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Abstract. The paper deals with basic smoothness and bilipschitz properties of geodesics,
balls and spheres in the quasihyperbolic metric of a domain in a Hilbert space.

1. Introduction

1.1. Let E be a real Hilbert space with dim E ≥ 2 and let G  E be a domain.
We recall that the quasihyperbolic length of a rectifiable arc γ ⊂ G or a path γ in G
is the number

lk(γ) =

∫

γ

|dx|
δ(x)

,

where δ(x) = d(x,E \ G) = d(x, ∂G). For a, b ∈ G, the quasihyperbolic distance
k(a, b) = kG(a, b) is defined by

k(a, b) = inf lk(γ)

over all rectifiable arcs γ joining a and b in G. An arc γ from a to b is a quasi-
hyperbolic geodesic or briefly a geodesic if lk(γ) = k(a, b).

This paper deals with basic smoothness and bilipschitz properties of geodesics,
balls and spheres in the quasihyperbolic metric of a domain in a Hilbert space.

The quasihyperbolic metric of a domain in Rn was introduced by Gehring and
Palka [GP] in 1976, and it has turned out to be a useful tool, for example, in
the theory of quasiconformal maps. However, several questions on the basic quasi-
hyperbolic geometry remain open. Important results on quasihyperbolic geodesics
in domains G ⊂ Rn were obtained by Martin [Ma] in 1985. For example, he proved
that the geodesics, which always exist in domains of finite-dimensional spaces by
[GO], are C1 smooth.

We start by giving in Section 2 a new proof for Martin’s smoothness result, valid
in all Hilbert spaces. We next show that there is a universal positive constant r0

such that each quasihyperbolic ball of radius r < r0 is strictly starlike and can be
mapped onto a round ball by an M(r)-bilipschitz map of E onto itself. Moreover,
M(r) → 1 as r → 0. The easier case dim E < ∞ is considered in Section 3 and the
general case in Section 4. Tangential properties of a quasihyperbolic sphere S are
considered in Section 5. For example, if dim E < ∞, then S has an inner normal
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vector (defined in 5.2) at each point, and for r < r0, a normal vector and therefore
a tangent hyperplane in a dense set of points.

I thank Olli Martio for useful discussions during my work.

1.2. Notation and terminology. Throughout the paper, E is a real Hilbert
space with dim E ≥ 2 and G  E is a domain. The inner product is written as x · y
and the norm as |x| = √

x · x. For nonzero vectors x, y ∈ E, we let ang(x, y) denote
the angle between x and y. Thus

x · y = |x||y| cos ang(x, y), 0 ≤ ang(x, y) ≤ π.

For open and closed balls and for spheres in E we use the customary notation
B(x, r), B̄(x, r), S(x, r), and the center x may be omitted if x = 0. Thus B(1) is
the open unit ball of E. The distance between nonempty sets A,B ⊂ E is d(A,B).
For real numbers s, t we write s ∧ t = min{s, t}, s ∨ t = max{s, t}.

An arc in E is a homeomorphic image of a real interval, which is assumed to be
closed unless otherwise indicated. Arcs are assumed to be oriented, that is, equipped
with one of the two possible orderings, written as x ≤ y. We write γ : a y b if γ
is an arc with first point a and last point b. The length of an arc γ is l(γ). We let
γ[x, y] denote the closed subarc of γ between points x, y ∈ γ. For half open and
open subarcs we use the natural notation γ[x, y), γ(x, y], γ(x, y).

2. Smoothness of geodesics

Martin [Ma] proved that a quasihyperbolic geodesic in a domain G ⊂ Rn is
C1 smooth. It is not always C2 but the derivative satisfies a Lipschitz condition.
In this section we extend this result to all Hilbert spaces. Some parts of Martin’s
proof [Ma, 4.3] make use of finite dimensionality, but it would be possible to replace
these by new arguments to make the proof valid in the general case. However, the
proof of the present paper differs considerably from the proof of [Ma]. It is shorter
and more straightforward, does not involve normal hyperplanes and gives a slightly
better Lipschitz constant. Moreover, it gives without extra work smoothness at the
endpoints, which were ignored in [Ma].

On the other hand, we shall make substantial use of the important idea of [Ma]
on ball convexity of quasihyperbolic geodesics. In fact, this is all that is needed for
the smoothness proof.

2.1. Ball convexity. An arc γ in a domain G is said to be ball convex in G if
γ ∩ B̄ is connected for every open ball B ⊂ G. In other words, a, b ∈ γ ∩ B̄ implies
that γ[a, b] ⊂ B̄. Trivially, every subarc of a ball convex arc is ball convex.

If B ⊂ G is a ball and if γ : a y b is a ball convex arc in G with a, b ∈ B̄, then
γ ⊂ B̄. If also B̄ ⊂ G, we can say slightly more:

2.2. Lemma. Let B be an open ball with B̄ ⊂ G and let γ : a y b be a ball
convex arc with a, b ∈ B̄. Then γ(a, b) ⊂ B.
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Proof. If there is a point z ∈ γ(a, b) ∩ ∂B, it is easy to find a ball B′ ⊂ G
such that a, b ∈ B̄′ and z /∈ B̄′; see the proof of [Ma, 2.2].This contradicts the ball
convexity of γ. ¤

We next prove that quasihyperbolic geodesics are ball convex. The proofs of
2.3 and 2.4 are essentially from [Ma, pp. 170-171]. The following auxiliary result is
needed also in 4.3.

2.3. Lemma. Let G be a domain containing the unit ball B(1) and let γ : a y b
be an arc in G with γ ∩ B̄(1) = {a, b}. Then

lk(uγ) ≤
∫

γ

|dx|
|x|δ(x)

< lk(γ),

where u is the inversion ux = x/|x|2.
Proof. Let x, z ∈ E \B(1). As (|x|2 − 1)(|z|2 − 1) ≥ 0, the identity

|x|2|ux− z|2 = 1− 2x · z + |x|2|z|2

implies that |x− z| ≤ |x||ux− z|. For each pair x ∈ G \B(1), z ∈ ∂G we thus have
δ(x) ≤ |x||ux− z|, whence δ(x) ≤ |x|δ(ux) for all x ∈ G \ B(1). As u is conformal
and the norm of the derivative is |u′(x)| = 1/|x|2, we obtain

|u′(x)| ≤ δ(ux)/|x|δ(x)

for all x ∈ γ. Hence

lk(uγ) =

∫

uγ

|dx|
δ(x)

=

∫

γ

|u′(x)|
δ(ux)

|dx| ≤
∫

γ

|dx|
|x|δ(x)

<

∫

γ

|dx|
δ(x)

= lk(γ). ¤

2.4. Theorem. Every quasihyperbolic geodesic in a domain G is ball convex
in G.

Proof. Assume that the theorem is false. Then there are a ball B ⊂ G and a
geodesic γ : a y b such that γ ∩ B̄ = {a, b}. We may assume that B = B(1). Since
uγ : ay b and since γ is a geodesic, Lemma 2.3 gives a contradiction. ¤

2.5. Shuttles. Let a, b ∈ E and let R ≥ |a− b|/2. The set

Y (a, b; R) =
⋂
{B(z, R) : |z − a| = |z − b| = R}

is the open shuttle with chord [a, b] and radius R and its closure

Ȳ (a, b; R) =
⋂
{B̄(z, R) : |z − a| = |z − b| = R}

is the closed shuttle. The shuttle Y is obtained by rotating a circular arc of radius
R keeping its endpoints fixed. The angle of Y is

α = sup{ang(b− a, x− a) : x ∈ Y (a, b; R)}.
Thus

sin α = |a− b|/2R, 0 < α ≤ π/2.
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We also write

Y ∗(a, b; R) =
⋃
{B(z, R) : |z − a| = |z − b| = R},

Ȳ ∗(a, b; R) =
⋃
{B̄(z, R) : |z − a| = |z − b| = R}.

From the definition of ball convexity and from 2.2 we readily obtain:

2.6. Theorem. Let γ be a ball convex arc in a domain G, for example, a quasi-
hyperbolic geodesic. Let x, y ∈ γ and let |x − y| ≤ 2R. If Y ∗(x, y; R) ⊂ G then
γ[x, y] ⊂ Ȳ (x, y; R). In particular, this holds if 2R ≤ δ(x) ∨ δ(y).

If Ȳ ∗(x, y; R) ⊂ G, then γ(x, y) ⊂ Y (x, y; R). In particular, this holds if 2R <
δ(x) ∨ δ(y). ¤

As a preparation for the smoothness theorem 2.8 we consider arcs in a Hilbert
space. Recall from 1.2 that an arc γ : ay b is considered as an ordered set.

2.7. Smooth arcs. Let γ : a y b be an arc in E and let z ∈ γ[a, b). A unit
vector v ∈ E is the right tangent vector of γ at z if

v = lim
x→z

x∈γ,x>z

x− z

|x− z| .

Similarly, if the left limit of (z − x)/|z − x| exists, it is the left tangent vector of γ
at z ∈ γ(a, b] (observe the sign). If both of these exist and are equal, their common
value is the tangent vector of γ at x.

Since |u − v|2 = 2(1 − u · v) for unit vectors u, v ∈ E, the following conditions
are equivalent for a unit vector v and for a point z ∈ γ[a, b):

(1) v is the right tangent vector of γ at z,
(2) the right limit of ang(x− z, v) is 0 as x → z on γ.
(3) the right limit of ((x− z) · v)/|x− z| is 1 as x → z on γ.
The corresponding result holds for z ∈ γ(a, b] if “right” is replaced by “left” and

x− z by z − x.
We say that an arc γ : a y b is C1 smooth or briefly smooth if
(1) the tangent vector v(z) exists at each interior point z ∈ γ,
(2) the right tangent vector v(a) exists at a and the left tangent vector v(b)

exists at b,
(3) the function v : γ → E is continuous.
It is probably more common to call an arc γ smooth if it has a C1 parametriza-

tion ϕ : [t1, t2] → γ such that ϕ′(t) 6= 0 for all t. Clearly this condition implies
smoothness with v(ϕ(t)) = ϕ′(t)/|ϕ′(t)|. The converse must be well known but it
is not quite trivial and not easy to find in the literature. We give a proof in the
appendix. In fact, a smooth arc is rectifiable with a C1 length parametrization
g : [0, l(γ)] → γ such that g′(t) = v(g(t)) for 0 ≤ t ≤ l(γ).

We next give the main result of this section.

2.8. Theorem. Suppose that γ ⊂ G is a ball convex arc, for example, a quasi-
hyperbolic geodesic. Then γ is smooth. The tangent vectors v(x) (one-sided at
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endpoints) satisfy the local Lipschitz condition

(2.9) |v(x)− v(y)| ≤ 2|x− y|/δ(x)

for all x, y ∈ γ.

Proof. We first show that the right tangent vector v(x) exists at each x ∈ γ[a, b).
Set R = δ(x)/2, let 0 < t < R, and choose a point z ∈ γ(x, b) with |x− z| ≤ t. By
the shuttle theorem 2.6 we have γ[x, z] ⊂ Ȳ (x, z; R).

If y1, y2 ∈ γ(x, z), then ang(y1 − x, y2 − x) ≤ 2α where α is the angle of the
shuttle. Setting ui = (yi− x)/|yi− x| we have ang(u1, u2) ≤ 2α, whence |u1− u2| ≤
2 sin α ≤ t/R → 0 as t → 0. As E is complete, the right tangent vector exists.
Similarly, the left tangent vector w(x) exists at each x ∈ γ(a, b].

Let x ∈ γ(a, b). We must show that w(x) = v(x). Set R = δ(x)/4 and let
t < |x− a| ∧ |x− b| ∧ R. Let y, z ∈ γ be points such that y < x < z and |y − x| =
|z−x| = t. Then δ(y) ≥ δ(x)−R = 3R, whence |y−z| ≤ 2t < 2R < δ(y). By 2.6 we
have x ∈ Ȳ (y, z; R), and thus ang(z−x, x−y) ≤ 2α where sin α = |y−z|/2R ≤ t/R.
Hence

ang(v(x), w(x)) ≤ ang(v(x), z − x) + 2α + ang(x− y, w(x)).

Letting t → 0 we get w(x) = v(x).
It remains to verify the local Lipschitz condition (2.9). Let x, y ∈ γ. We

may assume that |x − y| < δ(x), since otherwise (2.9) is trivially true. Setting
R = δ(x)/2 we have γ[x, y] ⊂ Ȳ (x, y; R) by 2.6, and the angle α of the shuttle
satisfies sin α = |x−y|/2R. It follows that ang(v(x), v(y)) ≤ 2α, which implies that

|v(x)− v(y)| ≤ 2 sin α = 2|x− y|/δ(x). ¤
2.10. Convex domains. Let us say that an arc γ in a domain G is strongly ball

convex in G if γ ∩ B̄ is connected whenever B is a ball with center in G. Trivially,
such an arc is ball convex in G. In [Vä2, 4.4] we proved that a quasihyperbolic
geodesic in a convex domain is always strongly ball convex.

The following result gives “strong versions” of 2.6 and 2.8.

2.11. Theorem. Let γ be a strongly ball convex arc in a domain G, for example,
a quasihyperbolic geodesic in a convex domain. Let x, y ∈ γ and let |x − y|/2 ≤
R < δ(x) ∨ δ(y). Then γ[x, y] ⊂ Ȳ (x, y; R).

Furthermore, γ is smooth and the tangent vectors satisfy the local Lipschitz
condition

(2.12) |v(x)− v(y)| ≤ |x− y|/δ(x)

for all x, y ∈ γ.

Proof. In the first part it suffices to observe that z ∈ G whenever |x − z| =
|y − z| = R.

To prove (2.12) we may assume that |x− y| < 2δ(x). For |x− y|/2 < R < δ(x),
the first part implies that γ[x, y] ⊂ Ȳ (x, y; R). As in 2.8 we get

|v(x)− v(y)| ≤ 2 sin α = |x− y|/R,
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which gives (2.12) as R → δ(x). ¤
2.13. Remark. The case where G is a half plane shows that the Lipschitz

constant in (2.12) is sharp.

3. Quasihyperbolic balls

3.1. Notation. Let G ⊂ E be a domain and let a ∈ G, r > 0. For quasi-
hyperbolic balls and spheres in G we use the notation

Bk(a, r) = {x ∈ G : k(x, a) < r}, B̄k(a, r) = {x ∈ G : k(x, a) ≤ r},
Sk(a, r) = {x ∈ G : k(x, a) = r}.

We shall show that for r less than a universal constant r0, the quasihyperbolic
ball Bk(a, r) is strictly starlike and bilipschitz equivalent to a round ball. In this
section we prove this in the case dim E < ∞, which is easier than the general
case, because one can make use of quasihyperbolic geodesics. In the general case
these must be replaced by quasigeodesics, which makes the theory somewhat more
complicated. The general case will be treated in Section 4.

We shall make use of the following standard estimates for the quasihyperbolic
metric.

3.2. Lemma. Let G ⊂ E be a domain.
(1) k(a, b) ≥ log

(
1 +

|a− b|
δ(a) ∧ δ(b)

)
for all a, b ∈ G.

(2) If a, x ∈ G with k(a, x) = r, then 1− e−r ≤ |x− a|/δ(a) ≤ er − 1.
(3) If a ∈ G, 0 < q < 1, and x, y ∈ B̄(a, qδ(a)), then

k(x, y) ≤ 1

1− q

|x− y|
δ(a)

.

(4) If, in addition, q ≤ 1/2, then

k(x, y) ≥ 1

1 + 2q

|x− y|
δ(a)

.

Proof. Proofs of (1),(3),(4) are given, for example, in [Vä1, 3.7], and (2) is given
in [Vu, (3.9)]. ¤

3.3. Notation. For a, b ∈ E, a 6= b, we let A(a, b) denote the open ball with
center (a+ b)/2 and radius |a− b|/2. Thus a and b are diametrically opposite points
of the sphere ∂A(a, b).

Let G ⊂ E be a domain and let a ∈ G. For each unit vector v ∈ E we set

λ(v) = sup{t > 0: A(a, a + tv) ⊂ G}.
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Then δ(a) ≤ λ(v) ≤ ∞. The case λ(v) = ∞ occurs iff G contains the half plane
{x : (x− a) · v > 0}. We write

J(a, v) = {a + tv : 0 ≤ t < λ(v)},
U(a) =

⋃
{J(a, v) : |v| = 1},

F (a) = {a + λ(v)v : |v| = 1, λ(v) < ∞}.
Observe that if λ(v) < ∞, then A(a, a+λ(v)v) ⊂ G. Hence each J(a, v) is contained
in G and U(a) is a connected (even starlike) subset of G. Moreover,

(3.4) B(a, δ(a)) ⊂ U(a).

3.5. Lemma. The set U(a) is open and F (a) = ∂U(a). Moreover, U(a) is a
component of G \ F (a).

Proof. We may assume that a = 0. It suffices to show that the sets U(0) and
V = E \ (U(0) ∪ F (0)) are open. Let x ∈ U(0), x 6= 0. Then x = tv for some
v ∈ S(1), 0 < t < λ(v). Choose a number t1 ∈ (t, λ(v)). Since A(0, λ(v)v) ⊂ G
and since δ(0) > 0, we have δ(t1v/2) > t1/2. Hence there is a number r > 0 such
that A(0, t1v

′) ⊂ G whenever v′ ∈ S(1) and |v′ − v| < r. For these v′ we have
[0, t1v

′) ⊂ J(0, v′) ⊂ U(0), whence x is an interior point of U(0). In view of (3.4)
this implies that U(0) is open.

Let x ∈ V . Now x = tv for some v ∈ S(1) and t > λ(v). Choose a point
y ∈ A(0, x) \ G. There is r > 0 such that y ∈ A(0, tv′) for all v′ ∈ S(1) with
|v′ − v| < r. As λ(v′) < t for these v′, the set V is open. ¤

3.6. Theorem. Let G ⊂ Rn and let a ∈ G, |v| = 1. Then the function
t 7→ k(a, a + tv) is strictly increasing on the interval [0, λ(v)).

Proof. For 0 ≤ t < λ(v) we set xt = a + tv and f(t) = k(a, xt). Assume that
f is differentiable at a point t ∈ (0, λ(v)). As f is locally Lipschitz, it suffices to
show that f ′(t) > 0. Since t < λ(v), there is R > t/2 such that Y ∗(a, xt; R) ⊂ G
where Y ∗ is defined in 2.5. Let γ : a y xt be a quasihyperbolic geodesic. Then
γ ⊂ Ȳ (a, xt; R) by 2.6. The angle of Y is α = arcsin(t/2R) < π/2.

Let 0 < s < t. There is a point y = y(s) ∈ γ such that (y−xs) · v = 0. We have

f(s) ≤ k(a, y) + k(y, xs) = f(t)− k(y, xt) + k(y, xs).

From 3.2 it follows that the numbers

K1(s) =
k(y, xt)δ(xt)

|y − xt| , K2(s) =
k(y, xs)δ(xt)

|y − xs|
converge to 1 as s → t. Setting β = ang(y − xt,−v) we have

β ≤ α, |y − xt| = (t− s)/ cos β, |y − xs| = (t− s) tan β,

whence
f(t)− f(s)

t− s
≥ K1(s)−K2(s) sin β

δ(xt) cos β
≥ K1(s)−K2(s) sin α

δ(xt)
,
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assuming that t − s is so small that K1(s) −K2(s) sin α > 0. As s → t, this gives
f ′(t) ≥ (1− sin α)/δ(xt) > 0 as desired. ¤

3.7. Strictly starlike domains. A domain D ⊂ E is strictly starlike with
respect to a point a ∈ D if D is bounded and if each ray from a meets ∂D at
precisely one point. Equivalently, there is a bounded continuous function h =
hD : S(1) → (0,∞) such that D = {a + tv : 0 ≤ t < h(v), v ∈ S(1)}. To simplify
notation we normalize a = 0 and assume that

D = {tv : 0 ≤ t < h(v), v ∈ S(1)}.
Let s > 0 and define the radial map Fs : E → E by

(3.8) Fs(x) = h(x/|x|)x/s, Fs(0) = 0.

The map Fs is a bijection, which maps each ray from the origin linearly onto itself.
Moreover,

FsB(s) = D, FsS(s) = ∂D.

The inverse mapping is given by

F−1
s (y) =

sy

h(y/|y|) , F−1
s (0) = 0.

The maps Fs and F−1
s are clearly continuous in E \ {0}. Since h is bounded away

from 0 and ∞, they are continuous also at the origin. Hence Fs : E → E is a
homeomorphism.

We next study the bilipschitz property of Fs. For v ∈ S(1), the upper derivative
of h at v is written as

L(v, h) = lim sup
u→v,u∈S(1)

|h(u)− h(v)|
|u− v| .

3.9. Lemma. Let 0 < c1 ≤ 1 ≤ c2 and suppose that

(3.10) c1s ≤ h(v) ≤ c2s, L(v, h) ≤ Hs

for all v ∈ S(1). Then Fs is M -bilipschitz with M = (c2 + H)/c2
1.

Proof. Let p : E \ {0} → S(1) be the central projection px = x/|x|. Then p is
differentiable with |p′(x)| = 1/|x|. Since Fsx = h(px)x/s, standard differentiation
rules (see [Vä1, 5.3]) give

L(x, Fs) ≤ (h(px) + |x|L(px, h)/|x|)/s ≤ c2 + H ≤ M

for all x 6= 0, and similarly

L(y, F−1
s ) ≤ h(py) + |y|L(py, h)/|y|

h(py)2
s ≤ 1/c1 + H/c2

1 ≤ M

for y 6= 0. Hence Fs is locally M -bilipschitz in E \ {0}, and the lemma follows. ¤
We next show that quasihyperbolic balls with sufficiently small radius are strictly

starlike.
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3.11. Theorem. If 0 < r < π/2, then every quasihyperbolic ball Bk(a, r) in a
domain G ⊂ Rn is strictly starlike with respect to a, and B̄k(a, r) ⊂ U(a) where
U(a) is the neighborhood of a defined in 3.3.

Proof. We may assume that a = 0. If z ∈ ∂U(0), then z = λ(v)v for some
v ∈ S(1) by 3.5. By the definition of λ(v) in 3.3 we have δ(z/2) = |z|/2. Let b ∈ ∂G
be a point with |b− z/2| = |z|/2. By [MO, p. 38], we obtain

kG(0, z)2 ≥ kRn\{b}(0, z)2 =

(
log

|b|
|b− z|

)2

+ ang(b, b− z)2 ≥ ang(b, b− z)2.

Since |z|2/4 = |b− z/2|2 = b · (b− z) + |z|2/4, we have b · (b− z) = 0, whence

(3.12) k(0, z) ≥ π/2

for each z ∈ ∂U(0). As Bk(0, r) is connected, this implies that B̄k(0, r) ⊂ U(0). If
λ(v) < ∞, the segment J(0, v) meets Sk(0, r) at exactly one point by 3.6. This is
also true if v ∈ S(1) and λ(v) = ∞, in which case k(0, x) increases strictly from 0
to ∞ on the ray J(0, v). Hence Bk(0, r) is strictly starlike. ¤

3.13. Remark. The condition r < π/2 is presumably not sharp. By Klén [Kl],
the best bound for the punctured plane is 2.832 . . . . It is possible that this holds
for all domains.

We shall apply Lemma 3.9 to show that for 0 < r < π/2, each quasihyperbolic
ball Bk(a, r) in a domain G ⊂ Rn can be mapped onto the round ball B(a, rδ(a))
by a radial bilipschitz homeomorphism F : Rn → Rn. An auxiliary result is needed.

3.14. Lemma. For each r ∈ (0, π/2), there is a number σ = σ(r) < 1 such that
if G ⊂ Rn is a domain and if a, x ∈ G with 0 < k(a, x) = r, then Y ∗(a, x; R) ⊂ G
where R = |x− a|/2σ and Y ∗ is defined in 2.5. Moreover, σ(r) → 0 as r → 0.

Proof. We may assume that a = 0. We first consider the special case where
r < log 2. Now 3.2(2) gives |x| ≤ (er − 1)δ(0) < δ(0). Since Y ∗(0, x; R) ⊂ G for
R = δ(0)/2, we can take σ(r) = er − 1, which has the property σ(r) → 0 as r → 0.

The rest of the proof is valid for every r < π/2, but the estimate for σ(r) has
not the desired behavior as r → 0. Set v = x/|x|. From 3.6, 3.5 and (3.12) it follows
that there is a unique point z ∈ J(0, v) such that k(0, z) = π/2 and |x| < |z|. By
3.2(1) we have

π/2 = k(0, z) ≥ log

(
1 +

|z|
δ(0) ∧ δ(z)

)
,

whence

(3.15) δ(0) ∧ δ(z) ≥ |z|/(eπ/2 − 1) > |z|/4 > |x|/4.
Furthermore, A(0, z) ⊂ G yields δ(z/2) ≥ |z|/2, whence δ(w) ≥ |z|/5 for all w ∈
[0, z]. Consequently,

π/2− r ≤ k(x, z) ≤ 5(1− |x|/|z|),
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which gives

(3.16) |x| ≤ (1− q)|z|
where q = q(r) = (π/2− r)/5 > 0. We consider two cases.

Case 1. |z| ≤ δ(0). Now Y ∗(0, x; R) ⊂ G for R = δ(0)/2 and hence for
R = |x|/2(1− q). Thus we can take σ(r) = 1− q(r).

Case 2. |z| > δ(0). Since G contains B(δ(0)) ∪ A(0, z), it also contains the
ball B(x/2, R1) where R1 = |y− x/2| for an arbitrary point y ∈ S(δ(0))∩ ∂A(0, z).
Write y = y1v + y2v2 where v2 is a unit vector with v2 · v = 0. Now

δ(0)2 = y2
1 + y2

2,

|z|2/4 = (|z|/2− y1)
2 + y2

2,

R2
1 = (|x|/2− y1)

2 + y2
2.

It follows that

(3.17) R2
1 = |x|2/4 + δ(0)2(1− |x|/|z|).

Since B(x/2, R1) ⊂ G, we have Y ∗(0, x; R) ⊂ G where R2 = |x|2/4 + (R1 − R)2,
and therefore

(3.18) R = R1/2 + |x|2/8R1.

Set
%1 = 2R1/|x|, % = 2R/|x|.

By (3.17), (3.16) and (3.15) we get

%2
1 = 1 + 4δ(0)2(1− |x|/|z|)/|x|2 ≥ 1 + q/4.

Since the function t 7→ t + 1/t is increasing for t ≥ 1, this and (3.18) give the lower
bound

% ≥ (%1 + 1/%1)/2 ≥ %0(r) > 1

where
2%0 = (1 + q/4)1/2 + (1 + q/4)−1/2.

Hence the lemma holds with σ(r) = min{1/%0(r), e
r − 1}. ¤

3.19. Theorem. Let G ⊂ Rn be a domain and let a ∈ G, 0 < r < π/2. Then
there is a radial M -bilipschitz homeomorphism F : Rn → Rn which maps B̄k(a, r)
onto B̄(a, rδ(a)), where M = M(r) → 1 as r → 0.

Proof. We may assume that a = 0. By 3.11, the domain D = Bk(0, r) is strictly
starlike with respect to the origin. Set s = rδ(0) and let Fs : Rn → Rn be the radial
homeomorphism defined by (3.8) where h : S(1) → (0,∞) is defined by h(v)v ∈ ∂D
for v ∈ S(1). By 3.2(2), the first inequalities of (3.10) hold with

c1 = c1(r) = (1− e−r)/r, c2 = c2(r) = (er − 1)/r = erc1.
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It suffices to find an estimate L(v, h) ≤ Hs where H = H(r) → 0 as r → 0. Indeed,
from 3.9 it then follows that Fs is M -bilipschitz with

M = M(r) =
c2(r) + H(r)

c1(r)2
→ 1

as r → 0.
Fix v ∈ S(1). Let u ∈ S(1), u 6= v, and write t = |u − v|. We must find an

estimate

(3.20) lim sup
t→0

|h(u)− h(v)|/t ≤ Hs.

Write
x = h(v)v, y = h(u)u, β = |π/2− ang(x− y, x)|.

Let σ = σ(r) < 1 be the number given by 3.14 and set

α = α(r) = arcsin σ < π/2.

Then α(r) → 0 as r → 0.
It suffices to show that

(3.21) lim sup
t→0

β ≤ α.

Indeed, an easy geometric argument shows that (3.21) implies (3.20) with

H = c2 tan α.

Assume that (3.21) is false. Then there is a sequence of unit vectors uj 6= v such
that uj → v and such that setting yj = h(uj)uj and βj = |π/2 − ang(x − yj, x)|
we have βj ≥ β0 > α for some β0 and for all j. Passing to a subsequence we may
assume that (x− yj) · x does not change sign. Since h is continuous, yj → x.

Case 1. (x− yj) · x ≥ 0 for all j. Now βj = π/2− ang(x− yj, x). Let Tj be the
normal hyperplane of yj − x through yj. Since yj → x and since βj ≥ β0, we may
assume that Tj separates the points x and 0 for each j.

Set R = |x|/2σ. The angle of the shuttle Y = Y (0, x; R) is α.
Let γ : 0 y x be a quasihyperbolic geodesic. Then γ ⊂ Ȳ by 3.14 and 2.6. For

each j we choose a point zj ∈ γj ∩ Tj. Setting ψj = ang(yj − x, zj − x) we have

(3.22) ψj ≤ ang(yj − x,−x) + ang(zj − x,−x) ≤ π/2− βj + α ≤ π/2− β0 + α,

whence
|zj − x| = |yj − x|/ cos ψj ≤ |yj − x|/ sin(α− β0).

Hence |zj − x| → 0 as j →∞. Furthermore, as r = k(0, x) = k(0, yj), we have

k(zj, x) = r − k(0, zj) ≤ k(zj, yj).

Since
|zj − yj| = |zj − x| sin ψj ≤ |zj − x| cos(α− β0)

by (3.22), we obtain
k(zj, x)|zj − yj|
k(zj, yj)|zj − x| ≤ cos(α− β0).
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As j → ∞, the left hand side tends to 1 by 3.2, and we obtain the contradiction
1 ≤ cos(β0 − α).

Case 2. (x − y) · x < 0 for all j. The proof is rather similar to that of Case
1. Now βj = π/2− ang(yj − x, x). Let now Tj be the normal hyperplane of yj − x
through x. The angle of the shuttles Yj = Y (0, yj; Rj), Rj = |yj|/2σ, is again α.

Let γj : 0 y yj be a quasihyperbolic geodesic and choose a point zj ∈ γj ∩ Tj.
Then γj ⊂ Ȳj by 2.6. Setting ωj = ang(zj − yj, x− yj) we have

ωj ≤ ang(zj − yj,−yj) + ang(x− yj,−yj) ≤ α + π/2− βj ≤ α + π/2− β0.

Consequently, |zj − x| = |yj − x| tan ωj → 0 as j →∞.
Proceeding almost as in Case 1 we get

k(zj, yj) ≤ k(zj, x), |zj − yj| = |zj − x|/ sin ωj ≥ |zj − x|/ cos(β0 − α),

and we again obtain the contradiction 1 ≤ cos(β0 − α). ¤

3.23. Remark. The proofs of the present section are valid in a domain G in an
arbitrary Hilbert space if points of G can be joined by a quasihyperbolic geodesic.
Hence all results are true for convex domains in all Hilbert spaces by [Vä2, 2.1].
However, in this case they can be obtained directly by the results of [MV], even in
an improved form.

Let G be a convex domain in a Hilbert space E. Then every quasihyperbolic
ball Bk(a, r) in G is convex by [MV, 2.13] and hence strictly starlike. Moreover, if
a ∈ G and |e| = 1, then the function t 7→ k(a, a + te) increases strictly from 0 to
∞ on the whole interval {t ≥ 0: a + te ∈ G}. For the angle β in 3.19 we get the
estimate cos β ≥ c1/c2, which replaces (3.21).

3.24. Question. Does there exist a constant r0 > 0 such that for r < r0, every
quasihyperbolic ball Bk(a, r) is convex?

4. Quasihyperbolic balls, dim E = ∞
The proofs of Theorems 3.6 and 3.19 made use of quasihyperbolic geodesics,

which are not always available in an infinite-dimensional space. In the proof of 3.11
we made use of finite dimensionality by choosing a point b ∈ ∂G ∩ S(z/2, δ(z/2)).
Other proofs of Section 3 are valid in all Hilbert spaces. In this section we indicate
how the proofs of these results can be modified so as to remain valid in the general
case. In the proofs of 3.6 and 3.19 we replace the geodesics by quasigeodesics. We
give the proof of Lemma 3.6 about increasingness in detail and sketches for the
other two results.

4.1. Quasigeodesics. For c ≥ 1, an arc γ ⊂ G is a c-quasigeodesic (called near-
geodesic in some of my earlier papers) if γ is c-quasiconvex in the quasihyperbolic
metric, that is,

lk(γ[x, y]) ≤ ck(x, y)

for all x, y ∈ γ.
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Quasigeodesics act as a substitute for geodesics in infinite-dimensional spaces
where geodesics are not always available. Unfortunately, they make the proofs
somewhat more complicated.

We recall the basic result on the existence of quasigeodesics; see [Vä1, 9.4].

4.2. Lemma. If a, b are points in a domain G and if c > 1, then there is a
c-quasigeodesic γ : ay b in G. ¤

The following result states, roughly speaking, that c-quasigeodesics with c close
to one are “ball λ-quasiconvex” with λ close to one. We use the notation λB(x, r) =
B(x, λr) for balls in E.

4.3. Lemma. For each λ > 1 there is c > 1 with the following property: Let
G ⊂ E be a domain and let B be a ball with λB ⊂ G. Let γ : a y b be a
c-quasigeodesic in G with a, b ∈ B̄. Then γ ⊂ λB.

Proof. Assume that γ : a y b is a c-quasigeodesic with a, b ∈ B̄, γ 6⊂ λB.
We must find a lower bound c ≥ c1(λ) > 1. We may assume that B = B(1).
Replacing γ by a subarc we may assume that γ ∩ B̄ = {a, b}. Set µ = (λ+1)/2 and
A1 = γ ∩ B̄(µ), A2 = γ \ B̄(µ). For each Borel set A ⊂ γ we write

lk(A) =

∫

A

dH 1x

δ(x)
,

where H 1 is the Hausdorff 1-measure. By 2.3 we obtain

k(a, b) ≤
∫

A1

dH 1x

|x|δ(x)
+

∫

A2

dH 1x

|x|δ(x)
≤ lk(A1) + lk(A2)/µ.

As lk(A1) ≤ ck(a, b)− lk(A2), this gives

lk(A2) ≤ (c− 1)µk(a, b)/(µ− 1).

Setting A3 = {x ∈ γ : µ < |x| ≤ λ} we have A3 ⊂ A2 and H 1(A3) ≥ 2(λ − µ) =
2(µ− 1). Each x ∈ A3 satisfies δ(x) ≤ δ(0) + |x| ≤ δ(0) + λ, whence

lk(A2) ≥ lk(A3) ≥ 2(µ− 1)

δ(0) + λ
.

As δ(x) ≥ δ(0)− |x| ≥ δ(0)− 1 for x ∈ [a, b], we have

k(a, b) ≤ lk([a, b]) ≤ 2/(δ(0)− 1).

Combining the estimates and substituting µ = (λ + 1)/2 we get

c− 1 ≥ (λ− 1)2

2(λ + 1)

δ(0)− 1

δ(0) + λ
.

Since δ(0) ≥ λ and since (t − 1)/(t + λ) is increasing in t, this yields c − 1 ≥
(λ− 1)3/4(λ + 1). Hence the lemma holds with c = 1 + (λ− 1)3/5(λ + 1). ¤

From 4.3 we obtain as a corollary the following quasi version of the shuttle
theorem 2.6:
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4.4. Theorem. Let G ⊂ E be a domain, let a, b ∈ G and let R ≥ |a − b|/2
be such that d(Y ∗(a, b; R), ∂G) > 0. Then for each ε > 0 there is c0 > 1 such that
if γ : a y b is a c0-quasigeodesic, then γ ⊂ Y (a, b; R) + B(ε), where the shuttle
Y (a, b; R) is defined in 2.5. ¤

We next prove Theorem 3.6 for general Hilbert spaces. Recall the notation λ(v)
from 3.3.

4.5. Theorem. Let a ∈ G and let v ∈ E be a unit vector. Then the function
t 7→ k(a, a + tv) is strictly increasing on the interval [0, λ(v)).

Proof. For 0 ≤ t < λ(v) we set xt = a + tv and f(t) = k(a, xt). Assume that
f is differentiable at a point t ∈ (0, λ(v)). It suffices to show that f ′(t) > 0. Since
t < λ(v) and δ(a) > 0, there is R > t/2 such that d(Y ∗(a, xt; R), G) > 0. Let
0 < s < t, 0 < ε < t− s and let c0 > 1 be the number given by 4.4 for b = xt. Let
1 < c < c0 and let γ : a y xt be a c-quasigeodesic. Then γ ⊂ Y (a, xt; R) + B(ε) by
4.4. The angle of Y is α = arcsin(t/2R) < π/2.

There is a point y = y(s) ∈ γ with (y − xs) · v = 0 and a point y′ ∈ Y with
|y − y′| < ε. Then β := ang(y′ − xt,−v) ≤ α and

|y − xt| ≤ |y′ − xt|+ ε ≤ (t− s + ε)/ cos β + ε < 2(t− s)/ cos α + t− s → 0

as s → t.
By 3.2, the numbers

K1(s) =
k(y, xt)δ(xt)

|y − xt| , K2(s) =
k(y, xs)δ(xt)

|y − xs|
converge to 1 as s → t. As γ is a c-quasigeodesic, we have

k(a, y) + k(y, xt) ≤ lk(γ) ≤ cf(t),

whence
f(s) ≤ k(a, y) + k(y, xs) = cf(t)− k(y, xt) + k(y, xs).

Furthermore,

|y − xt| ≤ (t− s− ε)/ cos β − ε, |y − xs| ≥ (t− s + ε) tan β + ε.

Combining the estimates and assuming that t−s is so small that K1(s)−K2(s) sin α >
0 we obtain

f(t)− f(s)

t− s
≥ K1(s)−K2(s) sin α

δ(xt)
− η

δ(xt)(t− s)

where
η = (K1 + K2)(1/ cos α + 1)ε + (c− 1)f(t)δ(xt).

Letting first c → 1, then ε → 0 and then s → t we obtain f ′(t) ≥ (1−sin α)/δ(xt) >
0 as desired. ¤

4.6. Theorem. Theorem 3.11 (about starlikeness) holds in every Hilbert space.

Proof. We can follow the proof of 3.11, but instead of choosing a point b ∈ ∂G
we choose a sequence of points bj ∈ ∂G with |bj − z/2| → |z|/2. ¤
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4.7. Theorem. Theorem 3.19 (about bilipschitz property) holds in every Hilbert
space.

Proof. The proof is again carried out by following the proof of 3.19, replac-
ing quasihyperbolic geodesics by c-quasigeodesics with c close to one and applying
Theorem 4.3 with a very small ε. The details are omitted. ¤

5. Smoothness of quasihyperbolic spheres

In this section we study the smoothness properties of a quasihyperbolic sphere
Sk(a, r) in a domain G ⊂ E. We start with an example which shows that this sphere
need not have a tangent hyperplane at each point.

5.1. Example. Let G be the domain R2 \ {0}. Using complex notation we
let f : R2 → G be the covering map fz = ez. This domain was studied by Mar-
tin and Osgood [MO, p. 38], who made the important observation that f maps
euclidean lengths to quasihyperbolic lengths. In particular, f maps each euclidean
disk B(z, r) onto the quasihyperbolic disk Bk(fz, r). It follows that for r > π, the
quasihyperbolic sphere Sk(1, r) = ∂Bk(1, r) consists of two Jordan curves, each of
which has a corner point on the negative real axis. Both corners are directed “into”
Bk(1, r).

5.2. Normal vectors. We shall show that, intuitively speaking, there cannot
exist any “outward directed corners” in Sk(a, r), at least in the finite-dimensional
case. To formulate the result rigorously, we give the following definitions.

Let G ⊂ E be a domain, let a ∈ G, r > 0, and set S = Sk(a, r). We say that
a unit vector e is an inner normal vector of S at a point b ∈ S if the following
mutually equivalent conditions are true:

lim inf
x→b, k(x,a)≥r

ang(x− b, e) ≥ π/2, lim sup
x→b, k(x,a)≥r

(x− b) · e
|x− b| ≤ 0.

Similarly, a unit vector u is an outer normal vector of S at b if

lim inf
x→b, k(x,a)≤r

ang(x− b, u) ≥ π/2, lim sup
x→b, k(x,a)≤r

(x− b) · u
|x− b| ≤ 0.

If b is an isolated point of S, the definition of an inner normal vector does not make
sense, and we agree that in this case each unit vector e ∈ E is an inner normal
vector of S at b.

Observe that these definitions do not rule out the possibility that S has several
inner or outer normal vectors at some point. In fact, at the corner points of Example
5.1, there are an infinite number of inner normal vectors and no outer normal vectors.
The next lemma implies that if S has a normal vector in both directions at some
point b ∈ S, then they are unique, and we say that the outer normal vector u is
the normal vector of S at b. In this case, the hyperplane T = b + u⊥ is the tangent
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hyperplane of S at b, which means that

lim
x→b, x∈S

d(x, T )

|x− b| = 0.

5.3. Lemma. If a quasihyperbolic sphere S has an inner normal vector e and
an outer normal vector u at a point b ∈ S, then u = −e.

Proof. Assume that u 6= −e. Let v be the unit vector with ang(v, e) =
ang(v, u) = ang(e, u)/2 < π/2. There is a sequence (tj) of positive numbers such
that either k(a, b + tjv) ≥ r for all j or k(a, b + tjv) ≤ r for all j. But both cases
give a contradiction by the definitions of inner and outer normal vectors. ¤

We next give the main result on normal vectors of quasihyperbolic spheres.

5.4. Theorem. Let γ : a y b be a quasihyperbolic geodesic in G and let v be
the left tangent vector of γ at b, given by Theorem 2.8. Then the vector e = −v
is an inner normal vector of S = Sk(a, r) at b where r = k(a, b). If u is an outer
normal vector of S at b, then u = v and u is the normal vector of S at b.

Proof. It suffices to show that e is an inner normal vector of S at b, because
this implies the last statement of the theorem by 5.3. If this is not true, then there
is a sequence of points xj 6= b such that

xj → b, k(xj, a) ≥ r, βj := ang(xj − b, e) ≤ β < π/2

for some β and for all j. Setting tj = |xj− b|/ cos βj and yj = b+ tje we have tj → 0
and (yj − xj) · (b − xj) = 0. Since −e is the left tangent vector of γ at b, we may
assume that for each j there is a point zj ∈ γ such that (zj − yj) · e = 0 and such
that |zj − yj| = εjtj where εj → 0.

We can now use an argument similar to that in 3.19. We have

r ≤ k(a, xj) ≤ k(a, zj) + k(zj, xj) = r − k(b, zj) + k(zj, xj),

whence k(b, zj) ≤ k(zj, xj). Furthermore, |zj − b| ≥ tj and

|zj − xj| ≤ |yj − xj|+ |zj − yj| = tj sin βj + tjεj ≤ tj(sin β + εj).

It follows that
k(zj, b)

k(zj, xj)

|zj − xj|
|zj − b| ≤ sin β + εj.

By 3.2, the left-hand side converges to 1 as j →∞, and we obtain the contradiction
1 ≤ sin β. ¤

5.5. Remark. Similar results have been independently obtained by Klén [Kl].

5.6. Geodesic points. Let G ⊂ E be a domain and let a ∈ G, r > 0, S =
Sk(a, r). We say that a point b ∈ S is a geodesic point of S if there is a quasi-
hyperbolic geodesic γ : ay b. If there is a quasihyperbolic geodesic γ : a y b1 such
that b is an interior point of γ, then b is a strongly geodesic point of S.
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The corner points of the quasihyperbolic sphere Sk(1, r) for r > π in Example
5.1 are geodesic but not strongly geodesic. For convex domains the situation is
simple:

5.7. Lemma. In a convex domain every point of a quasihyperbolic sphere is
strongly geodesic.

Proof. This follows from [Vä2, 2.1] and [MV, 3.12]. ¤
In nonconvex domains of arbitrary Hilbert spaces, no general existence theo-

rems for quasihyperbolic geodesics are known, and we restrict ourselves to the case
dim E < ∞.

5.8. Lemma. Let S = Sk(a, r) be a quasihyperbolic sphere in a domain G ⊂
Rn. Then every point of S is geodesic. If b is a boundary point of B̄k(a, r), then
there is a sequence of strongly geodesic points bj of S converging to b. If r < π/2,
then the strongly geodesic points are dense in S.

Proof. As each pair of points in G can be joined by a geodesic by [GO, Lemma
1], the first statement is clear. Assume that b ∈ ∂B̄k(a, r). Let ε > 0 and let
x ∈ G \ B̄k(a, r) be a point with k(x, b) < ε. Choose a quasihyperbolic geodesic
γ : a y x. Then γ meets S at a point b′ with k(b′, x) = k(a, x) − r ≤ k(x, b) < ε,
whence k(b, b′) < 2ε. As b′ is a strongly geodesic point of S, the second part of the
lemma is proved.

Finally, if r < π/2, then Bk(a, r) is strictly starlike by Theorem 3.11, and the
last statement follows. ¤

5.9. Questions. (1) Is the condition b ∈ ∂B̄k(a, r) always true for b ∈ Sk(a, r)?
In other words, can the function x 7→ k(a, x) have a local maximum at some point
of G?

(2) Does there exist a universal constant r1 > 0 such that for r < r1, every point
of a quasihyperbolic sphere Sk(a, r) in a domain G ⊂ Rn is strongly geodesic?

(3) Is some part of Lemma 5.8 true in all Hilbert spaces?
(4) Is the answer to (2) affirmative in all Hilbert spaces?

5.10. Theorem. Let b be a geodesic point of S = Sk(a, r) in a domain G. Then
S has at least one inner normal vector e and at most one outer normal vector u at
b. If u exists, then u is the normal vector of S at b.

If b is a strongly geodesic point of S, then S has a normal vector at b.

Proof. The first part of the theorem follows from 5.4. If b is a strongly geodesic
point of S, then there is a quasihyperbolic geodesic γ1 : ay b1 such that b ∈ γ1 and
k(a, b1) = r + r1 with r1 > 0. Applying Theorem 5.4 to the subarc of γ1 from b1

to b we see that the tangent vector of γ1 at b is an inner normal vector of Sk(b1, r1)
and hence an outer normal vector of S at b. ¤

5.11. Convex domains. We finally consider quasihyperbolic balls in a convex
domain G ⊂ E. We recall that then each quasihyperbolic ball is strictly convex
by [MV, 2.13]. We shall show that, moreover, each quasihyperbolic sphere S in G
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is a C1 smooth surface, that is, S has a normal vector at each point b ∈ S and
this normal vector is a continuous function of b. As a preparation, we consider the
following situation.

Fix a unit vector e0 ∈ E, and let e be another unit vector with e · e0 > 0.
For each h ∈ e⊥0 there is a unique real number t such that h + te0 ∈ e⊥; explicitly
t = −(e·h)/(e·e0). Thus t is linear in h, and we write t = L(e)h where L(e) : e⊥0 → R
is linear. We show that

(5.12) ang(e, e0) ≤ |L(e)|
where |L(e)| is the operator norm.

We may assume that e 6= e0. Let v be a unit vector in e⊥0 ∩ span(e, e0). Setting
α = ang(e, e0) and y = v + (L(e)v)e0 we have ang(y, v) = α. Hence

|L(e)| ≥ |L(e)v| = |y − v| = tan α ≥ α,

which is (5.12).

5.13. Theorem. Let S = Sk(a, r) be a quasihyperbolic sphere in a convex
domain G ⊂ E. Then S has a normal vector u(b) at each point of S, and the map
u : S → S(1) is continuous.

Proof. As each point b ∈ S is strongly geodesic by [MV, 3.12], the normal vector
u(b) exists by 5.10. We show that the inner normal vector e = −u is continuous at
an arbitrary point b0 ∈ S. We may assume that b0 = 0, and we set e0 = e(b0). Since
Bk(a, r) is convex by [MV, 2.13], there is a ball U = e⊥0 ∩ B(t) in e⊥0 and a convex
function f : U → R such that the set V = {x + f(x)e0 : x ∈ U} is a neighborhood
of 0 in S.

Let x ∈ U and set b = x+f(x)e0 ∈ V . Since u(b) is the normal vector of S at b,
it is easy to see that f is Fréchet differentiable at x with derivative Df(x) = L(e(b))
where L is defined in 5.11. In particular, Df(0) = 0. By a general property of
convex functions [BL, 4.7], the function Df from U to the dual space of e⊥0 is
continuous. Let P : E → e⊥0 be the orthogonal projection. By (5.12) we obtain

ang(e(b), e0) ≤ |L(e(b))| = |Df(Pb)| → |Df(0)| = 0

as b → 0, whence e is continuous at 0. ¤
5.14. Corollary. If G ⊂ R2 is a convex domain, then each quasihyperbolic

circle in G is a C1 smooth Jordan curve. ¤

Appendix. Smoothness of arcs

We show that an arc γ ⊂ E is smooth in the sense of 2.7 if and only if it has a C1

parametrization with nonvanishing derivative. The result is probably well known
but difficult to find in the literature. A related result is in [Gl, 10.1]. As before, E
is a Hilbert space.

In one direction the result is very elementary:
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A.1. Theorem. Let ϕ : [t1, t2] → E be an injective C1 map with ϕ′(t) 6= 0 for
all t ∈ [t1, t2] (one-sided derivatives at the endpoints). Then γ = im ϕ is a smooth
arc with tangent vector v(ϕ(t)) = ϕ′(t)/|ϕ′(t)|.

Proof. Let t1 ≤ t < t2. For 0 < h < t2 − t we can write

ϕ(t + h)− ϕ(t) = hϕ′(t) + ha(h), |ϕ(t + h)− ϕ(t)| = h|ϕ′(t)|+ hα(h),

where a(h) and α(h) tend to zero as h → 0. Hence

ϕ(t + h)− ϕ(t)

|ϕ(t + h)− ϕ(t)| =
ϕ′(t) + a(h)

|ϕ′(t)|+ α(h)
→ ϕ(t)

|ϕ′(t)|
as h → 0. Thus ϕ′(t)/|ϕ′(t)| is the right tangent vector of γ at ϕ(t). Similarly we
see that it is the left tangent vector at ϕ(t), t1 < t ≤ t2. ¤

In the converse part we make use of the following elementary property of real
functions:

A.2. Lemma. Suppose that f : (a, b) → R is continuous and that for each
x ∈ (a, b) there is h > 0 such that f(y) > f(x) whenever x < y < x + h. Then f is
strictly increasing.

Proof. The condition implies that f cannot have a local maximum. ¤
A.3. Theorem. If γ ⊂ E is a smooth arc, then it is rectifiable and its length

parametrization ϕ : [0, l(γ)] → γ is of class C1.

Proof. There is a continuous map v : γ → E such that v(z) is the tangent
vector at z (one-sided at the endpoints). Let z be an interior point of γ. Setting
fx = x · v(z) we obtain a 1-Lipschitz map f : γ → R. Let 0 < ε < 1/2. Choose an
open arc neighborhood βz of z in γ such that |v(x) − v(z)| < ε for all x ∈ βz. We
show that

(A.4) |fx− fy| ≥ (1− 2ε)|x− y|
for all x, y ∈ βz.

Let x ∈ βz. There is an open arc neighborhood αx of x in βz such that |(y −
x)/|y−x|− v(x)| < ε for all y ∈ αx with y > x. For these y we have (y−x) · v(x) >
(1− ε)|y − x|, whence

fy − fx = (y − x) · v(x) + (y − x) · (v(z)− v(x)) > (1− 2ε)|x− y| > 0.

By A.2 this implies that f |βz is an embedding onto an open interval J ⊂ R. Let
g : J → βz be its inverse. Considering similarly the case y < x we see that

lim sup
s→t

|g(s)− g(t)|
|s− t| ≤ Mε =

1

1− 2ε

for all t ∈ J . Hence g is Mε-Lipschitz (see [Fe, 2.2.7]), and A.4 is proved.
From A.4 it follows that βz is rectifiable. Treating similarly the endpoints of

γ we see that γ is rectifiable. Set λ = l(γ) and let ϕ : [0, λ] → γ be the length
parametrization of γ. We assume that 0 ≤ s < λ, set z = ϕ(s) and show that
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v(z) is the right derivative of ϕ at s. The left case can then be treated by obvious
modifications.

Let βz, f, g be as above, and assume that s′ > s with z′ = ϕ(s′) ∈ βz. Then
s′− s = l(γ[z, z′]). Write t = fz, t′ = fz′. As g is Mε-Lipschitz, we get l(γ[z, z′]) ≤
Mε(t

′− t) ≤ Mε|z′− z|. Since (z′− z)/|z′− z| → v(z) and since ε is arbitrary, these
estimates imply that

lim
t′↘t

ϕ(s′)− ϕ(s)

s′ − s
= v(z). ¤
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