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Abstract. In the paper the positive answer is given to a conjecture formulated in [10], [17]
and partially answered there.

The concept of a pair of primary solutions of the general Beltrami equation

(1)
∂w

∂z
= µ(z)

∂w

∂z
+ ν(z)

∂w

∂z
, w : Ω → C,

in a planar domain Ω ⊆ C with complex-valued measurable µ and ν satisfying the
ellipticity condition

(2) |µ(z)|+ |ν(z)| ≤ k < 1 a.e. in Ω

for some k, usually written as

k =
K − 1

K + 1
< 1, 1 ≤ K < ∞,

was introduced by Iwaniec et al. in [10], [17].
In this paper, for simplicity, we restrict our considerations mainly to the case

(3) Ω ≡ C, µ, ν compactly supported.

Thus in the terminology of the theory of quasiconformal mappings we consider k-
quasiconformal mappings f : Ω → C with conformal univalent extensions outside
a compact subset of the complex plane C (also understood as the Riemann sphere
S2 = P1). In this geometric context we consider quasiconformal mappings in the
class W 1,2

loc (C) with the condition

(4) w(∞) = ∞
and conformal near ∞.
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Definition. A pair of homeomorphic solutions φ, ψ : Ω → C is called
a primary pair if

(5) Im
(∂φ

∂z

∂ψ

∂z

)
6= 0 almost everywhere in Ω.

In a series of recent papers by Iwaniec, written in cooperation with his collabora-
tors, [2], [17], [10], the primary solutions of (1) have been investigated from various
points of view. They turn out to play a fundamental role in describing the G-
convergence phenomena in the theory of planar Beltrami operators, G-compactness
results for general two-dimensional second order elliptic operators of divergence
type with not necessarily symmetric coefficient matrices, homogenisation problems
for second order elliptic differential operators. They are also crucial for recent appli-
cations of the two-dimensional quasiconformal mappings to material science, theory
of composites, particularly laminates, and phase transitions [3], [15], [16]. In this
context Iwaniec et al. also initiated, [10], [17], the very interesting theory of linear
(over the real number field R) families of k-quasiconformal mappings.

The fundamental problem here is the existence theorem of primary pairs for the
general Beltrami equation (1). It is proved in [17] that under the condition

(6) K < 3 (k < 1
2
)

the existence holds for general Beltrami equations (1). For some special classes of
Beltrami systems (e.g., Hölder regularity of the coefficients of (1), convexity of Ω
with some boundary conditions on ∂Ω) the dilatation condition (6) was also shown
to be redundant for the existence theorem.

Our main result in this paper is that for the general Beltrami equation the
primary pair exists without the restriction (6).

In what follows we shall freely use the basic analytical and geometrical proper-
ties of solutions of Beltrami equations (1) and planar k-quasiconformal mappings
as established in detail in our papers [4], [5], [6] and Vekua’s paper [20] and the
monograph [21]. In particular the usual rules of differential and integral calculus
hold, sets of zero Lebesgue measure are preserved under taking images and counter-
images etc. All these properties are essentially connected with the basic fact, first
established in [4], that the W 1,2

loc solutions of (1) are in the class W 1,p
loc for some p > 2,

depending only on the ellipticity constant k.
Strictly following the analytical ideas and formulas developed in [4], [21], we

represent the considered homeomorphic solutions of (1) or the k-quasiconformal
mappings in the form

(7) f(z) ≡ az − 1

π

∫∫

C

ω(t)

t− z
dσt ≡ az + Tω(z)

for some complex a and ω ∈ Lp(C), where dσt is the Lebesgue measure on C or

(8) dσt = − 1

2i
dt ∧ dt.
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Then the system (1) for f(z) reduces to the system of linear singular equations

ω − µSω − νSω = h, h = aµ + aν

Sω ≡ − 1

π

∫∫

C

ω(t)

(t− z)2
dσt

(9)

in the space Lp(C) for p satisfying

(10) |p− 2| < ε for some ε > 0

depending on the ellipticity constant k in (2).
For the most important simplest case of the classical Beltrami equation (1), i.e.,

when the coefficient ν ≡ 0,

(11)
∂w

∂z
− µ(z)

∂w

∂z
= 0,

the equation (9) reduces to

(12) ω − µSω = h

which is linear over the complex field C. The equation (9) has to be considered
over the real field R only. However in both cases the ellipticity conditions (2)
ensure the unique solvability in the form of convergent Neumann series of the non-
homogeneous equations (9) and (12). All these facts have been discussed and used
in [4], [6], [5] and are fundamental in the literature on quasiconformal mappings and
planar elliptic partial differential equations in the following years. As shown in [4]
and [6], the basic existence theorems of planar quasiconformal mappings related with
linear, quasilinear and non-linear two-dimensional elliptic systems are consequences
of the discussed methods.

In particular, for the Beltrami equation (11) and the general Beltrami equa-
tion (1) the global homeomorphism exists. By this we mean solutions of (11) real-
ising the homeomorphic mapping w : C → C of the whole complex plane C onto
itself, with the condition w(∞) = ∞. Properly normalised the global solutions are
unique. If the coefficients µ and ν are compactly supported, the normalisation can
be taken as in formula (7). Homeomorphic solutions are measurable in the sense
that (Lebesgue) measurable sets have measurable images and null sets are mapped
on null sets and the set function mes w(e) defined for Borel sets e ⊂ C is absolutely
continuous:

mes w(e) =

∫∫

e

(∣∣∣∂w

∂z

∣∣∣
2

−
∣∣∣∂w

∂z

∣∣∣
2)

dx dy

where Jw
z ≡

∣∣∂w
∂z

∣∣2 −
∣∣∂w

∂z

∣∣2 is the Jacobian of the mapping w = w(z). The same
holds for the inverse function z = w−1(ζ), ζ = w(z). It follows that for a non-
constant homeomorphic solution of (1) the Jacobian Jw

z > 0 a.e. and consequently
∂w
∂z
6= 0 a.e. Also the normalised global homeomorphism depends smoothly (real

analytically) on any parameters t = (t1, . . . , tn) smoothly (real analytically) included
in the coefficients µ and ν of the equation (1). For the Beltrami equations (11) the
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dependence on the parameters t may be complex analytic. All these facts have
been proved in detail in [6], or are direct consequences of the formulas and methods
presented there; see also [18], [8], [9]. Except the dependence on parameters, all the
facts mentioned above are crucial in the proof of our main theorem below.

The main theorem

We present here the proof of our main theorem for the special case of Beltrami
equations (1) in the form

(13)
∂w

∂z
− q(z)

(∂w

∂z
− ∂w

∂z

)
= 0

or µ + ν ≡ 0 in (1). The ellipticity condition (2) has then the form

(14) |q(z)| < k0 < 1
2
, 2k0 = k.

The general case is reduced to (13) by a change of variable in the image domain
of w, see [6], §6, pp. 490–492. A characteristic feature of the equations (13) is that
the identity map w(z) ≡ z is a solution of (13) for any dilatation q(z).

Probably the class (13) of Beltrami equations was discussed for the first time in
our paper [6] and appeared there in connection with the uniqueness problem in the
Riemann mapping theorem for the general Beltrami equations (1).

If we take in (5) φ(z) ≡ z, then the existence problem of primary pair for (13)
takes the form: Does the equation (13) admit a global homeomorphic solution
ψ : C → C of the form (7) such that

(15) Im
∂ψ

∂z
6= 0 a.e.?

This implies in particular that the coefficient a in (7) satisfies the condition

(16) Im a 6= 0.

Theorem. The Beltrami equation

∂w

∂z
− q(z)

(∂w

∂z
− ∂w

∂z

)
= 0

with the compactly supported measurable dilatation (q ≡ 0 in the neighbourhood
of ∞) satisfying the ellipticity condition (14) admits a global solution ψ : C → C
satisfying condition (15). Then the pair (z, ψ(z)) is a primary pair for the Beltrami
equation (13).

Proof. The main idea of the proof is the “factorisation” of solutions of (13)
through the solutions of a Beltrami equation

(17)
∂w0

∂z
− q1(z)

∂w0

∂z
= 0

and the “conjugate” or inverse Beltrami equation

(18)
∂w

∂ζ
+ q̃(ζ)

∂w

∂ζ
= 0
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with a special choice of the auxiliary dilatations q1(z) and q̃(ζ) in (17) and (18).
The function q1(z) in (17) is determined by q(z) in (13) by the formula

q(z) =
q1(z)

1 + |q1(z)|2 .

The uniform condition (14) ensures that (17) is uniformly elliptic also. The choice
of q1(z) is “canonical”: it depends on q(z) in (13) only.

The choice of q̃(ζ) for the “conjugate” Beltrami equation depends on the se-
lected global homeomorphic solution of (17). If w0 is a normalised—“principal”—
homeomorphism of (17) (i.e. it is determined by putting a = 1 in (7)) then any
other global homeomorphism ζ(z) is determined by the formula

(19) ζ(z) = L(w0(z))

for some linear L(w0) = bw0 + c.
Assuming a ζ(z) fixed we determine q̃(ζ) in the equation (18) by

(20) q̃(ζ) ≡ q1

(
z−1(ζ)

)
or q̃(ζ(z)) ≡ q1(z).

If w̃0(ζ) is the principal homeomorphism of (18) then the following two crucial facts
hold.

Proposition 1. The composition mapping w(z) = F (z) = w̃0(ζ(z)) is a solu-
tion of (13).

Proposition 2. For any pair w(z), w̃(ζ) of global solutions of equations (17)
and (18) respectively, such that the relation (20) (with ζ(z) ≡ w(z)) holds the map-
ping G(ζ) = w

(
w̃(ζ)

)
is a conformal homeomorphism of the ζ-plane preserving ∞.

Obviously the linear asymptotic behaviour of G(ζ) at ζ = ∞ is determined by
the asymptotic behaviour of the components w̃(ζ) and w(z). We recall that both
q1(z) and q̃(ζ) are ≡ 0 near infinity and consequently w(z) and w̃(ζ) are conformal
and asymptotically linear at ∞.

Proof of Proposition 1. Indeed,

∂w

∂z
=

∂w̃0

∂ζ

∂ζ

∂z
+

∂w̃0

∂ζ

∂ζ

∂z
=

∂w̃0

∂ζ

∂ζ

∂z
− q1(ζ)q1(z)

∂ζ

∂z

∂w̃0

∂ζ

and taking into account (18), we get

∂w

∂z
− ∂w

∂z
=

(
∂w̃0

∂ζ

∂ζ

∂z
− ∂w̃0

∂ζ

∂ζ

∂z

)(
1 + |q1(z)|2).

Also
∂w

∂z
= q1(z)

(
∂w̃0

∂ζ

∂ζ

∂z
− ∂w̃0

∂ζ

∂ζ

∂z

)
.

Hence
∂w

∂z
=

q1(z)

1 + |q1(z)|2
(∂w

∂z
− ∂w

∂z

)
. ¤
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Proof of Proposition 2. We have

∂G

∂ζ
=

∂w0

∂z

∂w̃0

∂ζ
+

∂w0

∂z

∂w̃0

∂ζ
= q1(z)

∂w0

∂z

∂w̃0

∂ζ
+

∂w0

∂z
· (−q̃(ζ))

∂w̃0

∂ζ

=
[
q1(z)− q̃(ζ)

] ∂w0

∂z
· ∂w̃0

∂ζ
= 0

since by (20) q1(z)− q̃(ζ(z)) ≡ 0. ¤
Now we apply Proposition 1 and Proposition 2 to two distinct cases. In both

cases w0(z) is the same principal solution of (17) normalised at∞ by (7) with a = 1.

Case I. By w̃(ζ) we denote the global solution of equation (18) normalised at∞
by the condition

(21) w̃(ζ) ∼ ζ + O
(

1
|ζ|

)
.

By the basic existence theorem for systems (9) it exists, is unique and may be
represented by formula (7) with a = 1. By Proposition 2 G(ζ) = w0

(
w̃(ζ)

)
is

conformal on the complex ζ-plane. Also near ζ = ∞ it behaves like (21).
Hence G(ζ) = w0

(
w̃(ζ)

) ≡ ζ. Then also F (z) ≡ w̃
(
w0(z)

) ≡ z and we recover
the equations (17) and (18) as a well known [6], [21] pair of classical Beltrami and
inverse Beltrami equations for a quasiconformal mapping and its inverse. In this
case the identity F (z) = w̃

(
w0(z)

) ≡ z may also be obtained from the Liouville
theorem for the equation (13) since by Proposition 1 F (z) and w(z) ≡ z are both
global solutions of (13) and

F (z)− z = o(1) for |z| → ∞.

Case II. Denote by ŵ(ζ) the global solution of the equation (18) normalised
at ∞ by the condition

ŵ(ζ) = iζ + O
(

1
|ζ|

)

or represented by (7) with a = i. It exists and is unique. By Proposition 2 we get
then analogously

(22) G(ζ) = w0

(
ŵ(ζ)

) ≡ iζ, ζ ∈ C

on the whole ζ-plane.
Again we consider the composition F (z) = ŵ

(
w0(z)

)
. By Proposition 1 it is a

global solution of equation (13). For ∂F
∂z
− ∂F

∂z
we have the formula

2i Im
∂F

∂z
=

(
∂ŵ

∂ζ

∂ŵ

∂ζ

∂ζ

∂z

)(
1 + |q1(z)|2), ζ(z) ≡ w0(z).
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Differentiating (22) with respect to ζ and ζ we have

∂w0

∂z

∂ŵ

∂ζ
+

∂w0

∂z

∂ŵ

∂ζ
= i

∂w0

∂z

∂ŵ

∂ζ
+

∂w0

∂z

∂ŵ

∂ζ
= 0.

Eliminating ∂w0

∂z
we get

∂w0

∂z

(
∂ŵ

∂ζ

∂ŵ

∂ζ
− ∂ŵ

∂ζ

∂ŵ

∂ζ

)
= i

∂ŵ

∂ζ

and
∂w0

∂z

∂ŵ

∂ζ
J ŵ

ζ = i
∣∣∣∂ŵ

∂ζ

∣∣∣
2

where J ŵ
ζ is the Jacobian of the quasiconformal mapping ŵ = ŵ(ζ).

Finally

Im
∂F

∂z
≡ (

1 + |q1(z)|2)
∣∣∣∂ŵ

∂ζ

∣∣∣
2

Jζ
ŵ 6= 0 a.e. on the z-plane

and the proof of the theorem is complete.

Corollary. The general Beltrami equation (1)–(2) with the compactly sup-
ported coefficients µ and ν admits a primary pair.

This solves in the positive Conjecture 1 in [10].

Final remarks

Since the primary pair (φ, ψ) for (1) allows to recover the coefficients µ and ν
of the general Beltrami equation (1),

µ(z) =
φz̄ψz − ψz̄φz

2i Im(φzψz)
, ν(z) = −φz̄ψz − ψz̄φz

2i Im(φzψz)
,

it plays such a fundamental role in describing the totality (infinite dimensional) of
all solutions of (1), in particular in discussing the G-convergence phenomenon and
the G-closed classes of elliptic operators in the complex plane.

As is well known (see e.g. Vekua’s monograph [21]), the auxiliary equations
(17) and (18) admit global solutions without necessarily assuming that |µ| + |ν| is
compactly supported. The factorisation procedure used in the proof of our theorem
then can be extended to the general Beltrami equation (1) in the whole complex
plane C.

Geometric meaning of the class of Beltrami equations (13) was explained in our
paper [6] and can be understood, as well as the geometric meaning of the general
Beltrami equations (1), on the basis of the Lavrentiev theory of characterisics of
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quasiconformal mappings discussed in detail in the unduly somehow neglected in-
teresting book of Volkovysky [22], which should be useful in discussing the important
problem of invariant infinitesimal meaning of the condition (5).

There are also many other interesting analytical and geometrical problems re-
lated with the important class of Beltrami equations (13). Some of these will be
discussed in a subsequent publication.
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sovr. probl. teor. funktsĭı kompl. peremen., edited by I. A. Markushevich, Gosfizmatizdat,
Moscow, 1960, 461–483 (in Russian). Transl. in: Fonctions d’une variable complexe, Probl.
contemporaires, Paris, 1962, 254–268.

[8] Bojarski, B.: Quasiconformal mappings and general structural properties of systems of
non-linear equations elliptic in the sense of Lavrentiev. - In: Symposia Mathematica XVIII
(Convegno sulle Trasformazioni Quasiconformi e Questioni Connesse, INDAM, Rome 1974),
Academic Press, London, 1976, 485–499.

[9] Bojarski, B.: Old and new on Beltrami equation. - In: Functional Analytic Methods in
Complex Analysis and Applications to Partial Differential Equations (Trieste 1988), World
Scientific, River Edge, 1990.

[10] Bojarski, B., L. D’Onofrio, T. Iwaniec, and C. Sbordone: G-closed classes of elliptic
operators in the complex plane. - Ricerche Mat. 64, 2005, 403–432.

[11] Bojarski, B., and V.Ya. Gutlyanskii: On the Beltrami equation. - In: Conference Pro-
ceedings and Lecture Notes on Analysis I (Tianjin 1992), edited by Zhong Li, International
Press, Cambridge, MA, 1994, 8–33.

[12] Bojarski, B., andT. Iwaniec: Quasiconformal mappings and non-linear elliptic equations I.
- Bull. Polon. Acad. Sci. 27, 1974, 473–478.

[13] Bojarski, B., and T. Iwaniec: Quasiconformal mappings and non-linear elliptic equations
II. - Bull. Polon. Acad. Sci. 27, 1974, 479–484.

[14] Bojarski, B. and T. Iwaniec: Analytical foundations of the theory of quasiconformal
mappings in Rn. - Ann. Acad. Sci. Fenn. Ser. A. I Math. 8, 1983, 257–324.

[15] Faraco, D.: Tartar conjecture and Beltrami operators. - Michigan Math. J. 52, 2004, 83–104.



Primary solutions of general Beltrami equations 557

[16] Faraco, D., and L. Székelyhidi: Tartar’s conjecture and localization of the quasiconvex
hull in R2×2. - To appear.

[17] Giannetti, F., T. Iwaniec, L. Kovalev, G. Moscariello, and C. Sbordone: On g-
compactness of the Beltrami operators. - In: Nonlinear Homogenization and its Applications
to Composites, Polycristals and Smart Materials, Kluwer, Dordrecht, 2004, 107–138.

[18] Iwaniec, T.: Quasiconformal mapping problem for general nonlinear systems of partial
differential equations. - In: Symposia Mathematica XVIII (Convegno sulle Trasformazioni
Quasiconformi e Questioni Connesse, INDAM, Rome 1974), Academic Press, London, 1976,
501–517.

[19] Jikov, V.V., S.M. Kozlov, and O.A. Oleı̆nik: Homogenization of differential operators
and integral functionals. - Translated from the Russian by G.A. Yosifian, Springer, Berlin,
1994.

[20] Vekua, I. N.: The problem of reducing differential forms of elliptic type to canonical form
and the generalized Cauchy–Riemann system. - Dokl. Akad. Nauk SSSR 100, 1955, 197–200
(in Russian).

[21] Vekua, I. N.: Obobshchennye analiticheskie funktsii. - Fizmatgiz, Moscow, 1959.

[22] Volkovysky, L. I.: Quasiconformal mappings. - Lvov, 1954 (in Russian).

Received 14 November 2006


