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Abstract. In this note we use a scaling or blow up argument to obtain estimates to solutions
of equations of p-Laplacian type.

1. Introduction

Weak solutions of equation

div(|∇u|p−2∇u) = 0, 1 < p < ∞,

are called p-harmonic. It is known that p-harmonic functions are in C1,α for some
α > 0, where for p 6= 2 one cannot have α ≥ 1 in general; see [3] for sharp regularity
in the planar case. In this note we present a blow up argument and show that if
0 < α ≤ 1 is such that the class of p-harmonic functions are continuously embedded
into C1,α, then the only entire p-harmonic functions that grow at infinity slower
than |x|1+α are the linear ones.

We formulate the proof and the growth rate result only in the p-Laplacian
setting, but the argument is more general. The only ingredients required are the
following: there is a class F of functions so that F contains certainly rescaled
versions of functions and F can be embedded into C1,α. Then nonlinear functions
in F grow at least as fast as |x|1+α.

As an application of the growth rate result we show that a nonnegative p-
harmonic function in a half space is actually linear if it vanishes on the boundary of
the half space. This gives an affirmative answer to a query of Bonk, who also found
independently a different proof for this fact.

2000 Mathematics Subject Classification: Primary 35J60; Secondary 35J15.
Key words: p-Laplace, scaling.
T.K. (partially) and X. Z. supported by the Academy of Finland, H. S. partially supported

by Swedish Research Council. The present work is part of the ESF programme GLOBAL.



596 Tero Kilpeläinen, Henrik Shahgholian and Xiao Zhong

2. Growth of entire solutions

We prove the following two theorems:

2.1. Theorem. Let u be p-harmonic in Rn. There is a number β > 0 depending
only on p and n so that if

|u(x)| = o(|x|1+β) as |x| → ∞,

then u is (affine) linear.

The second is an immediate consequence of the first one.

2.2. Theorem. Let u be p-harmonic in Rn. If

|u(x)| = o(|x|) as |x| → ∞,

then u is constant.

2.3. Remark. It is known that there are no entire harmonic functions (i.e.
p = 2) with noninteger growth rate. That is, if u is harmonic (i.e. 2-harmonic) in
Rn with

lim sup
|x|→∞

log |u(x)|
log |x| = γ ∈]0,∞[ ,

then γ is an integer. If p 6= 2, the situation is different. Let

γ =
1

6

(
7 +

1

p− 1
+

√
1 +

14

p− 1
+

1

(p− 1)2

)
.

Observe that γ ∈ ]4
3
, 2[ for p > 2; for 1 < p < 2 the constant γ > 2 but it

has noninteger value for most of p’s. There are entire p-harmonic functions whose
growth rate is = γ. Constructions for such solutions are done by Krol’ [4], Tolksdorff
[9], Aronsson [2], and Iwaniec and Manfredi [3]. Basically all these examples are
quasiradial functions in the plane (higher dimensional examples are obtained by
adding dummy variables.)

Hence Theorem 2.1 is optimal as stated. In the plane case one can choose β ≥ 4
3

for all p (see Theorem 2.5 below), but in the higher dimensions we do not know if
β needs to be closer to 0.

Proof of Theorem 2.1. Choose a sequence Rj →∞ and write

Sj = sup
B(0,Rj)

|u|.

Then the scaled functions

uj(x) =
u(Rjx)

Sj

are p-harmonic and |uj| ≤ 1 in B(0, 1).
By a well known regularity estimate (see e.g. Lewis [5]), there is a constant

β = β(n, p) > 0 so that the C1,β(B(0, 1)) norms of uj are bounded, independently
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of j. Hence the quantities

Cj(x) =
|Duj(x)−Duj(0)|

|x|β =
R1+β

j

Sj

|Du(Rjx)−Du(0)|
|Rjx|β

are uniformly bounded in B(0, 1
2
). Since the growth condition |u(x)| = o(|x|1+β)

implies

lim
j→∞

R1+β
j

Sj

= ∞,

we conclude that

sup
y∈B(0,

Rj
2

)

|Du(y)−Du(0)|
|y|β = sup

x∈B(0, 1
2
)

|Du(Rjx)−Du(0)|
|Rjx|β → 0 as j →∞.

But this implies that

Du(y) = Du(0) for all y ∈ Rn,

and Theorem 2.1 follows. ¤
2.4. Remark. Another way to prove Theorem 2.1 for the p-Laplacian goes via

the estimate
osc

B(x0,r)
|∇u| ≤ C sup

B(x0,R)

|∇u|
( r

R

)α

that can be found e.g. in [7, Theorem 3.44]. For more general operators the oscilla-
tion estimate might not be available but one can prove the embedding into C1,α by
other means. We would like to emphasize here that our method works also in those
cases where one can establish bounded embedding to C1,α even though there is no
oscillation estimate for the gradient.

Appealing to the sharp regularity result in [3] our method immediately yields
the following result in the planar case:

2.5. Theorem. Let u be p-harmonic in R2 so that

|u(x)| = o(|x|γ) as |x| → ∞.

If

γ =

{
2 if 1 < p ≤ 2,
1
6

(
7 + 1

p−1
+

√
1 + 14

p−1
+ 1

(p−1)2

)
if p > 2,

then u is (affine) linear.

3. Nonnegative functions in the half space

As an application of Theorem 2.1 we prove the following result.

3.1. Theorem. If u is a nonnegative p-harmonic function on a half space H,
continuous up to the boundary with u = 0 on ∂H, then u is (affine) linear.
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Theorem 3.1 follows by combining the following lemma with Theorem 2.1, when
we observe that u in Theorem 3.1 can be reflected through the hyperplane ∂H and
the resulting function is p-harmonic in the whole space Rn (this can be easily verified
by a direct computation, see [8]).

3.2. Lemma. Let u be a nonnegative p-harmonic function on a half space H,
continuous up to the boundary. If u = 0 on ∂H, then

|u(x)| = O(|x|) as |x| → ∞.

Proof. We assume, as we clearly may, that the half space H is the upper half
space

H = Rn
+ = {(x1, x2, . . . , xn) : xn > 0}.

We first show that there is a constant c = c(n, p) > 0 so that

(3.3) u(Ren) ≤ cR u(en) for all R > 2;

here en = (0, 0, . . . , 0, 1) is the nth unit vector in Rn. For this, we write x0 = Ren =
2ren and observe that by Harnack’s inequality

u(x) ≈ c u(x0) for all x ∈ B̄(x0, r),

where c = c(n, p) > 0. Now, let v be the p-capacitary potential in B(x0, 2r) \
B̄(x0, r), i.e.

v(x) =

2r∫
|x−x0|

t(1−n)/(p−1) dt

2r∫
r

t(1−n)/(p−1) dt

.

Then since v is p-harmonic in B(x0, 2r) \ B̄(x0, r), we have by comparison principle
that

u(x) ≥ cu(x0)v(x) for all x ∈ B(x0, 2r) \ B̄(x0, r),

where c = c(n, p) > 0. The claim (3.3) follows from this estimate evaluated at
x = en, for

1

v(en)
=

2r∫
r

t(1−n)/(p−1)dt

2r∫
2r−1

t(1−n)/(p−1) dt

= 1 +

2r−1∫
r

t(1−n)/(p−1) dt

2r∫
2r−1

t(1−n)/(p−1) dt

≤ 1 +
(r − 1)r(1−n)/(p−1)

(2r)(1−n)/(p−1)
≤ 1 +

r − 1

2(1−n)/(p−1)

≤ c2r = cR,

where c = c(n, p). The estimate (3.3) is proved.
To complete the proof the lemma, we employ the boundary Harnack principle

(see [1] or [6]) which states that there is a constant c depending on n and p only so



Growth estimates through scaling for quasilinear partial differential equations 599

that
u(x)

xn

≤ c
u(Ren)

R
for all x ∈ B(0, 2R) ∩Rn

+ and R > 0;

here xn is the nth coordinate of x. Next we combine this with (3.3) and have

u(x) ≤ c
u(Ren)

R
xn ≤ c u(en)xn ≤ c |x|u(en)

for x ∈ B(0, 2R) and R > 2. The lemma follows. ¤
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