now work word
for word, since they only depend on the existence of a parameterization for each
connected component. Rather than checking this, we use the following trick.

One may simply connect the end of γi to the beginning of γi+1 with an arc-length
parameterization. The total added length will be at most 20PR. Call this new path
γ, and its image Γ̃. One may apply Theorems 1.8 and 1.9 to get the desired results
now.
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This completes the proof of Theorems 1.10 and 1.11. ¤

4. Appendix

4.1. Proof of Lemma 2.3. We assume Γ ⊂ M be a compact connected set
of finite H 1 measure.

Using the Kuratowski embedding theorem (see [Hei03]), we have an isometric
embedding f : Γ → `∞(Γ). Let Γ′ = f(Γ).

The following two lemmas have proofs identical to what appears in [Sch].

Lemma 4.1. Let C1, C2 > 0 be given. Given a compact set Γ′ ⊂ `∞(Γ) the set
E := {x ∈ `∞(Γ) : x = tx1 + (1− t)x2, xi ∈ Γ′,−C1 ≤ t ≤ C2} is compact.

Proof. Suppose {xi} ⊂ E is a sequence. We can write xi = tixi
1 + (1− ti)xi

2 as
in the definition of E. By the compactness of Γ′ we have ik such that xik

1 → x1. By
compactness of Γ′ again, x

ikj

2 → x2. By compactness of [−C1, C2] we have t
ikjl → t.

x1, x2 ∈ Γ′, t ∈ [−C1, C2]. Hence x
ikjl → tx1 + (1− t)x2 ∈ E. ¤

Lemma 4.2. Let Γ′ ⊂ `∞(Γ) be a compact connected set of finite length.
Then we have a Lipschitz function γ : [0, 1] → `∞(Γ) such that Image(γ) = Γ′ and
‖γ‖Lip ≤ 32H 1(Γ′).

Proof. We use a well known result from graph theory (which we call (*)):
If G is a connected graph with finitely many edges, then there is a path that

traverses each edge of G exactly twice (once in each direction). This result is easily
seen by induction on the number of edges.

For n ≥ 0, let Xn = XΓ′
n (i.e. take Xn ⊂ Γ′ a 2−n-net). Note that since Γ′

is compact, each Xn is finite. We want to get a connected set En. We do this
by adding line segments inductively. Set E0

n = Xn. We get Ei+1
n from Ei

n by
adding a line segment between points x1, x2 ∈ Xn such that dist(x1, x2) < 2−n+3

and they are not yet in the same connected component of Ei
n. If there are no two

such points we stop and call the resulting set En. Let Gn be the obvious abstract
graph associated to En. If Gn is not connected then Vertex(Gn) = A ∪ B with
dist(A,B) ≥ 2−n+2 and A separated from B. By the construction of En and Xn we
have that dist(N2−n(A), N2−n(B)) ≥ 2−n and Γ′ ⊂ N2−n(A) ∪N2−n(B). This is a
contradiction to Γ′ being connected. Hence Gn is connected.

Note that H 1(En) ≤ ](Xn)2−n+3 ≤ 16H 1(Γ′), where the final inequality fol-
lows from the fact that the balls {B(x, 2−n−1) : x ∈ Xn} are disjoint.

We can thus parameterize En by a Lipschitz curve γn : [0, 1] → `∞(Γ). The
image of this parameterization is in E as defined in the previous lemma. By Arzela-
Ascoli we have a subsequence converging to γ′. We have that Image(γ′) = Γ′ by
say

sup
x∈En

dist(x, Γ′) + sup
y∈Γ′

dist(En, y) ≤ 4 · 2−n + 2−n = 5 · 2−n

and a triangle inequality. ¤
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Now, Consider the mapping γ′′ = f−1γ′. The map γ′′ gives the first part of
Lemma 2.3 with T replaced by [0, 1]. To correct this one simply defines γ(t) = γ′′(2t)
for 0 ≤ t ≤ 1

2
and γ(t) = γ′′(1 − (2t − 1)) for 1

2
≤ t ≤ 1. The map γ has T as its

domain and Γ as its image.
Assume now that Γ is also 1-Ahlfors-regular with constant C. Then in the proof

above, En is also 1-Ahlfors-regular. Hence
R

C ′ ≤ H 1(γ−1
n (Ball(x,R))) ≤ C ′R ∀x ∈ En, 0 < R ≤ diam(En)

by the result (*). Given R, one may choose n large enough so that this implies the
second part of Lemma 2.3.

This completes the proof of Lemma 2.3. ¤
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