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Abstract. We show that any multiplicative bijection between the algebras of differentiable
functions, defined on differentiable manifolds of positive dimension, is an algebra isomorphism,
given by composition with a unique diffeomorphism.

1. Introduction

In the theory of classical algebras, the problem of characterizing automorphisms
is of fundamental importance. In the case of the algebra of smooth functions on a
smooth manifold, every automorphism is a composition operator.

It has been known for a long time that the linear structure of an algebra is
often completely determined by the multiplicative one. Already in 1940, Eidelheit
[3] observed that the multiplicative bijective maps on real operator algebras are
automatically linear. An interested reader can find a pure ring-theoretic result
on automatic additivity of multiplicative maps in [5]. However, this result is not
relevant for the case of commutative rings. In the commutative case, the situation
is more complicated. For example, suppose that τ : X → Y is a homeomorphism of
compact Hausdorff spaces, and let p be a positive continuous function on X. Then
the map T : C(Y ) → C(X) between the corresponding algebras of real continuous
functions, given by

T (g)(x) = |g(τ(x))|p(x) sign(g(τ(x))), x ∈ X, g ∈ C(Y ),

is a bijective multiplicative map, non-linear if p 6= 1. It turns out [6] that in the
absence of isolated points, every semigroup isomorphism of C(Y ) onto C(X) is of
this form. This result shows that the multiplicative semigroup structure of C(X)
completely determines the underlying space X. Namely, if C(X) and C(Y ) are
isomorphic as multiplicative semigroups, then by the above result the spaces X and
Y are homeomorphic.
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The aim of this note is to show that the result is much nicer in the case of real dif-
ferentiable functions on differentiable manifolds. Here, any semigroup isomorphism
is automatically linear. More precisely:

Theorem 1. Let M and N be Hausdorff C r-manifolds of positive dimension,
1 ≤ r < ∞. Then for any multiplicative bijection B : C r(N) → C r(M) there exists
a unique C r-diffeomorphism φ : M → N such that

B(g)(x) = g(φ(x))

for any g ∈ C r(N) and any x ∈ M . In particular, the map B is an algebra
isomorphism.

It should be mentioned that the manifolds M and N appearing in Theorem
1 are not assumed to be second-countable, paracompact or connected. Even in
the presence of the linearity assumption, the above result has been proved in full
generality only very recently [4, 7]. As pointed out by Weinstein in 2003, all the
earlier proofs (e.g. [2]) depend heavily on the second-countability assumption.

Unfortunately our methods do not work for the case r = ∞. However, it is
tempting to believe that the result holds in this case as well.

2. Proof of the main theorem

Throughout this paper, we assume that M and N are Hausdorff C r-manifolds,
not necessarily second-countable, paracompact or connected, r = 0, 1, . . . ,∞, and
that

B : C r(N) → C r(M)

is a multiplicative bijection between the algebras of real C r-functions on N , respec-
tively M .

First, we will show that B induces a homeomorphism M → N in a natural way,
by means of characteristic sequences of functions introduced in [7]. Recall that a
sequence (fi) of C r-functions on M is called characteristic at x ∈ M if

(i) fifi+1 = fi+1 for any i, and
(ii) the associated sequence of supports (supp(fi)) is a fundamental system of

neighbourhoods of x in M .
In particular, if (fi) is a characteristic sequence of C r-functions on M at x, then⋂

i supp(fi) = {x}, fi equals 1 on supp(fi+1) and supp(fi) is compact for any i large
enough [7, Lemma 3].

For any point x ∈ M we can choose a characteristic sequence (fi) of C r-functions
on M at x. It follows from the proof of [7, Lemma 4] (which is stated for isomor-
phisms of algebras, but its proof only uses the fact that the map between algebras
is a multiplicative bijection) that the sequence (B−1(fi)) of C r-functions on N is
characteristic at a point φ(x) ∈ N , and that this point is independent on the choice
of the sequence (fi). In particular, we obtain a map

φ : M → N.
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By symmetry, the same construction can be applied to B−1, and the associated
map N → M is clearly the inverse of φ. In particular, the map φ is a bijection.

We would like to show that for any g ∈ C r(N), the value of B(g) at x ∈ M
depends only on the value of g at φ(x). Actually, this is the core of our problem,
and we will need to do several small steps before achieving this goal. First, we will
see that the value B(g)(x) depends only on the germ of g at φ(x). We shall denote
by germφ(x)(g) = gφ(x) the germ of g at φ(x), and by C r

N the sheaf of germs of all
C r-functions on N .

Lemma 2. For any g, h ∈ C r(N) and any x ∈ M we have:
(i) gφ(x) = hφ(x) if and only if B(g)x = B(h)x,
(ii) gφ(x) = 1 if and only if B(g)x = 1,
(iii) gφ(x) = −1 if and only if B(g)x = −1,
(iv) g(φ(x)) = 0 if and only if B(g)(x) = 0,
(v) g(φ(x)) > 0 if and only if B(g)(x) > 0,
(vi) g(φ(x)) < 0 if and only if B(g)(x) < 0.

In particular B(1) = 1, B(−1) = −1, B(−g) = −B(g), and B(0) = 0.

Proof. First note that by symmetry it is sufficient to prove only one of the
implications in all of the equivalences above.

(i) Suppose that gφ(x) = hφ(x). Choose a characteristic sequence (fi) of C r-
functions on M at x, and put gi = B−1(fi) for any i. By the definition of φ, the
sequence (gi) is characteristic at φ(x). In particular, the sequence (supp(gi)) is a
fundamental system of neighbourhoods of φ(x), hence there exists k large enough
so that

ggk = hgk.

Since B is multiplicative, this implies

(1) B(g)fk = B(h)fk.

Because (fi) is characteristic at x, the function fk equals 1 on a neighbourhood of
x, so (1) gives B(g)x = B(h)x.

(ii) The map B is a multiplicative bijection, therefore it preserves the unit, i.e.
B(1) = 1. If gφ(x) = 1, it follows from (i) that B(g)x = B(1)x = 1.

(iii) If gφ(x) = −1, then g2
φ(x) = 1, so by (ii) we have B(g)2

x = B(g2)x = 1.
Because (ii) implies that B(g)x 6= 1, it follows that B(g)x = −1.

(iv) If g(φ(x)) 6= 0, there exists w ∈ C r(N) such that (gw)φ(x) = gφ(x)wφ(x) = 1.
It follows from (i),(ii) and the multiplicativity of B that B(gw)x = B(g)xB(w)x =
1, and in particular B(g)(x) 6= 0.

(v) If g(φ(x)) > 0, there exists w ∈ C r(N) such that w2
φ(x) = gφ(x). It follows

that B(w)2
x = B(w2)x = B(g)x, so B(g)(x) ≥ 0. On the other hand, we know

from (iv) that B(g)(x) 6= 0.
(vi) This follows directly from (iv) and (v). ¤
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Lemma 3. The map φ : M → N is a homeomorphism. Furthermore, the map
B induces a multiplicative homeomorphism of sheaves C r

N → C r
M over φ−1, again

denoted by B, which is given by

B(gφ(x)) = B(g)x

for any x ∈ M and g ∈ C r(N).

Proof. Take any open subset V of N and let x ∈ φ−1(V ). Choose a function
g ∈ C r(N) with supp(g) ⊂ V such that g(φ(x)) 6= 0, and put

U = {x′ ∈ M |B(g)(x′) 6= 0}.
First observe that U is open in M because B(g) is continuous. It follows from
Lemma 2 (iv) that U ⊂ φ−1(V ) and that x ∈ U . This shows that φ−1(V ) is open.
We therefore conclude that φ is continuous.

A symmetrical argument shows that φ−1 is continuous as well, so φ is a home-
omorphism. The rest of the statement follows from Lemma 2 (i). ¤

As a consequence of Lemma 3, the manifolds M and N have the same dimension.
From now on we will assume that n = dim M = dim N ≥ 1.

It also follows from Lemma 3 that for any open subset V of N we have the
multiplicative bijection BV : C r(V ) → C r(φ−1(V )) such that BV (h)x = B(hφ(x))
for any h ∈ C r(V ) and for any x ∈ φ−1(V ). Observe that to prove Theorem 1 it
is sufficient to find an open cover (Vj) of N such that the multiplicative bijection
BVj

is given by composition with φ|φ−1(Vj), for any j. For instance, it is suitable to
choose the cover so that Vj and φ−1(Vj) are coordinate charts on N , respectively
M .

Define a map A : C r(N) → C r(M) by

A (g) = ln ◦B(exp ◦ g).

Note that A is an additive bijection, with inverse A −1(f) = ln ◦ B−1(exp ◦ f).
The properties of B, stated in Lemma 2 and Lemma 3, obviously translate into
analogous properties of the map A .

Corollary 4. For any g, h ∈ C r(N) and any x ∈ M we have gφ(x) = hφ(x) if
and only if A (g)x = A (h)x. Furthermore, the map A induces an additive home-
omorphism of sheaves A : C r

N → C r
M over φ−1, and extends to additive bijections

AV : C r(V ) → C r(φ−1(V )) by AV (h)x = A (hφ(x)), for all open subsets V of the
manifold N .

Let f be a real C r-function defined on an open subset U of M . Suppose that
(x1, . . . , xn) : W → Rn are local coordinates on an open subset W of U , and let
α = (α1, . . . , αn) be a multi-index of order |α| = α1 + · · ·+ αn ≤ r (αi ∈ N ∪ {0}).
We use the standard notation

Dα(f) =
∂|α|f

∂xα1
1 · · · ∂xαn

n
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for the partial α-derivative of f of order |α| on W . We shall write jk
x(f) for the k-jet

of f at a point x ∈ U , k = 0, 1, . . . , r. It is an equivalence class of real C r-functions
defined on open neighbourhoods of x, with two functions belonging to the same k-jet
at x if and only if they have the same partial derivatives at x of orders 0, 1, . . . , k
with respect to some (or any) local coordinates around x (see [8]).

Lemma 5. If g, h ∈ C r(N) satisfy jr
φ(x)(g) = jr

φ(x)(h) for some x ∈ M , then
jr
x(A (g)) = jr

x(A (h)).

Proof. By additivity of A we can assume without loss of generality that h =
0. Choose a C r-diffeomorphism ψ : V → Rn, defined on an open neighbourhood
V ⊂ N of φ(x), such that ψ(φ(x)) = 0. The function g ◦ ψ−1 ∈ C r(Rn) satisfies
jr
0(g ◦ ψ−1) = jr

0(0) because jr
φ(x)(g) = jr

φ(x)(0). Hence, by the Whitney extension
theorem [9], there exists a function w ∈ C r(Rn) such that

w|[−1,0]n = 0

and
w|[0,1]n = (g ◦ ψ−1)|[0,1]n .

Since g|V = w ◦ ψ + (g|V − w ◦ ψ), it follows that

(2) A (g)x = A (gφ(x)) = A ((w ◦ ψ)φ(x)) + A (gφ(x) − (w ◦ ψ)φ(x)).

By construction of w we have w|[−1,0]n = 0 and (g ◦ ψ−1 − w)|[0,1]n = 0. Therefore,
Corollary 4 implies that

AV (w ◦ ψ)φ−1(ψ−1(u)) = 0

and
AV (g|V − w ◦ ψ)φ−1(ψ−1(v)) = 0

for any u ∈ (−1, 0)n and any v ∈ (0, 1)n. In particular, all the partial derivatives
of order 0, 1, . . . , r of AV (w ◦ ψ) and AV (g|V −w ◦ ψ) are zero arbitrary close to x.
Since these two are both C r-functions on a neighbourhood of x, this implies

jr
x(AV (w ◦ ψ)) = jr

x(0)

and
jr
x(AV (g|V − w ◦ ψ)) = jr

x(0),

therefore jr
x(A (g)) = jr

x(0) by (2). ¤
Lemma 6. Suppose that r < ∞ and that M and N are open subsets of Rn.

There exist an open subset R with discrete complement in M and continuous real
functions pα on R, for any multi-index α of order |α| ≤ r, such that

A (g)(x) =
∑

|α|≤r

pα(x)Dα(g)(φ(x))

for any g ∈ C r(N) and any x ∈ R.
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Proof. Denote by Πr = Rr[t1, . . . , tn] the finite dimensional subspace of C r(N)
of polynomials of order at most r. Recall that any polynomial in Πr is uniquely
determined by the values of all its partial derivatives of order at most r at any fixed
point y ∈ N , and that this parameterization of Πr is linear.

For any x ∈ M define an additive map Φx : Πr → R by

Φx(P ) = A (P )(x),

and let

R = {x ∈ M |Φx is bounded on a neighbourhood of 0 ∈ Πr}.
First, we will show that M \ R is closed and discrete in M . To this end, suppose
that (xi) is an injective sequence of points in M \ R which converges to x ∈ M .
Put yi = φ(xi), choose a positive decreasing sequence (εi) converging to 0 such that
the open balls K(yi, εi) are pairwise disjoint subsets of N , and choose hi ∈ C∞(N)
with compact support in K(yi, εi) such that

(hi)yi
= 1

for any i. By the definition of R we can find for every i a polynomial Pi ∈ Πr such
that

|Dα(hiPi)(y)| < 1/i

for any y ∈ N and any multi-index α of order |α| ≤ r, and

A (Pi)(xi) ≥ i.

These assumptions imply that the sum

h =
∑

i

hiPi

and all its partial derivatives of order at most r converge uniformly on N , thus
h ∈ C r(N). On the other hand, by Corollary 4 we have

A (h)(xi) = A (Pi)(xi) ≥ i,

which contradicts the continuity of A (h) at x. The set M \ R is therefore closed
and discrete in M .

Take any x ∈ R. By [1, page 35] it follows that the additive map Φx is in fact
linear. If we linearly parameterise Πr by the partial derivatives of the polynomials
in Πr at φ(x), we obtain unique real numbers pα(x), for |α| ≤ r, such that

(3) Φx(P ) = A (P )(x) =
∑

|α|≤r

pα(x)Dα(P )(φ(x))

for any P ∈ Πr. By induction on |α| we can check that all the functions pα

are continuous on R. Indeed, if we take P to be the homogeneous polynomial
P (t1, . . . , tn) = tα1

1 · · · tαn
n , α = (α1, . . . , αn), we obtain from (3) an explicit polyno-

mial expression for pα(x) in terms of A (P )(x), φ(x) and pβ(x), for |β| < |α|.
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Take any g ∈ C r(N). Let Pg ∈ Πr be the Taylor polynomial of g of order r
around φ(x), i.e. jr

φ(x)(Pg) = jr
φ(x)(g). It follows from Lemma 5 that A (Pg)(x) =

A (g)(x). The equation (3) therefore implies

A (g)(x) =
∑

|α|≤r

pα(x)Dα(g)(φ(x))

for any g ∈ C r(N) and any x ∈ R. ¤
Lemma 7. Suppose that r < ∞. Then

A (g)(x) = A (1)(x)g(φ(x))

for any g ∈ C r(N) and any x ∈ M .

Proof. By Corollary 4 we can assume without loss of generality that M and N
are open subsets of Rn. By Lemma 6 there exist an open subset R with discrete
complement in M and continuous real functions pα on R, for any multi-index α of
order |α| ≤ r, such that

(4) A (g)(x) =
∑

|α|≤r

pα(x)Dα(g)(φ(x))

for any g ∈ C r(N) and any x ∈ R. Observe that p(0,...,0) = A (1).
Let I be the set of all multi-indices α of order |α| ≤ r such that pα is not

identically zero on R. Note that I 6= ∅ because A 6= 0. Choose α ∈ I with a
component αi which is maximal among all the components of all multi-indices in I,
i.e. αi ≥ βj for any β ∈ I and any 1 ≤ j ≤ n. We will show that αi = 0, which
implies I = {(0, . . . , 0)}.

Suppose that αi > 0. Observe that k = r + 1− αi satisfies 0 < k ≤ r. Since pα

is not identically zero on R, there exists an open non-empty connected subset U of
R such that pα has no zeros on U . Take any a ∈ U and choose ε > 0 so small that
K(a, ε) ⊂ U . Define a multi-index α′ by α′i = r + 1 and α′l = αl for any l 6= i.

Let P ∈ C r(N) be the homogeneous polynomial function given by

P (t) = (t− φ(a))α′ = (t1 − φ1(a))α′1 · · · (tn − φn(a))α′n ,

where t = (t1, . . . , tn) ∈ N ⊂ Rn and φ(x) = (φ1(x), . . . , φn(x)) for any x ∈ M .
Take any β ∈ I. We write β ≤ α′ if βl ≤ α′l for all l. For the derivative Dβ(P )

we have the following two possibilities:
(i) If β 6≤ α′, then Dβ(P ) = 0.
(ii) If β ≤ α′, then we have in fact β ≤ α (because αi ≥ βi by the maximality

of the component αi of α) and

Dβ(P )(t) = cβ (t− φ(a))α′−β = cβ (t− φ(a))α−β(ti − φi(a))k

for some non-zero cβ ∈ R. The polynomial cβ (t−φ(a))α−β is constant and non-zero
only in the case β = α. In all other cases it has value 0 at φ(a). Put I ′ = {β ∈
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I | β ≤ α , β 6= α} and denote

w(t) =
∑

β∈I′
cβ pβ(φ−1(t))(t− φ(a))α−β.

This is a continuous function of t ∈ φ(R) which equals 0 at φ(a).
Note that jr

φ(a)(P ) = jr
φ(a)(0), so Lemma 5 implies that jr

a(A (P )) = jr
a(0).

Choose any j = 1, . . . , n, and denote by ej the j-th vector of the standard basis of
Rn. The Taylor formula for A (P ) at a gives for any |h| < ε a real number 0 < ϑ < 1
such that

(5) A (P )(a + hej) =
1

k!

∂kA (P )

∂tkj
(a + ϑhej)h

k.

Note that the function

z(h) =
1

k!

∂kA (P )

∂tkj
(a + ϑhej)

is continuous in h = 0 and satisfies z(0) = 0.
On the other hand, from (4) it follows that

A (P )(a + hej) =
∑

|β|≤r

pβ(a + hej)D
β(P )(φ(a + hej))

=
∑

β∈I

cβpβ(a + hej)(φ(a + hej)− φ(a))α′−β

= (w(φ(a + hej)) + cα pα(a + hej)) (φi(a + hej)− φi(a))k.

(6)

By combining (5) and (6) we obtain for 0 < |h| < ε

(w(φ(a + hej)) + cα pα(a + hej))

(
φi(a + hej)− φi(a)

h

)k

= z(h).

When h approaches 0, the right hand side converges to 0, but the first factor of the
left hand side converges to cα pα(a) 6= 0, which is possible only if the limit

lim
h→0

φi(a + hej)− φi(a)

h
=

∂φi

∂tj
(a)

exists and equals 0. Since this is true for any j and any point a ∈ U , it follows
that φi is constant on U . In particular, the restriction φ|U is not open, which is in
contradiction with the fact that φ is a homeomorphism.

We can therefore conclude that I = {(0, . . . , 0)} and hence

A (g)(x) = A (1)(x)g(φ(x))

for any g ∈ C r(N) and any x ∈ R. Because R is dense in M and both sides of the
last equation are continuous functions of x, defined on all of M , it follows that the
equality holds true for any x ∈ M . ¤
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Proof of Theorem 1. For any positive g ∈ C r(N) we have B(g) = exp◦A (ln◦g),
so Lemma 7 implies that

(7) B(g)(x) = g(φ(x))p(x)

for any x ∈ M , where p = A (1) = ln ◦ B(e1) ∈ C r(M). Since the inverse φ−1

corresponds to the multiplicative bijection B−1, it follows analogously from Lemma
7 that there exists q ∈ C r(N) such that

(8) B−1(f)(y) = f(φ−1(y))q(y)

for any positive f ∈ C r(M) and for any y ∈ N . Direct computation of the compo-
sition of B and B−1 shows that (p ◦ φ−1)q = 1, so in particular both p and q are
nowhere zero. Furthermore, it follows from (7) that the composition of a positive
C r-function with φ is again a C r-function, thus φ is of class C r. Analogously, by (8)
the map φ−1 is of class C r, thus we may conclude that φ is a C r-diffeomorphism.

We will now show that both p = 1 and q = 1. Because (p ◦ φ−1)q = 1, it
is sufficient to show that p ≥ 1 and q ≥ 1. By symmetry it is enough to prove
p ≥ 1. So assume that there is a point x ∈ M such that p(x) < 1. Since φ is a
C r-diffeomorphism, we may choose a C r-path γ : (−1, 1) → M with γ(0) = x and a
function g ∈ C r(N) such that g(φ(γ(t))) = t for any t ∈ (−1, 1). Note that σ = p◦γ
and u = B(g) ◦ γ are C r-functions on (−1, 1). It follows from (7) and Lemma 2 (i)
that

u(t) = tσ(t)

for any t > 0. Since u is continuous on (−1, 1), this is possible only if σ(0) ≥ 0. As
p has no zeros, this implies p(x) = σ(0) > 0. By the continuity of σ we may choose
0 < a < b < 1 and 0 < ε < 1 such that a < σ(t) < b for any t ∈ (−ε, ε).

The derivative of u at a point t ∈ (0, 1) equals

(9)
tσ(t)σ(t)

t
+ tσ(t) ln(t)

dσ

dt
(t).

Since the derivative of σ is bounded on a small neighbourhood of 0 and σ(−ε, ε) ⊂
[a, b] ⊂ (0, 1), it follows that the second summand of (9) converges to 0 as t > 0
approaches 0. On the other hand, the fact that σ(−ε, ε) ⊂ [a, b] ⊂ (0, 1) implies
that the first summand of (9) is unbounded on any neighbourhood of 0. Hence
u ∈ C r(−1, 1) has unbounded derivative on any neighbourhood of 0, which is a
contradiction.

Thus p = 1, and therefore

B(g)(x) = g(φ(x))

for any positive g ∈ C r(N) and any x ∈ M . Finally, it follows from Lemma 2 that
this formula actually holds for any g ∈ C r(N). ¤
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