A NOTE ON THE MAXIMAL GUROV–RESHETNYAK CONDITION

A. A. Korenovskyy, A. K. Lerner and A. M. Stokolos

Odessa National University, IMEM, Department of Mathematical Analysis Dvoryanskaya, 2, 65026 Odessa, Ukraine; anakor@paco.net

Bar-Ilan University, Department of Mathematics 52900 Ramat Gan, Israel; aklerner@netvision.net.il

DePaul University, Department of Mathematical Sciences Chicago, IL, 60614, U.S.A.; astokolo@depaul.edu

Dedicated to Professor Bogdan Bojarski on the occasion of his 75th birthday.

Abstract. In a recent paper [17] we established an equivalence between the Gurov–Reshetnyak and A_{∞} conditions for arbitrary absolutely continuous measures. In the present paper we study a weaker condition called the maximal Gurov–Reshetnyak condition. Although this condition is not equivalent to A_{∞} even for Lebesgue measure, we show that for a large class of measures satisfying Busemann–Feller type condition it will be self-improving as is the usual Gurov–Reshetnyak condition. This answers a question raised independently by Iwaniec and Kolyada.

1. Introduction

Throughout the paper, Q_0 will be a bounded cube from \mathbf{R}^n , and μ will be a non-negative Borel measure on Q_0 absolutely continuous with respect to Lebesgue measure. For $f \in L_{\mu}(Q_0)$ and for any subcube $Q \subset Q_0$ set

$$f_{Q,\mu} = \frac{1}{\mu(Q)} \int_{Q} f(x) d\mu, \quad \Omega_{\mu}(f;Q) = \frac{1}{\mu(Q)} \int_{Q} |f(x) - f_{Q,\mu}| d\mu.$$

A function $f \in L_{\mu}(Q_0)$ is said to belong $BMO(\mu)$ if

$$\sup_{Q \subset Q_0} \Omega_{\mu}(f;Q) < \infty.$$

Also we recall that the classes $A_p(\mu)$ and $RH_r(\mu), 1 < p, r < \infty$, consist of all non-negative $f \in L_\mu(Q_0)$ for which there exists c > 0 such that for all $Q \subset Q_0$,

$$(f_{Q,\mu})((f^{-1/(p-1)})_{Q,\mu})^{p-1} \le c \text{ and } (f^r)_{Q,\mu} \le c(f_{Q,\mu})^r,$$

respectively. In the unweighted case (i.e., in the case when μ is Lebesgue measure) these objects were first considered in the classical works by John and Nirenberg [15],

²⁰⁰⁰ Mathematics Subject Classification: Primary 42B25.

Key words: Maximal Gurov–Reshetnyak condition, self-improving properties, non-doubling measures.

Muckenhoupt [20], Gehring [9], and Coifman and Fefferman [5]. It has been quickly realized that the theory developed in the unweighted case remains true for doubling measures (i.e., for those measures μ for which there exists a constant c > 0 such that $\mu(2Q) \leq c\mu(Q)$ for all cubes Q). Only recently, it was shown in the papers by Mateu et al. [18] and by Orobitg and Pérez [21] that most of important results concerning $BMO(\mu)$, $A_p(\mu)$ and $RH_r(\mu)$ still hold for any absolutely continuous measure μ (and even for a wider class of measures). First of all, we mention that all these objects are closely related. Namely (see [21]),

(1.1)
$$A_{\infty}(\mu) \equiv \bigcup_{1$$

and $\log f \in BMO(\mu)$ for any $f \in A_{\infty}(\mu)$, and, conversely, given an $f \in BMO(\mu)$, there is $\lambda > 0$ such that $e^{\lambda f} \in A_{\infty}(\mu)$. Also, conditions expressed in the above definitions represent a kind of so-called self-improving properties. Indeed, if $f \in L_{\mu}(Q_0)$ belongs to $BMO(\mu)$, then f belongs to $L_{\mu}^p(Q_0)$ for any $1 (see [18]). Moreover, <math>A_p(\mu) \Rightarrow A_{p-\delta}(\mu)$ and $RH_r(\mu) \Rightarrow RH_{r+\delta}(\mu)$ for some small $\delta > 0$ which may differ in each implication (see [21]).

In the mid 70's, Gurov and Reshetnyak [10, 11] introduced in analogy with the definition of $BMO(\mu)$ (in the unweighted case) the class $GR_{\varepsilon}(\mu)$, $0 < \varepsilon < 2$, which consists of all non-negative $f \in L_{\mu}(Q_0)$ such that for any $Q \subset Q_0$,

(1.2)
$$\Omega_{\mu}(f;Q) \le \varepsilon f_{Q,\mu}.$$

This class has found interesting applications in quasi-conformal mappings and PDE's (see, e.g., [3, 14]). Observe that (1.2) trivially holds for $\varepsilon = 2$, and therefore only the case $0 < \varepsilon < 2$ is of interest. It turned out that (1.2) also represents a kind of self-improving property. It was established in [3, 10, 11, 14, 19, 26] for Lebesgue measure and in [7, 8] for doubling measures that if ε is small enough, namely $0 < \varepsilon < c2^{-n}$, then the $GR_{\mu}(\varepsilon)$ implies $f \in L^p_{\mu}(Q_0)$ for some p > 1. In [16], it was shown that in the case of n = 1 and Lebesgue measure this self-improvement holds for the whole range $0 < \varepsilon < 2$. In a recent paper [17], the authors have established a rather surprising analogue of (1.1), namely for any absolutely continuous μ ,

(1.3)
$$A_{\infty}(\mu) = \bigcup_{0 < \varepsilon < 2} GR_{\varepsilon}(\mu).$$

First, this result shows a close relation between the classes $GR_{\varepsilon}(\mu)$ and $A_{p}(\mu)$. Second, it follows immediately that for any absolutely continuous μ and $n \geq 1$ and for all $0 < \varepsilon < 2$ the $GR_{\varepsilon}(\mu)$ condition implies higher integrability properties of f.

Iwaniec and Kolyada independently asked the authors whether a weaker variant of (1.2):

(1.4)
$$f_{\mu,Q_0}^{\#}(x) \leq \varepsilon M_{\mu,Q_0} f(x)$$
 μ -a.e. in Q_0

has an analogous self-improving property for all $\varepsilon < 2$. Here, as usual,

$$f_{\mu,Q_0}^{\#}(x) = \sup_{Q\ni x,Q\subset Q_0} \Omega_{\mu}(f;Q)$$
 and $M_{\mu,Q_0}f(x) = \sup_{Q\ni x,Q\subset Q_0} |f|_{Q,\mu}$.

The property expressed in (1.4) we call the maximal Gurov–Reshetnyak condition, and denote it by $MGR_{\varepsilon}(\mu)$.

Observe that the passing to maximal operators is a quite natural and well-known approach to many questions mentioned above. For example, Gehring's approach to the reverse Hölder inequality [9] as well as Bojarski's proof of the Gurov–Reshetnyak Lemma for small ε [3] were based on maximal function estimates. Actually, many papers establishing the self-improving property of $GR_{\varepsilon}(\mu)$ for small ε contain implicitly the same for $MGR_{\varepsilon}(\mu)$ (see, e.g., [3, 7, 19]). On the other hand, author's proof of (1.3) cannot be directly generalized to the class $MGR_{\varepsilon}(\mu)$. Therefore, the question of Iwaniec and Kolyada is of interest for $c < \varepsilon < 2$.

In this paper we show that for a large class of measures, including any doubling measures in \mathbf{R}^n and any absolutely continuous measures in \mathbf{R}^1 , the maximal Gurov–Reshetnyak condition $MGR_{\varepsilon}(\mu)$ is self-improving for any $0 < \varepsilon < 2$. The relevant class of measures will be given in the following definition.

Definition 1.1. We say that a measure μ satisfies the Busemann-Feller type condition (BF-condition) if

$$\varphi_{\mu}(\lambda) \equiv \sup_{E} \frac{\mu\{x: M_{\mu,Q_0}\chi_E(x) > \lambda\}}{\mu(E)} < \infty \quad (0 < \lambda < 1),$$

where the supremum is taken over all measurable sets $E \subset Q_0$ of positive μ -measure.

In the case of Lebesgue measure and the maximal operator associated with the homothety-invariant differential basis, this condition coincides with the well-known Busemann–Feller density condition (see, e.g., [4] or [12, p. 122]).

Our main result is the following.

Theorem 1.2. Let μ satisfy the BF-condition, and let $0 < \varepsilon < 2$. Assume that a non-negative $f \in L_{\mu}(Q_0)$ satisfies the maximal Gurov–Reshetnyak condition $MGR_{\varepsilon}(\mu)$. Then there is $p_0 > 1$ depending on μ, ε and n such that for all $1 \le p < p_0$ one has

$$(1.5) (f^p)_{Q_0,\mu} \le c(f_{Q_0,\mu})^p,$$

where c depends on μ, ε, p and n.

Some comments about this result are in order. By (1.1) and (1.3), the usual Gurov-Reshetnyak condition $GR_{\varepsilon}(\mu)$ implies (1.5) with any subcube $Q \subset Q_0$ instead of Q_0 . Theorem 1.2 shows that although we cannot obtain from the $MGR_{\varepsilon}(\mu)$ condition such a nice conclusion, we still have a higher integrability result. In fact, $MGR_{\varepsilon}(\mu)$ is really much weaker than $GR_{\varepsilon}(\mu)$. Indeed, let $n=1, Q_0=(0,1), \mu$ is Lebesgue measure, and f, for example, is the characteristic function of the interval (0,7/8). Then it is easy to see that $f_{Q_0,\mu}^{\#}(x) \leq 1/2$, while $M_{Q_0,\mu}f(x) > 7/8$ for all $x \in (0,1)$. Thus, (1.4) holds for this function with $\varepsilon = 4/7$. However, $f \notin A_{\infty}(\mu)$, since it is zero on a set of positive measure. Hence, in view of (1.3), (1.2) cannot hold for this f with any $\varepsilon < 2$. This example shows also that the class $GR_{\varepsilon}(\mu)$ in (1.3) cannot be replaced by $MGR_{\varepsilon}(\mu)$.

We make several remarks about the BF-condition. It is easy to see that this condition holds provided M_{μ} has a weak type (p,p) property with respect to μ for some p > 0. A standard argument shows that if μ is doubling in \mathbb{R}^n , then M_{μ} is of weak type (1,1). It is well-known that in the case n=1 the doubling condition can be completely removed; namely in this case, M_{μ} is of weak type (1,1) for arbitrary Borel measure μ (see [22]). It has been recently shown in [23] that in the case $n \geq 2$ for a large class of radial (and non-doubling, in general) measures, including, for example, a Gaussian measure, M_{μ} will be of strong type (p,p) for any p > 1. On the other hand, it was mentioned in [25] that there exists μ for which M_{μ} will not be of strong type (p,p) for any p > 1. In Section 3 below we give an example of μ (in the case n=2) for which the BF-condition does not hold.

We would like to emphasize that we still do not know whether the BF-condition in Theorem 1.2 is really necessary. In other words we do not know whether there exist an absolutely continuous measure μ on a cube $Q_0 \subset \mathbf{R}^n$, $n \geq 2$, and a function $f \in L_{\mu}(Q_0)$ such that μ does not satisfy the BF-condition, f satisfies (1.4) for some $\varepsilon < 2$ and $f \notin L_{\mu}^p(Q_0)$ for any p > 1.

Let us mention also that Theorem 1.2 gives yet another proof of the Gurov–Reshetnyak Lemma for the whole range of ε if μ is a BF-measure.

The paper is organized as follows. In the next section we prove our main result. Section 3 contains a detailed analysis of the BF-condition.

2. Proof of main result

2.1. Some auxiliary propositions. We first recall that the non-increasing rearrangement of a measurable function f on Q_0 with respect to μ is defined by

$$f_{\mu}^{*}(t) = \inf\{\alpha > 0 : \mu\{x \in Q_0 : |f(x)| > \alpha\} \le t\} \quad (0 < t < \mu(Q_0)).$$

Set also $f_{\mu}^{**}(t)=t^{-1}\int_{0}^{t}f_{\mu}^{*}(\tau)d\tau.$ Note that [2, pp. 43, 53]

(2.1)
$$\int_0^t f_{\mu}^*(\tau) d\tau = \sup_{E \subset Q_0: \mu(E) = t} \int_E |f| d\mu$$

and

(2.2)
$$\int_{Q_0} |f|^p d\mu = \int_0^{\mu(Q_0)} f_\mu^*(\tau)^p d\tau \quad (p > 0).$$

We will need a local variant of the well-known Herz-type estimate

$$f_{\mu}^{**}(t) \le c(M_{\mu}f)_{\mu}^{*}(t).$$

In the case of $Q_0 = \mathbf{R}^n$ and Lebesgue measure this result can be found in [2, p. 122]. It was extended to arbitrary absolutely continuous measures μ in [1]. The case of the bounded cube Q_0 requires a slightly modified argument based on the following covering lemma from [18].

Lemma 2.1. Let E be a subset of Q_0 with $\mu(E) \leq \rho \mu(Q_0)$, $0 < \rho < 1$. Then there exists a sequence $\{Q_i\}$ of cubes contained in Q_0 such that

- (i) $\mu(Q_i \cap E) = \rho \mu(Q_i);$
- (ii) $\bigcup_{i} Q_{i} = \bigcup_{k=1}^{B_{n}} \bigcup_{i \in F_{k}} Q_{i}$, where each of the family $\{Q_{i}\}_{i \in F_{k}}$ is formed by pairwise disjoint cubes and a constant B_{n} depends only on n;
- (iii) $E' \subset \bigcup_i Q_i$, where E' is the set of μ -density points of E.

Proposition 2.2. For any $f \in L_{\mu}(Q_0)$ we have

$$(2.3) f_{\mu}^{**}(t) \le c_n(M_{\mu,Q_0}f)_{\mu}^*(t) (0 < t < \mu(Q_0)),$$

where c_n depends only on n.

Proof. Let $\Omega = \{x \in Q_0 : M_{\mu,Q_0} f(x) > (M_{\mu,Q_0} f)^*_{\mu}(t)\}$. Then for some δ_0 and for any $\delta < \delta_0$ we have $\mu(\Omega) \le t \le (1-\delta)\mu(Q_0)$. Fix such a δ and apply Lemma 2.1 to the set Ω and number $\rho = 1 - \delta$. We get a sequence $\{Q_i\}$ satisfying properties (i)–(iii) of the lemma. It follows easily from (i) that $\mu(Q_i \cap \Omega^c) > 0$, and hence, $|f|_{Q_i,\mu} \le (M_{\mu,Q_0} f)^*_{\mu}(t)$. From this and from properties (i)–(iii) we obtain

$$\int_{\Omega} |f| \, d\mu \le \int_{\cup_i Q_i} |f| \, d\mu \le \sum_{k=1}^{B_n} \sum_{i \in F_k} \mu(Q_i) |f|_{Q_i, \mu} \le \frac{B_n}{1 - \delta} t(M_{\mu, Q_0} f)_{\mu}^*(t).$$

Letting $\delta \to 0$ yields $\int_{\Omega} |f| d\mu \leq B_n t(M_{\mu,Q_0} f)^*_{\mu}(t)$. Therefore, for any measurable set $E \subset Q_0$ with $\mu(E) = t$,

$$\int_{E} |f| \, d\mu \le \int_{E \setminus \Omega} |f| \, d\mu + \int_{\Omega} |f| \, d\mu \le (\mu(E \setminus \Omega) + B_n t) (M_{\mu,Q_0} f)_{\mu}^*(t)$$

$$\le (B_n + 1) t (M_{\mu,Q_0} f)_{\mu}^*(t).$$

Taking the supremum over all $E \subset Q_0$ with $\mu(E) = t$ and using (2.1) completes the proof.

Given a measurable f, define the local maximal function $m_{\lambda,\mu}f$ (cf. [24]) by

$$m_{\lambda,\mu}f(x) = \sup_{Q \ni x, Q \subseteq Q_0} \left(f\chi_Q \right)_{\mu}^* \left(\lambda \mu(Q) \right) \quad (0 < \lambda < 1).$$

Proposition 2.3. Suppose that μ satisfies the BF-condition. Then for any measurable f,

$$(2.4) (m_{\lambda,\mu}f)_{\mu}^{*}(t) \leq f_{\mu}^{*}(t/\varphi_{\mu}(\lambda)) (0 < t < \mu(Q_{0})).$$

Proof. It follows from the definitions that

$$\{x \in Q_0 : m_{\lambda,\mu}f(x) > \alpha\} = \{x \in Q_0 : M_{\mu,Q_0}\chi_{\{|f| > \alpha\}}(x) > \lambda\}.$$

Therefore,

$$\mu\{x \in Q_0 : m_{\lambda,\mu}f(x) > \alpha\} \le \varphi_\mu(\lambda)\mu\{x \in Q_0 : |f(x)| > \alpha\},\$$

which is equivalent to (2.4).

Lemma 2.4. ([20, Lemma 4]) Let h be a non-negative and non-increasing function on the interval [0, a], and assume that

$$\frac{1}{s} \int_0^s h(\tau) d\tau \le Dh(s) \quad (0 < s < a/r)$$

for some D, r > 1. Then if $1 \le p < D/(D-1)$,

$$\int_0^a h^p(\tau) d\tau \le c \left(\int_0^a h(\tau) d\tau \right)^p,$$

where c depends on r, p and D.

Actually, this lemma was proved in [20] with r = 20 but exactly the same argument works for any r > 1.

2.2. Proof of Theorem 1.2. Choose some constants $\alpha, \lambda \in (0,1)$ such that $(1-\alpha)\lambda > \varepsilon/2$. Take an arbitrary $\delta \in (0,1-\lambda)$. Given a cube $Q \subset Q_0$, set $E_Q = \{x \in Q : f(x) > f_{Q,\mu}\}$, and let

$$\mathcal{Q} = \{ Q \subset Q_0 : \mu(E_Q) \ge \alpha \mu(Q) \}.$$

Observe that if $Q \subset \mathcal{Q}$, then $f_{Q,\mu} \leq (f\chi_Q)^*_{\mu}(\alpha\mu(Q))$. Therefore,

(2.5)
$$M_{\mu,Q_0} f(x) \le \max \left(m_{\alpha,\mu} f(x), \sup_{Q \ni x, Q \notin \mathcal{Q}} f_{Q,\mu} \right).$$

Assume that $Q \not\subset \mathcal{Q}$. Set $E_Q^c = Q \setminus E_Q$,

$$A_1(Q) = \left\{ x \in E_Q^c : f_{Q,\mu} - f(x) > \left((f_{Q,\mu} - f) \chi_{E_Q^c} \right)_{\mu}^* \left(\lambda \mu(E_Q^c) \right) \right\}$$

and

$$A_2(Q) = \{ x \in E_Q^c : f(x) > (f\chi_{E_Q^c})_{\mu}^* ((1 - \lambda - \delta)\mu(E_Q^c)) \}.$$

Then $\mu(A_1(Q) \cup A_2(Q)) \leq (1 - \delta)\mu(E_Q^c)$ and $\mu(E_Q^c) \geq (1 - \alpha)\mu(Q)$. Therefore we obtain

$$f_{Q,\mu} \leq \inf_{y \in E_Q^c \setminus \{A_1(Q) \cup A_2(Q)\}} \left((f_{Q,\mu} - f(y)) + f(y) \right)$$

$$\leq \left((f_{Q,\mu} - f) \chi_{E_Q^c} \right)_{\mu}^* \left(\lambda \mu(E_Q^c) \right) + \left(f \chi_{E_Q^c} \right)_{\mu}^* \left((1 - \lambda - \delta) \mu(E_Q^c) \right)$$

$$\leq \frac{\mu(Q)}{\mu(E_Q^c)} \frac{1}{2\lambda} \frac{2}{\mu(Q)} \int_{E_Q^c} (f_{Q,\mu} - f) \, d\mu + \left(f \chi_{E_Q^c} \right)_{\mu}^* \left((1 - \lambda - \delta) \mu(E_Q^c) \right)$$

$$\leq \frac{1}{2\lambda(1 - \alpha)} \Omega_{\mu}(f; Q) + (f \chi_Q)_{\mu}^* ((1 - \lambda - \delta)(1 - \alpha)\mu(Q)).$$

This along with the maximal Gurov–Reshetnyak condition (1.4) yields

$$\sup_{Q\ni x, Q\not\subset\mathcal{Q}} f_{Q,\mu} \le \frac{\varepsilon}{2\lambda(1-\alpha)} M_{\mu,Q_0} f(x) + m_{\gamma,\mu} f(x),$$

where $\gamma = (1 - \lambda - \delta)(1 - \alpha)$. From this and from (2.5) we obtain

$$M_{\mu,Q_0}f(x) \le cm_{\alpha',\mu}f(x),$$

where $c = \frac{2\lambda(1-\alpha)}{2\lambda(1-\alpha)-\varepsilon}$ and $\alpha' = \min(\alpha, \gamma)$. Taking the rearrangements of both parts and using Propositions 2.2 and 2.3, we have

$$f_{\mu}^{**}(t) \le c f_{\mu}^{*}(t/\varphi_{\mu}(\alpha')) \quad (0 < t < \mu(Q_0)).$$

This implies easily

$$f_{\mu}^{**}(t) \le c\varphi_{\mu}(\alpha')f_{\mu}^{*}(t) \quad (0 < t < \mu(Q_0)/\varphi_{\mu}(\alpha')),$$

which along with (2.2) and Lemma 2.4 completes the proof.

3. On the BF-condition

First of all, we observe that we do not know whether for some absolutely continuous μ the function φ_{μ} can take both finite and infinite values. The following proposition represents only a partial answer to this question.

Proposition 3.1. There exists a constant $\gamma < 1$ depending only on n such that if $\varphi_{\mu}(\gamma) < \infty$, then $\varphi_{\mu}(\lambda) < \infty$ for all $0 < \lambda < 1$.

Proof. Given a set $E \subset Q_0$ and $0 < \lambda < 1$, let $E_{\lambda} = \{x \in Q_0 : M_{\mu,Q_0}\chi_E(x) > \lambda\}$. By Proposition 2.2, for any $E \subset Q \subset Q_0$,

$$\min(1, \mu(E)/t) \le c_n(M_{\mu,Q}\chi_E)^*_{\mu}(t)$$

or, equivalently,

$$\frac{\mu(E)}{c_n \lambda} \le \mu\{x \in Q : M_{\mu,Q} \chi_E(x) > \lambda\} \le \mu(Q \cap E_\lambda).$$

Hence,

$$M_{\mu,Q_0}\chi_E(x) \le c_n \lambda M_{\mu,Q_0}\chi_{E_\lambda}(x) \quad (x \in Q_0),$$

which yields

Therefore,

$$\varphi_{\mu}(c_n\lambda\xi) \le \varphi_{\mu}(\lambda)\varphi_{\mu}(\xi) \quad (\lambda,\xi\in(0,1):\lambda\xi<1/c_n).$$

This clearly implies the desired result if $0 < \lambda < 1/c_n$. The case $1/c_n < \lambda < 1$ follows from the monotonicity of $\varphi_{\mu}(\lambda)$.

Remark 3.2. The last proposition means that Theorem 1.2 still holds if one relaxes the BF-condition to

$$\mu\{x \in Q_0 : M_{\mu,Q_0}\chi_E > \gamma\} \le c\mu(E) \quad \forall E \subset Q_0$$

with some $0 < \gamma < 1$. Note that a similar condition with $\gamma = 1/2$ for the directional maximal operator appeared in [6] (see also [12, p. 372]), where it was called a Tauberian condition.

Remark 3.3. Inequality (3.1) is a full analogue of the Lemma from [13], which was proved there in a different context.

We give now an example of the absolutely continuous measure μ on the unit cube $(0,1)^2$ which does not satisfy the BF-condition.

Let $\delta, L > 0$ and

$$d\mu = (\delta \chi_{(-L,0)^2}(x,y) + \chi_{(0,L)^2}(x,y)) dx dy.$$

Given a point $(x, y) \in (0, L)^2$, let Q be a minimal cube contained in $(-2L, 2L)^2$ and containing (x, y) and the cube $(-L, 0)^2$. Then $\mu(Q) = xy + \delta L^2$. Hence, setting $E = (-L, 0)^2$, we get

(3.2)
$$M_{\mu,(-2L,2L)^2}\chi_E(x,y) \ge \frac{\mu(Q \cap E)}{\mu(Q)} = \frac{\delta L^2}{xy + \delta L^2}.$$

Denote $c_{\lambda} = \frac{1}{\lambda} - 1$. Assuming $\delta c_{\lambda} < 1$, we get, by (3.2),

(3.3)
$$\frac{\mu\{M_{\mu,(-2L,2L)^2}\chi_E(x,y) > \lambda\}}{\mu(E)} \ge \frac{\mu\{(x,y) \in (0,L)^2 : xy < \delta L^2 c_\lambda\}}{\delta L^2}$$
$$\ge c_\lambda \int_{\delta c_\lambda L}^L \frac{dx}{x} = c_\lambda \log \frac{1}{\delta c_\lambda}.$$

Choose now a sequence of cubes $\{Q_i\}$ such that the cubes $2Q_i$ are pairwise disjoint and $\bigcup_{i=1}^{\infty} 2Q_i \subset (0,1)^2$. We divide each cube Q_i into four equal quadrants, and let Q_i' and Q_i'' be the first and the third quadrants respectively. Let $\{\delta_i\}$ be a sequence of positive numbers such that $\delta_i \to 0$ as $i \to \infty$. Set

$$d\mu = \sum_{i=1}^{\infty} \left(\delta_i \chi_{Q_i''}(x, y) + \chi_{Q_i'}(x, y) \right) dx dy.$$

Given a $\lambda \in (0,1)$, there is an N such that $\delta_i c_{\lambda} < 1$ for all $i \geq N$. Hence, by (3.3),

(3.4)
$$\frac{\mu\{M_{\mu,(0,1)^2}\chi_{Q_i''} > \lambda\}}{\mu(Q_i'')} \ge c_\lambda \log \frac{1}{c_\lambda \delta_i} \quad (i \ge N).$$

This shows that μ does not satisfy the BF-condition, since the right-hand side of (3.4) tends to ∞ as $i \to \infty$.

In conclusion we give one more proposition concerning the function φ_{μ} which is probably of some independent interest. We recall that the operator M_{μ} is said to be of restricted weak type (p,p) if there exists c>0 such that

(3.5)
$$\varphi_{\mu}(\lambda) \le c\lambda^{-p} \quad (0 < \lambda < 1).$$

By the well-known interpolation theorem of Stein and Weiss [2, p. 233], (3.5) implies the strong type (q, q) of M_{μ} for q > p. The following proposition shows first that a slightly better estimate than (3.5) allows us to get the strong type (p, p), and, second, it yields a very simple proof of the Stein-Weiss theorem for M_{μ} .

Proposition 3.4. If $\int_0^1 \varphi_{\mu}(\lambda)^{1/q} d\lambda < \infty$, then M_{μ} is bounded on L_{μ}^q and

$$||M_{\mu}f||_{L_{\mu}^{q}} \le \Big(\int_{0}^{1} \varphi_{\mu}(\lambda)^{1/q} d\lambda\Big) ||f||_{L_{\mu}^{q}} \quad (1 \le q < \infty).$$

Proof. By (2.2),

$$\frac{1}{\mu(Q)} \int_{Q} |f| d\mu = \int_{0}^{1} (f\chi_{Q})_{\mu}^{*}(\lambda\mu(Q)) d\lambda,$$

and thus,

$$M_{\mu}f(x) \le \int_0^1 m_{\lambda,\mu}f(x) d\lambda.$$

Applying Minkowski's inequality along with Proposition 2.3 yields

$$||M_{\mu}f||_{L_{\mu}^{q}} \leq \int_{0}^{1} ||m_{\lambda,\mu}f||_{L_{\mu}^{q}} d\lambda \leq \Big(\int_{0}^{1} \varphi_{\mu}(\lambda)^{1/q} d\lambda\Big) ||f||_{L_{\mu}^{q}},$$

as required.

References

- [1] ASEKRITOVA, I. U., N. YA. KRUGLJAK, L. MALIGRANDA, and L.-E. PERSSON: Distribution and rearrangement estimates of the maximal function and interpolation. Studia Math. 124:2, 1997, 107–132.
- Bennett, C., and R. Sharpley: Interpolation of operators. Academic Press, New York, 1988.
- [3] Bojarski, B.: Remarks on the stability of reverse Hölder inequalities and quasi-conformal mappings. Ann. Acad. Sci. Fenn. Ser. A I Math. 10, 1985, 89–94.
- [4] Busemann, H., and W. Feller: Zur Differentiation der Lebesgueschen Integrale. Fund. Math. 22, 1934, 226–256.
- [5] Coifman, R. R., and C. Fefferman: Weighted norm inequalities for maximal functions and singular integrals. Studia Math. 15, 1974, 241–250.
- [6] CORDOBA, A., and R. FEFFERMAN: On the equivalence between the boundedness of certain classes of maximal and multiplier operators in Fourier analysis. - Proc. Natl. Acad. Sci. USA 74, 1977, 423–425.
- [7] Franciosi, M.: Weighted rearrangements and higher integrability results. Studia Math. 92:2, 1989, 131–139.
- [8] Franciosi, M.: On weak reverse integral inequalities for mean oscillations. Proc. Amer. Math. Soc. 113:1, 1991, 105–112.
- [9] Gehring, F. W.: The L^p -integrability of the partial derivatives of a quasiconformal mapping. Acta Math. 130, 1973, 265–277.
- [10] GUROV, L. G.: On the stability of Lorentz mappings. Estimates for derivatives. Dokl. Akad. Nauk 220, 1975, 273–276 (Russian); Engl. transl.: Sov. Math. Dokl. 16, 1975, 56–59.
- [11] Gurov, L. G., and Yu. G. Reshetnyak: A certain analogue of the concept of a function with bounded mean oscillation. Sibirsk. Mat. Zh. 17:3, 1976, 540–546 (Russian).
- [12] DE GUZMAN, M.: Real variable methods in Fourier analysis. North-Holland Math. Stud. 46, North-Holland Publishing Company, Amsterdam—New York—Oxford, 1981.
- [13] Hunt, R., and D. S. Kurtz: The Hardy–Littlewood maximal function on L(p, 1). Indiana Univ. Math. J. 32, 1983, 155–158.

- [14] IWANIEC, T.: On L^p -integrability in PDEs and quasiregular mappings for large exponents. Ann. Acad. Sci. Fenn. Ser. A I Math. 7:2, 1982, 301–322.
- [15] JOHN, F., and L. NIRENBERG: On functions of bounded mean oscillation. Comm. Pure Appl. Math. 14, 1961, 415–426.
- [16] KORENOVSKII, A, A.: The connection between mean oscillations and exact exponents of summability of functions. - Mat. Sb. 181:12, 1990, 1721–1727 (Russian); Engl. transl.: Sb. Math. 71:2, 1992, 561–567.
- [17] KORENOVSKYY, A. A., A. K. LERNER, and A. M. STOKOLOS: A note on the Gurov–Reshetnyak condition. Math. Res. Lett. 9:5-6, 2002, 579–585.
- [18] MATEU, J., P. MATTILA, A. NICOLAU, and J. OROBITG: BMO for nondoubling measures. Duke Math. J. 102:3, 2000, 533–565.
- [19] MILMAN, M.: A note on interpolation and higher integrability. Ann. Acad. Sci. Fenn. Math. 23:1, 1998, 169–180.
- [20] MUCKENHOUPT, B.: Weighted inequalities for the Hardy maximal function. Trans. Amer. Math. Soc. 165, 1972, 207–227.
- [21] OROBITG, J., and C. PÉREZ: A_p weights for nondoubling measures in \mathbb{R}^n and applications. Trans. Amer. Math. Soc. 354:5, 2002, 2013–2033.
- [22] SJÖGREN, P.: A remark on the maximal function for measures in \mathbb{R}^n . Amer. J. Math. 105, 1983, 1231–1233.
- [23] SJÖGREN, P., and F. SORIA: Sharp estimates for the non-centered maximal operator associated to Gaussian and other radial measures. Adv. Math. 181:2, 2004, 251–275.
- [24] Strömberg, J.-O.: Bounded mean oscillation with Orlicz norms and duality of Hardy spaces. Indiana Univ. Math. J. 28, 1979, 511–544.
- [25] VARGAS, A.: On the maximal function for rotation invariant measures in \mathbb{R}^n . Studia Math. 110:1, 1994, 9–17.
- [26] Wik, I.: Note on a theorem by Reshetnyak-Gurov. Studia Math. 86:3, 1987, 287–290.

Received 15 June 2006