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Abstract. We consider superharmonic functions relative to a quasi-linear second order elliptic
differential operator L with lower order term and weighted structure conditions. We show that,
given a nonnegative finite Radon measure ν, there is a superharmonic function u satisfying Lu = ν

with weak zero boundary values. Moreover, we give a pointwise upper estimate for superharmonic
functions in terms of the Wolff potential.

Introduction

Let G be an open set in RN (N ≥ 2). In the classical potential theory, it is
well known that given an ordinary superharmonic function u in G, there exists a
nonnegative Radon measure ν in G such that the equation

(1) − div(∇u) = ν

holds in the distribution sense in G. Conversely, if G is bounded and ν is a nonneg-
ative finite Radon measure, then

(2) u(x) =

∫

G

g(x, y) dν(y)

is superharmonic and satisfies the equation (1), where g(x, y) is the Green function
for the Laplace equation (for example, see [AG, Chapter 4]).

In nonlinear setting, no integral representation such as (2) is available. However,
in [KM1], [KM2] and [M], relations between A -superharmonic functions (see [HKM,
Chapter 7] for the definition) and solutions for quasi-linear second order elliptic
differential equations involving measures

(3) − div A (x,∇u(x)) = ν
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are investigated, where A (x, ξ) : RN × RN → RN satisfies structure conditions
of p-th order with 1 < p < ∞. They showed that for every nonnegative finite
Radon measure ν, there is an A -superharmonic function satisfying the equation (3)
with weak zero boundary values. Moreover, they gave a pointwise estimate for an
A -superharmonic function in terms of the Wolff potential. The existence and the
uniqueness of the solution to more generally quasi-linear elliptic equations involving
measures, including the equation (3), have been studied in many papers [BG], [B+5],
[R] and [KX], etc.

On the other hand, in the previous papers [MO1], [MO2] and [MO3], we devel-
oped a potential theory for elliptic quasi-linear equations of the form
(E) − div A (x,∇u(x)) + B(x, u(x)) = 0

on a domain Ω in RN (N ≥ 2), where A (x, ξ) : Ω ×RN → RN satisfies weighted
structure conditions of p-th order with weight w(x) as in [HKM] and [M], and
B(x, t) : Ω×R → R is nondecreasing in t (see section 1 below for more details). We
called superharmonic functions relative to the equation (E) (A , B)-superharmonic
functions (see section 2 below for the definition).

The purpose of the present paper is to extend results in [KM1], [KM2] and
[M] to those relative to the equation (E), namely, to investigate relations between
(A ,B)-superharmonic functions and solutions of the equation
(Eν) − div A (x,∇u(x)) + B(x, u(x)) = ν

with A and B as above.
We first investigate properties of (A , B)-superharmonic functions. Actually

we show the ”ess lim inf” property, the fundamental convergence theorem, and the
integrability of (A , B)-superharmonic functions. In section 3, we show that every
(A ,B)-superharmonic function determines a nonnegative Radon measure ν by the
equation (Eν) and conversely for every nonnegative finite Radon measure ν, there
is an (A , B)-superharmonic function u satisfying the equation (Eν) with weak zero
boundary values. In section 4, we give a pointwise upper estimate for (A , B)-
superharmonic functions in terms of the weighted Wolff potentials, and using this
estimate, we can show that an (A ,B)-superharmonic function is finite except on
A -polar set (see [HKM, Chapter 10] for the definition). Finally, in section 5, we
discuss the uniqueness of the so-called entropy solution to the equation (Eν).

Throughout this paper, we use some standard notation without explanation.
One may refer to [HKM] for most of such notation. Also, we say that ν is a Radon
measure if ν is a nonnegative, Borel regular measure which is finite on compact
sets.
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1. Preliminaries

Let Ω be a domain in RN (N ≥ 2). As in [MO1], [MO2] and [MO3] we assume
that A : Ω × RN → RN and B : Ω × R → R satisfy the following conditions for
1 < p < ∞ and a weight w which is p-admissible in the sense of [HKM]:
(A.1) x 7→ A (x, ξ) is measurable on Ω for every ξ ∈ RN and ξ 7→ A (x, ξ) is

continuous for a.e. x ∈ Ω;
(A.2) A (x, ξ) · ξ ≥ α1w(x)|ξ|p for all ξ ∈ RN and a.e. x ∈ Ω with a constant

α1 > 0;
(A.3) |A (x, ξ)| ≤ α2w(x)|ξ|p−1 for all ξ ∈ RN and a.e. x ∈ Ω with a constant

α2 > 0;
(A.4)

(
A (x, ξ1)−A (x, ξ2)

) · (ξ1 − ξ2

)
> 0 whenever ξ1, ξ2 ∈ RN , ξ1 6= ξ2, for a.e.

x ∈ Ω;
(B.1) x 7→ B(x, t) is measurable on Ω for every t ∈ R and t 7→ B(x, t) is continu-

ous for a.e. x ∈ Ω;
(B.2) For any open set G b Ω, there is a constant α3(G) ≥ 0 such that |B(x, t)| ≤

α3(G)w(x)(|t|p−1 + 1) for all t ∈ R and a.e. x ∈ G;
(B.3) t 7→ B(x, t) is nondecreasing on R for a.e. x ∈ Ω.

We consider elliptic quasi-linear equations of the form

(E) − div A (x, ∇u(x)) + B(x, u(x)) = 0

on Ω.
For the nonnegative measure µ : dµ(x) = w(x) dx and an open subset G of Ω,

we consider the weighted Sobolev spaces H1,p(G; µ), H1,p
0 (G; µ) and H1,p

loc (G; µ) (see
[HKM] for details).

Let G be an open subset of Ω. A function u ∈ H1,p
loc (G; µ) is said to be a (weak)

solution of (E) in G if
∫

G

A (x,∇u) · ∇ϕdx +

∫

G

B(x, u)ϕdx = 0

for all ϕ ∈ C∞
0 (G). A function u ∈ H1,p

loc (G; µ) is said to be a supersolution (resp.
subsolution) of (E) in G if

∫

G

A (x,∇u) · ∇ϕ dx +

∫

G

B(x, u)ϕdx ≥ 0 (resp. ≤ 0)

for all nonnegative ϕ ∈ C∞
0 (G) .

Proposition 1.1. (Comparison principle) [O1, Lemma 3.6] Let G be a bounded
open set in Ω and let u ∈ H1,p(G; µ) be a supersolution and v ∈ H1,p(G; µ) a
subsolution of (E) in G. If min(u− v, 0) ∈ H1,p

0 (G; µ), then u ≥ v a.e. in G.

A continuous solution of (E) in an open subset G of Ω is called (A ,B)-harmonic
in G.



174 Takayori Ono

We say that an open set G in Ω is (A ,B)-regular, if G b Ω and for any
θ ∈ H1,p

loc (Ω; µ) which is continuous at each point of ∂G, there exists a unique
h ∈ C(G) ∩H1,p(G; µ) such that h = θ on ∂G and h is (A ,B)-harmonic in G.

Proposition 1.2. ([MO1, Theorem 1.4] and [HKM, Theorem 6.31]) Any ball
B b Ω and any polyhedron P b Ω are (A ,B)-regular.

We recall the definition of the (p, µ)-capacity which is given in [HKM]. For a
compact set K and an open set G such that K ⊂ G ⊂ RN , let

capp,µ(K, G) = inf

∫

G

|∇u|p dµ,

where the infimum is taken over all u ∈ C∞
0 (G) with u ≥ 1 on K. Moreover, for an

open set U ⊂ G, set

capp,µ(U,G) = sup
K⊂U

K compact

capp,µ(K, G),

and, finally, for an arbitrary set E ⊂ G, define

capp,µ(E, G) = inf
E⊂U⊂G
U open

capp,µ(U,G),

and the number capp,µ(E, G) is called the (p, µ)-capacity of (E, G).
If a set E ⊂ RN satisfies

capp,µ(E ∩G,G) = 0

for all open sets G ⊂ RN , then we say that E is of (p, µ)-capacity zero, and write
capp,µE = 0. Also if a property holds except on a set of (p, µ)-capacity zero, we say
that it holds (p, µ)-quasieverywhere, or simply (p, µ)-q.e.

For E ⊂ RN and x ∈ RN , let

Wp,µ(x,E) =

∫ 1

0

(
capp,µ

(
B(x, t) ∩ E,B(x, 2t)

)

capp,µ

(
B(x, t), B(x, 2t)

)
)1/(p−1)

dt

t
.

In this paper, B(x, r) denotes an open ball with center x and radius r.

Proposition 1.3. ([M, Theorem 5.12], [HKM, Theorem 6.27 and Theorem 8.10])
Suppose that G is an open set with G b Ω. Let T =

{
x ∈ ∂G |Wp,µ(x, {G) < ∞}

.
Then capp,µT = 0.

2. Properties of (A , B)-superharmonic functions

In this section, we will investigate properties of (A ,B)-superharmonic func-
tions. Actually we will show the “ess lim inf” property, the fundamental convergence
theorem, and the integrability of (A ,B)-superharmonic functions.

Let G be an open subset in Ω. A function u : G → R ∪ {∞} is said to be
(A ,B)-superharmonic in G if it is lower semicontinuous, finite on a dense set in
G and, for each open set U b Ω and for h ∈ C(U) which is (A ,B)-harmonic in
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U , u ≥ h on ∂U implies u ≥ h in U . (A , B)-subharmonic functions are similarly
defined. Note that a continuous supersolution of (E) is (A ,B)-superharmonic (cf.
[MO1, §2]). If u is (A ,B)-superharmonic in G, then so is u+ c for any nonnegative
constant c. If u1 and u2 are (A ,B)-superharmonic in G, then so is min(u1, u2).

Lemma 2.1. For any open set U b Ω, there exists a nonnegative bounded
continuous (A ,B)-superharmonic function u0 in U .

Proof. Let V be an (A , B)-regular open set such that U ⊂ V b Ω. There
exists h0 ∈ C(V ) such that it is (A , B)-harmonic in V and h0 = 0 on ∂V . Then h0

is bounded, so that there exists a constant c ≥ 0 such that h0 + c ≥ 0 in U . Then,
u0 = h0 + c has the required properties. ¤

Proposition 2.1. ([MO1, Corollary 4.1]) Any supersolution of (E) has an
(A ,B)-superharmonic representative.

In general, an (A ,B)-superharmonic function is not always a supersolution (for
example, see [HKM, Example 7.47] or [K, p. 108]). Using [MO1, Proposition 1.2],
we can show the following proposition in the same manner as in the proof of [HKM,
Theorem 7.19 and Corollary 7.20] (see [O2, Proposition 5.2.2] for details).

Proposition 2.2. Let G be an open set in Ω and u be an (A , B)-superharmonic
function in G. If there is g ∈ H1,p

loc (G; µ) such that u ≤ g a.e. in G, then u is a
supersolution of (E) in G.

Corollary 2.1. Let u be an (A ,B)-superharmonic functions in an open set
G ⊂ Ω, then min(u, k) ∈ H1,p

loc (G; µ) for any k > 0.

Proof. Let U b G and u0 be a function as in Lemma 2.1. Then, uk = min(u, u0+
k) is a bounded (A , B)-superharmonic function, and hence it belongs to H1,p

loc (U ; µ)

by the above proposition. Hence min(u, k) = min(uk, k) ∈ H1,p
loc (U ; µ). Since U b G

is arbitrary, we have the required assertion. ¤
Next, we will establish the “ess lim inf” property for (A , B)-superharmonic

functions (Theorem 2.1). To show this property, we prepare the following lemma.

Lemma 2.2. For each x0 ∈ Ω and γ ∈ R there exist a ball B(x0, r) b Ω and
an (A ,B)-harmonic function h on B such that h(x0) = γ.

Proof. Let T > 0 such that −T ≤ γ ≤ T . Choose B0 = B(x0, r0) with B0 ⊂ Ω.
Set b1(x) = B(x, T + 1), b2(x) = B(x,−T − 1) and uj be the continuous solution
of − div A (x,∇u) + bj(x) = 0 in B0 with boundary values 0 on ∂B0 (j = 1, 2).
Since each uj is continuous, there is r > 0 (r ≤ r0) such that |uj − uj(x0)| ≤ 1 on
B = B(x0, r), j = 1, 2. Set v1 = u1 − u1(x0) + T and v2 = u2 − u2(x0) − T on B.
Since v1 ≤ T + 1 on B,

− div A (x,∇v1(x)) + B(x, v1(x)) ≤ − div A (x,∇u1(x)) + b1(x) = 0

on B. Hence, since v1 is continuous, v1 is (A ,B)-subharmonic in B. Similarly
we see that v2 is (A ,B)-superharmonic in B. Set T1 = supB v1 + 1 and T2 =
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− infB v2 + 1. Then T ≤ Tj < ∞, j = 1, 2. Let ht be the (A , B)-harmonic
function on B with boundary values t on ∂B. By the comparison principle, we have
hT1(x0) ≥ v1(x0) = T and h−T2(x0) ≤ v2(x0) = −T . Since t 7→ ht(x0) is continuous
(see [MO1, Corollary 3.1 and the proof of Proposition 3.1]), it follows that

{ht(x0) | − T2 ≤ t ≤ T1} ⊃ [−T, T ],

as required. ¤
To show the “ess lim inf” property, we need the following proposition (see [MO1,

Proposition 2.3]).

Proposition 2.3. (Poisson modification) Let G be an open set in Ω and let
V b G be an (A ,B)-regular open set. For an (A ,B)-superharmonic function u
on G, we define

uV = sup{h ∈ C(V ) |h ≤ u on ∂V and h is (A ,B)-harmonic in V }.
Then

P (u, V ) :=

{
u in G \ V,

uV in V

is (A , B)-superharmonic in G and (A ,B)-harmonic in V , and P (u, V ) ≤ u in G.
If u ∈ H1,p

loc (G; µ), then u|V − uV ∈ H1,p
0 (V ; µ).

Theorem 2.1. (The “ess lim inf” property) Let G be an open subset in Ω. If
u is an (A ,B)-superharmonic function in G, then u(x) = ess lim inf

y→x
u(y) for each

x ∈ G.

Proof. Fix x ∈ G and let λ = ess lim infy→x u(y). Then λ ≥ lim infy→x u(y) ≥
u(x). To show the converse inequality, let γ < λ. By the above lemma, there is a
ball B1 = B(x, r1) and an (A , B)-harmonic function h on B1 such that B1 ⊂ G
and h(x) = γ. Since h is continuous,

ess lim inf
y→x

{u(y)− h(y)} = λ− γ > 0.

Hence there is B = B(x, r) with 0 < r < r1 such that u > h a.e. on B. Now,
min(u, h) is (A , B)-superharmonic on B1 and min(u, h) ≤ h, which assures min(u,h)
∈ H1,p(B; µ) by Proposition 2.2. Let 0 < ρ < r and v = P (min(u, h), B(x, ρ)) in the
notation in Proposition 2.3. Then v is a supersolution of (E) on B by Proposition 2.2,
v ≤ min(u, h) and min(u, h) − v ∈ H1,p

0 (B; µ). Hence, noting that min(u, h) = h
a.e. on B, we have

∫

B

A (x,∇v) · (∇h−∇v) dx +

∫

B

B(x, v)(h− v) dx ≥ 0

and ∫

B

A (x,∇h) · (∇h−∇v) dx +

∫

B

B(x, h)(h− v) dx = 0,
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so that∫

B

[
A (x,∇h)−A (x,∇v)

] · (∇h−∇v) dx +

∫

B

[
B(x, h)−B(x, v)

]
(h− v) dx ≤ 0.

This implies ∇h = ∇v a.e. on B by (A.4) and (B.3). Since v = min(u, h) = h a.e.
on B \ B(x, ρ), it follows that v = h a.e. on B, and hence v = h everywhere on
B(x, ρ) by virtue of continuity of both v and h on B(x, ρ). In particular, v(x) =
h(x). Since v ≤ min(u, h) ≤ h, this implies that min(u(x), h(x)) = h(x), namely,
u(x) ≥ h(x) = γ. ¤

Corollary 2.2. Let G be an open subset in Ω and let u and v be (A , B)-
superharmonic functions in G. If u ≥ v a.e. in G, then u ≥ v everywhere in G.

Next, we will show the fundamental convergence theorem (Theorem 2.2). For
this, we prepare a proposition and two lemmas. The following proposition can be
shown in the same manner as [HKM, Theorem 7.4] (see [O2, Proposition 5.1.4] for
details).

Proposition 2.4. Let G be an open subset in Ω. Let F be a family of (A , B)-
superharmonic functions in G which is locally uniformly bounded below. Then the
lower semicontinuous regularization of inf F is (A ,B)-superharmonic in G.

Suppose that G be an open set with G b Ω and E ⊂ G. Let h be a bounded
(A ,B)-harmonic function in G, u be an (A ,B)-superharmonic function in G with
u ≥ h in G. We define

Φu,h
E (G) =

{
v

∣∣∣∣
v is (A , B)-superharmonic in G,
v ≥ u on E and v ≥ h on G \ E

}
,

Ru,h
E (G) = inf Φu,h

E (G) and R̂u,h
E (G)(x) = lim

r→0
inf

B(x,r)∩G
Ru,h

E (G) for each x ∈ G. By

the above proposition, R̂u,h
E (G) is (A ,B)-superharmonic in G.

The following lemma can be shown in the same manner as [HKM, Lemma 8.4].

Lemma 2.3. Suppose that G is an open set with G b Ω and E ⊂ G. Let
h be a bounded (A ,B)-harmonic function in G, u be an (A , B)-superharmonic
function in G with u ≥ h in G. Then R̂u,h

E is (A , B)-harmonic in G\E, R̂u,h
E = Ru,h

E

in G \ ∂E and R̂u,h
E = u in the interior of E.

Lemma 2.4. Suppose that G is open set with G b Ω and E ⊂ G is com-
pact. Let h be a bounded (A , B)-harmonic function in G and u be an (A , B)-
superharmonic function in G with u ≥ h in G. Then,

capp,µ

{
x ∈ G | R̂u,h

E (G)(x) < Ru,h
E (G)(x)

}
= 0.

Proof. Set S = {x ∈ G | R̂u,h
E (G)(x) < Ru,h

E (G)(x)}. By the above lemma,
S ⊂ ∂E. Let T = {x ∈ ∂E |Wp,µ(x,E) < ∞}. Since capp,µT = 0 (Proposition 1.3),
the proof is complete if we show S ⊂ T .
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Let U be an (A ,B)-regular set such that E ⊂ U b G. Choose an increasing
sequence of nonnegative functions ψi ∈ C∞

0 (U) such that ψi + h → u on E. Set
ϕi = ψi + h. For each i there exists an (A ,B)-harmonic function si in U \ E with
si−ϕi ∈ H1,p

0 (U \E; µ). It follows from [O1, Theorem 5.3] that limy→x,y∈U\E si(y) =

ϕi(x) for x ∈ ∂E \ T . We shall show Ru,h
E (G) ≥ si in U \ E.

Choose c > 0 such that h + c > 0 on U . For ε > 0, let v ∈ Φu+ε,h
E (G). Then

vi = min(v, h+ c+supU ψi) is bounded and (A ,B)-superharmonic in U , and hence
it is a supersolution of (E) in U by Proposition 2.2. Since v ≥ u + ε > ϕi on E
and ϕi = h on a complement of supp ψi, vi ≥ ϕi outside a compact set in U \ E.
Thus 0 ≥ min(vi− si, 0) ≥ min(vi−ϕi, 0)+min(ϕi− si, 0) ∈ H1,p

0 (U \E; µ), so that
min(vi − si, 0) ∈ H1,p

0 (U \ E; µ). The comparison principle (Proposition 1.1) yields
vi ≥ si a.e. in U \E. Since vi is (A ,B)-superharmonic and si is (A , B)-harmonic,
by Corollary 2.2 vi ≥ si in U \E. Hence v ≥ si, so that Ru,h

E (G)+ε ≥ Ru+ε,h
E (G) ≥ si

in U \ E. Letting ε → 0, we have Ru,h
E (G) ≥ si in U \ E.

Therefore, for x ∈ ∂E \ T ,

R̂u,h
E (G)(x) ≥ min

(
lim inf

y→x,y∈U\E
Ru,h

E (G)(y), u(x)

)

≥ min

(
lim

y→x,y∈U\E
si(y), u(x)

)
= min (ϕi(x), u(x)) = ϕi(x).

Letting i → ∞, we have R̂u,h
E (G)(x) ≥ u(x) ≥ Ru,h

E (G)(x) for x ∈ ∂E \ T . This
implies S ⊂ T . ¤

Now, by using the above lemmas, we can show the fundamental convergence
theorem.

Theorem 2.2. (Fundamental convergence theorem) Let G be an open subset
in Ω and let F be a family of (A ,B)-superharmonic functions in G which is locally
uniformly bounded below. Then the lower semicontinuous regularization ŝ of s =
inf F is (A ,B)-superharmonic in G and ŝ = s (p, µ)-q.e. in G.

Proof. By Proposition 2.4, we only show that ŝ = s (p, µ)-q.e. in G. In the
same manner as in the proof of [HKM, Theorem 8.2], Choquet’s topological lemma
([HKM, Lemma 8.3]) yields that there exists a decreasing sequence vi ∈ F with the
limit v such that the lower semicontinuous regularizations ŝ and v̂ coincide. Let

Vj = {x ∈ G | v̂(x) +
1

j
< v(x)}.

Since s ≤ v, we have {x ∈ G | ŝ(x) < s(x)} ⊂ ⋃∞
j=1 Vj. Therefore, if we can show

capp,µVj = 0, the subadditivity of the capacity yields ŝ = s (p, µ)-q.e. in G. Since
Vj is a Borel set, it suffices to show that capp,µK = 0 for any compact set K ⊂ Vj.

Let G′ b G be an open neighborhood of K and h be a bounded (A , B)-harmonic
function in G′. Since F is locally uniformly bounded below, there exists a constant
c ≥ 0 such that v̂ + c ≥ h. Letting u = v̂ + c + 1

j
, we have vi + c ∈ Φu,h

K (G′) for all
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i. Therefore Ru,h
K (G′) ≤ vi + c in G′ for all i, so that Ru,h

K (G′) ≤ v + c in G′. Hence
R̂u,h

K (G′) ≤ v̂ + c in G′. This implies

R̂u,h
K (G′) < v̂ + c +

1

j
= u = Ru,h

K (G′)

on K. Hence by Lemma 2.4 we have capp,µK = 0, so that the proof is complete. ¤
The rest of this section is devoted to showing the integrability of (A , B)-

superharmonic functions. First, following the discussion in [MZ], in which the un-
weighted case, namely the case w = 1, is treated, we will show a weak Harnack
inequality for supersolutions of (E). Hereafter, cµ denotes a constant depending
only on those constants which appear in the conditions for w to be p-admissible
(see [HKM, Chapter 1]).

Lemma 2.5. Suppose that G is an open set with G b Ω and B(x, 2r) ⊂ G. If
u is a nonnegative supersolution of (E) in G, then, for any σ, τ ∈ (0, 1), there exists
a constant c = c(N, p, α1, α2, α3(G), r, γ, σ, τ, cµ) > 0 such that

(
1

µ(B(x, σr))

∫

B(x,σr)

uγ dµ

)1/γ

≤ c

(
ess inf

B(x,τr)
u + r

)

whenever 0 < γ < κ(p− 1), where κ > 1 is the exponent in the Sobolev inequality.

Proof. Fix r > 0 and let u = u + r. Let β > 0. For a ball B ⊂ G and a
nonnegative η ∈ C∞

0 (B), set ϕ = u−βηp. Then ϕ ∈ H1.p
0 (B; µ) and ϕ ≥ 0. Since u

is a supersolution of (E) and

∇ϕ = −βu−β−1ηp∇u + pu−βηp−1∇η,

we have∫

B

A (x,∇u) · (−βu−β−1ηp∇u + pu−βηp−1∇η) dx +

∫

B

B(x, u)u−βηpdx ≥ 0.

From (A.2), (A.3) and (B.2) it follows that

α1β

∫

B

|∇u|pu−β−1ηp dµ ≤ pα2

∫

B

|∇u|p−1|∇η|u−βηp−1 dµ

+ α3(G)

∫

B

(up−1 + 1)u−βηp dµ.

(2.1)

By Young’s inequality,

|∇u|p−1|∇η|u−βηp−1 ≤ α1

2pα2

β|∇u|pu−β−1ηp + cβ1−p|∇η|pup−β−1

with c = c(p, α1, α2) > 0. Also, note that up−1 + 1 ≤ 2 max(1, r1−p)up−1. Hence,
by (2.1)

(2.2)
∫

B

|∇u|pu−β−1ηp dµ ≤ c
{

β−p

∫

B

|∇η|pup−β−1 dµ + β−1

∫

B

up−1−βηpdµ
}

with c = c(p, α1, α2, α3(G), r) > 0.
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Now let s < p − 1, s 6= 0, and set v = us/p. Then, |∇v|p = (|s|/p)p|∇u|pus−p.
Hence, applying (2.2) with β = p− 1− s we have

∫

B

|∇v|pηp dµ ≤ c
{
|s|p(p− 1− s)−p

∫

B

|∇η|pvp dµ

+ |s|p(p− 1− s)−1

∫

B

vpηp dµ
}

≤ c |s|p(1 + (p− 1− s)−1)p

∫

B

(ηp + |∇η|p)vp dµ

(2.3)

with c = c(p, α1, α2, α3(G), r) > 0. The Sobolev inequality and (2.3) yield

(
1

µ(B)

∫

B

(ηv)κp dµ

)1/κp

≤ cµ ρ(B)

(
1

µ(B)

∫

B

|∇(ηv)|p dµ

)1/p

≤ 2 cµρ(B)

(
1

µ(B)

∫

B

(ηp|∇v|p + |∇η|pvp) dµ

)1/p

≤ c ρ(B)(|s|+ 1)(1 + (p− 1− s))−1)

(
1

µ(B)

∫

B

(ηp + |∇η|p)vp dµ

)1/p

,

(2.4)

where ρ(B) is the radius of B and c = c(p, α1, α2, α3(G), r, cµ) > 0.
Now, we consider the ball B(x, r) as in the lemma and let B(h) = B(x, h)

for h > 0. Let r0 = min(σ, τ)r. We note that µ(B(h)) ≤ cµ(B(r0)) with c =
c(σ, τ, cµ) > 0 for r0 ≤ h ≤ r by the doubling property of µ. Let r0 ≤ h′ < h ≤ r
and η ∈ C∞

0 (B(h)) be chosen so that η = 1 on B(h′), 0 ≤ η ≤ 1 in B(h) and
|∇η| ≤ 3(h− h′)−1. Then, since η ≤ 1 ≤ h(h− h′)−1, (2.4) with B = B(h) yields

(
1

µ(B(h′))

∫

B(h′)
vκp dµ

)1/κp

≤ C1 (h− h′)−1(1 + |s|)(1 + (p− 1− s)−1)

(
1

µ(B(h))

∫

B(h)

vp dµ

)1/p
(2.5)

with C1 = C1(p, α1, α2, α3(G), r, cµ, σ, τ) > 0.
If s > 0, by (2.5) we have

(
1

µ(B(h′))

∫

B(h′)
uκs dµ

)1/κs

≤ [C1(h− h′)−1(1 + s)(1 + (p− 1− s)−1)]p/s

(
1

µ(B(h))

∫

B(h)

us dµ

)1/s

.

(2.6)
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If s < 0, since (p− 1− s)−1 < (p− 1)−1, from (2.5) we obtain
(

1

µ(B(h′))

∫

B(h′)
uκs dµ

)1/κs

≥ [C1(h− h′)−1(1− s)]p/s

(
1

µ(B(h))

∫

B(h)

us dµ

)1/s

.

(2.7)

Let 0 < γ < κ(p− 1). Suppose s0 = κ−jγ for some integer j ≥ 2. Set si = κis0

for i = 1, 2, ..., j−1. Then 0 < si ≤ κ−1γ < p−1, and hence p−1−si ≥ p−1−κ−1γ.
Also, set hi = r{σ + 2−i(1 − σ)} and h′i = hi+1. Then hi − h′i = 2−(i+1)r(1 − σ).
Thus, by (2.6) we have

(
1

µ(B(hi+1))

∫

B(hi+1)

usi+1 dµ

)1/si+1

≤ (C22
pi)1/si

(
1

µ(B(hi))

∫

B(hi)

usi dµ

)1/si

with C2 = C2(p, α1, α2, α3(G), r, cµ, σ, τ, γ) > 0. Thus, since γ = κjs0 = κsj−1,
σr ≤ hj and r = h0, we obtain by iteration

(
1

µ(B(σr))

∫

B(σr)

uγ dµ

)1/γ

≤ C
Pj−1

i=0 1/si

2 2p
Pj−1

i=0 i/si

(
1

µ(B(r))

∫

B(r)

us0 dµ

)1/s0

≤ c

(
1

µ(B(r))

∫

B(r)

us0 dµ

)1/s0

(2.8)

with c = c(p, α1, α2, α3(G), r, cµ, γ, σ, τ, s0) > 0. Since this holds for any s0 = κ−jγ,
j = 2, 3, . . ., by Hölder’s inequality, the same inequality holds for any s0 > 0.

Next, given s0 > 0, set si = −κis0, hi = r{τ + 2−i(1− τ)} and h′i = hi+1. Then
by (2.7) we have

(
1

µ(B(hi+1))

∫

B(hi+1)

usi+1 dµ

)1/si+1

≥ [C1(hi − hi+1)
−1(1− si)]

p/si

(
1

µ(B(hi))

∫

B(hi)

usi dµ

)1/si

.

Since 1− si = 1 + κis0 ≤ (1 + s0)κi, again by iteration we obtain
(

ess sup
B(τr)

u−1

)−1

= lim
i→∞

(
1

µ(B(hi))

∫

B(hi)

usi dµ

)1/si

≥ C
P∞

i=0 1/si

3 (2κ)p
P∞

i=0 i/si

(
1

µ(B(r))

∫

B(r)

u−s0 dµ

)−1/s0
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with C3 = C3(p, α1, α2, α3(G), r, cµ, σ, τ, s0) > 0, that is,

(2.9) ess inf
B(τr)

u ≥ c

(
1

µ(B(r))

∫

B(r)

u−s0 dµ

)−1/s0

with c = c(p, α1, α2, α3(G), r, cµ, σ, τ, s0) > 0.
Finally, we show

(2.10)
(

1

µ(B(r))

∫

B(r)

us0 dµ

)1/s0

≤ c

(
1

µ(B(r))

∫

B(r)

u−s0 dµ

)−1/s0

for some s0 > 0. Set v = log ū and let B be any ball in B(x, r). Since |∇v|p =
|∇u|pu−p, by (2.2) with β = p− 1 we have

(2.11)
∫

2B

|∇v|pηp dµ ≤ c

∫

2B

(ηp + |∇η|p) dµ

with c = c(p, α1, α2, α3(G), r) > 0 for nonnegative η ∈ C∞
0 (2B). Choose η so that

η = 1 on B, 0 ≤ η ≤ 1 in 2B and |∇η| ≤ 3ρ(B)−1. Then, (2.11) yields
∫

B

|∇v|p dµ ≤ cρ(B)−pµ(B)

with c = c(p, α1, α2, α3(G), r) > 0. By using Hölder’s inequality and Poincaré
inequality, we have

1

µ(B)

∫

B

|v − vB| dµ ≤ cµρ(B)

(
1

µ(B)

∫

B

|∇v|p dµ

)1/p

≤ C4

with C4 = C4(p, α1, α2, α3(G), r, cµ) > 0, where vB = 1
µ(B)

∫
B

v dµ. Hence v satisfies
the hypothesis of the John–Nirenberg lemma ([HKM, Appendix I]), so that there
are positive constants s0 and c0 depending only on C4, N and cµ such that

( 1

µ(B(r))

∫

B(r)

es0vdµ
)( 1

µ(B(r))

∫

B(r)

e−s0vdµ
)
≤ c0.

Hence we obtain (2.10) with s0 = s0(N, p, α1, α2, α3(G), r, cµ) > 0 and c = c(N, p, α1,
α2, α3(G), r, cµ) > 0. Thus, by (2.8), (2.9) and (2.10) the proof is complete. ¤

In general, an (A ,B)-superharmonic function in G does not belong to H1,p
loc (G; µ).

Hence, we give a definition of generalized gradient Du.
Suppose that G is an open subset in Ω. For a function u in an open set G such

that min(u, k) ∈ H1,p
loc (G; µ) for all k > 0, we define

Du = lim
k→∞

∇min(u, k).

By Corollary 2.1, Du is defined for any (A ,B)-superharmonic function u.
Now, using the above lemma, we can show the following integrability theorem

for (A ,B)-superharmonic functions.
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Theorem 2.3. Let G be an open subset in Ω. If u is an (A , B)-superharmonic
function in G, then u ∈ Lγ

loc(G; µ) and Du ∈ L
q(p−1)
loc (G; µ) whenever 0 < γ <

κ(p− 1) and

(2.12) 0 < q <
κp

κ(p− 1) + 1
.

Proof. Let G′ b G. Since u is bounded below on G′, by adding a positive
constant we may assume that u is nonnegative. By Lemma 2.1, there is a nonneg-
ative bounded continuous (A , B)-superharmonic function u0 in G′. For k > 0, let
uk = min(u, u0 + k). Then, uk is a supersolution of (E) in G′.

Let B = B(x, r) be a ball with 2B ⊂ G′. By the above lemma, we have
(∫

B

uγ
k dµ

)1/γ

≤ c
(
ess inf

B
uk + r

)
≤ c

(
ess inf

B
u + r

)
< ∞

whenever 0 < γ < κ(p − 1) with a constant c independent of k. Hence, letting
k →∞, we have

∫
B

uγ dµ < ∞.
Next, we show the integrability of Du. Let q satisfy (2.12). Since h0 ≥ 0,

min(u, k) = u = uk on {u ≤ k}, so that ∇min(u, k) = ∇uk a.e. on {u ≤ k}. Hence
∫

B

|∇min(u, k)|q(p−1) dµ =

∫

B∩{u≤k}
|∇min(u, k)|q(p−1) dµ

=

∫

B∩{u≤k}
|∇uk|q(p−1) dµ ≤

∫

B

|∇uk|q(p−1) dµ.

Set uk = uk + r. If ε > 0, by Hölder’s inequality and (2.2) in Lemma 2.5 we have
∫

B

|∇uk|q(p−1) dµ =

∫

B

|∇uk|q(p−1)u
−(1+ε)(p−1)q/p
k u

(1+ε)(p−1)q/p
k dµ

≤
(∫

B

|∇uk|pu−1−ε
k dµ

)(p−1)q/p (∫

B

u
(1+ε)(p−1)q/{p−q(p−1)}
k dµ

){p−(p−1)q}/p

≤ c

(∫

2B

up−1−ε
k dµ

)(p−1)q/p (∫

B

u
(1+ε)(p−1)q/{p−q(p−1)}
k dµ

){p−(p−1)q}/p

≤ c

(∫

2B

(u + r)p−1−εdµ

)(p−1)q/p (∫

B

(u + r)(1+ε)(p−1)q/{p−q(p−1)} dµ

){p−(p−1)q}/p

.

Now choose ε so that 0 < ε < p− 1 and

(1 + ε)(p− 1)q

p− q(p− 1)
< κ(p− 1).

Thus, the integrability of u implies the integrability of Du. ¤
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3. Existence of (A ,B)-superharmonic solutions

In this section, we investigate relations between (A , B)-superharmonic func-
tions and solutions for the equation (Eν) with weak zero boundary values.

We define
Lu = − div A (x, ∇u(x)) + B(x, u(x)).

Let G be an open subset in Ω. If u is a supersolution of (E) in G, then u ∈ H1,p
loc (G; µ),

and hence by Riesz representation theorem it is clear that Lu is a Radon measure
in G. In general, an (A , B)-superharmonic function in G does not always belong to
H1,p

loc (G; µ) (see section 2). However, by the integrability of (A , B)-superharmonic
functions the following theorem holds.

Theorem 3.1. Let G be an open subset in Ω and u be an (A , B)-superharmonic
function u in G. Then there is a Radon measure ν on G such that∫

G

A (x,Du) · ∇ϕdx +

∫

G

B(x, u)ϕdx =

∫

G

ϕdν

for all ϕ ∈ C∞
0 (G).

Proof. Let ϕ ∈ C∞
0 (G) be nonnegative, U be an open set with sptϕ ⊂ U b G

and u0 be a bounded nonnegative (A , B)-superharmonic function in U (see Lemma
2.1). Set uk = min(u, u0 + k). Then ∇uk → Du a.e. in U . Hence, by (A.1)

A (x,∇uk) · ∇ϕ → A (x,Du) · ∇ϕ

a.e. x ∈ U . Moreover, by Theorem 2.3, |Du|p−1 ∈ L1(U), so that,

|A (x,∇uk) · ∇ϕ| ≤ α2|∇uk|p−1|∇ϕ| ≤ 2p−1α2(|Du|p−1 + |∇h0|p−1)|∇ϕ| ∈ L1(U).

Again, by Theorem 2.3, |u|p−1 ∈ L1(U), so that,

|B(x, uk)ϕ| ≤ α3(U)(|uk|p−1 + 1)|ϕ| ≤ α3(U)(|u|p−1 + 1)|ϕ| ∈ L1(U).

Hence, by Lebesgue’s convergence theorem we have∫

G

A (x,Du) · ∇ϕdx +

∫

G

B(x, u) ϕdx

= lim
k→∞

(∫

U

A (x,∇uk) · ∇ϕdx +

∫

U

B(x, uk) ϕdx

)
≥ 0.

Therefore, from the Riesz representation theorem we obtain the claim of this theo-
rem. ¤

Remark 3.1. By the proof of Theorem 3.1 we can see: if u is an (A , B)-
superharmonic function, {uk} is the sequence of functions as in the proof of Theorem
3.1, ν = Lu and νk = Luk in G, then νk → ν weakly in G, namely,

lim
n→∞

∫

G

ϕdνn =

∫

G

ϕdν

for all ϕ ∈ C∞
0 (G).
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Next, we will show that given a nonnegative Radon measure ν, there is an
(A ,B)-superharmonic function which satisfies the equation (Eν) with weak zero
boundary values. We use the notation X∗ as the dual space of X.

Let G be an open set with G b Ω. We can regard L as an operator H1,p
0 (G; µ) →

(H1,p
0 (G; µ))∗ by

(Lu, v) =

∫

G

A (x,∇u) · ∇v dx +

∫

G

B(x, u)v dx.

In fact, by (A.3) and (B.2),
∣∣∣∣
∫

G

A (x,∇u) · ∇v dx

∣∣∣∣ ≤ α2

(∫

G

|∇u|p dµ
)(p−1)/p(∫

G

|∇v|p dµ
)1/p

∣∣∣∣
∫

G

B(x, u) v dx

∣∣∣∣ ≤ 2α3(G)
(∫

G

(|u|+ 1
)p

dµ
)(p−1)/p(∫

G

|v|p dµ
)1/p

,

so that, L is a bounded operator. Moreover, in the same manner as [O1, Lemma 3.3],
we can show that L is demicontinuous and coercive. Thus, if ν ∈ (H1,p

0 (G; µ))∗, then
it follows from [M, Lemma 2.6] that there exists a solution u ∈ H1,p

0 (G; µ) which
satisfies (Eν). Then, u is a supersolution of (E), so that u can be chosen to be
(A ,B)-superharmonic in G by Proposition 2.1. Further, by Lemma 3.1 below, u is
unique. Namely, the following theorem holds.

Theorem 3.2. Suppose that G is an open set with G b Ω and ν ∈ (H1,p
0 (G; µ))∗

is a Radon measure in G. Then there is a unique (A , B)-superharmonic function
u in G which satisfies (Eν) and belongs to H1,p

0 (G; µ).

Lemma 3.1. Suppose that G is an open set with G b Ω and u1, u2 ∈ H1,p
0 (G; µ)

are (A ,B)-superharmonic functions in G with Lui = νi for i = 1, 2. If ν1 ≤ ν2,
then u1 ≤ u2 in G.

Proof. Let η = min(u2 − u1, 0). Since η ∈ H1,p
0 (G; µ) and η ≤ 0, we have by

(A.4) and (B.3)

0 ≥
∫

G

η dν2 −
∫

G

η dν1

=

∫

G

A (x,∇u2) · ∇η dx +

∫

G

B(x, u2) η dx

−
(∫

G

A (x,∇u1) · ∇η dx +

∫

G

B(x, u1) η dx

)

=

∫

{u1>u2}
(A (x,∇u2)−A (x,∇u1)) · ∇η dx

+

∫

{u1>u2}
(B(x, u2)−B(x, u1)) η dx ≥ 0.
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Hence,
∫

{u1>u2}
(A (x,∇u2)−A (x,∇u1)) · (∇u1 −∇u2) dx = 0.

Again from (A.4), we obtain ∇u1 −∇u2 = 0 a.e. in {u1 > u2}, and hence ∇η = 0
a.e. in G. Since η ∈ H1,p

0 (G; µ), we have η = 0 a.e. in G. Therefore, we conclude
that u1 ≤ u2 a.e. in G. By Corollary 2.2 we see that u1 ≤ u2 in G. Hence the proof
is complete. ¤

In order to show the existence of (A , B)-superharmonic solutions of (Eν) with
weak zero boundary values for general finite Radon measures, we prepare some
lemmas.

Lemma 3.2. ([M, Lemma 2.12]) If G is a bounded open set in Ω and ν is a finite
Radon measure in G, then there is a sequence of Radon measures νn ∈ (H1,p

0 (G; µ))∗

such that νn(G) ≤ ν(G) for all n = 1, 2, . . . and νn → ν weakly in G.

Lemma 3.3. ([M, Theorem 2.14]) Suppose that G is an open set with G b Ω.
If {un} is a bounded sequence in H1,p

0 (G; µ), then there is a subsequence {uni
} and

a function u ∈ H1,p
0 (G; µ) such that uni

→ u in Ls(G; µ) for all 1 ≤ s < κp.

Suppose that G is an open set in Ω. A function u is said to be (A , B)-
hyperharmonic in G if it is lower semicontinuous, and for each open set U b G
and for h ∈ C(U) which is (A ,B)-harmonic in U , u ≥ h on ∂U implies u ≥ h in
U . Note that Du is defined for every (A , B)-hyperharmonic function u in G, since
min(u, k) ∈ H1,p

loc (G; µ) for any k > 0 by Corollary 2.1.

Lemma 3.4. Suppose that G is an open set in Ω. If {un} is a sequence of
(A ,B)-superharmonic functions in G which is locally uniformly bounded below,
then there is a subsequence {uni

} and an (A ,B)-hyperharmonic function u in G
such that uni

→ u a.e. in G and Duni
→ Du a.e. in the set {u < ∞}.

Proof. First, let U b G, U b G′ b G and we assume that there is a constant
M ≥ 0 such that un ≤ M in G′ for all n. Then, by Proposition 2.2, un ∈ H1,p

loc (G
′; µ)

is a supersolution of (E) in G′. Let U b U ′ b G′. Choose η ∈ C∞
0 (G′) with 0 ≤ η ≤ 1

in G′, η = 1 in U ′. Then since (M − un)ηp ∈ H1,p
0 (G′; µ) and (M − un)ηp ≥ 0 we

have
∫

G′
A (x,∇un) · ∇[(M − un)ηp] dx +

∫

G′
B(x, un) (M − un)ηp dx ≥ 0.

Hence,
∫

G′
[A (x,∇un) · ∇un]ηp dx ≤ p

∫

G′
[A (x,∇un) · ∇η](M − un)ηp−1 dx

+

∫

G′
B(x, un) (M − un)ηp dx.
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We may assume that un ≥ −m for any n in G′ (m ≥ 0). From the structure
condition and the inequality B(x, un) (M − un) ≤ |B(x,M)| (M + m) we obtain

α1

∫

G′
|∇un|pηp dµ ≤ pα2

∫

G′
|∇un|p−1|∇η|(M + m)ηp−1 dµ

+ α3(G
′)

∫

G′
(Mp−1 + 1) (M + m) dµ

≤ pα2(M + m)

(∫

G′
|∇un|pηp dµ

)(p−1)/p (∫

G′
|∇η|p dµ

)1/p

+ α3(G
′) (Mp−1 + 1) (M + m) µ(G′).

An application of Young’s inequality yields that X ≤ AX(p−1)/p + C implies X ≤
Ap + pC for X ≥ 0, A ≥ 0 and C ≥ 0. Therefore, {∫

G′ |∇un|pηp dµ} is bounded.
Moreover, since {∫

G′ |un|p|∇η|p dµ} is bounded, {ηun} is bounded in H1,p
0 (G′; µ).

By Lemma 3.3, there is a subsequence {ηuni
} and a function uU ′ ∈ H1,p

0 (G′; µ) such
that ηuni

→ uU ′ in Ls(G′; µ) for all 1 ≤ s < κp, especially uni
→ uU ′ a.e. in U ′.

It follows from [HKM, Theorem 1.32] that ∇uni
→ ∇uU ′ weakly in Lp(U ′; µ). We

write this subsequence uni
by un.

Now we will show that uU ′ has an (A , B)-superharmonic representative. Set
vi = infn≥i un and v̂i(x) = lim inf

y→x
vi(x) (i = 1, 2, . . .). Then, the fundamental

convergence theorem yields that v̂i is (A , B)-superharmonic in U ′ and v̂i = vi

(p, µ)-q.e., and hence a.e. in U ′. Moreover, since {v̂i} is an increasing sequence of
bounded (A , B)-superharmonic functions, v̂ = limi→∞ v̂i is (A , B)-superharmonic
in U ′ ([MO1, Proposition 2.2]). Moreover, we have

uU ′(x) = lim
n→∞

un(x) = lim
i→∞

vi(x) = lim
i→∞

v̂i(x) = v̂(x)

for a.e. x ∈ U ′. Thus uU ′ has an (A ,B)-superharmonic representative.
Next, we will show that ∇un → ∇uU ′ a.e. in U . Fix ε > 0. Let

En,ε := {x ∈ U | (A (x,∇un)−A (x,∇uU ′)) · (∇un −∇uU ′) ≥ ε},
E1

n,ε := {x ∈ En,ε||un − uU ′| ≥ ε2} and E2
n,ε := En,ε \ E1

n,ε.

Since un → uU ′ in Lp(U ; µ), |E1
n,ε| → 0 as n →∞. On the other hand,

|E2
n,ε| ≤

1

ε

∫

E2
n,ε

(A (x,∇un)−A (x,∇uU ′)) · (∇un −∇uU ′) dx.

Let η ∈ C∞
0 (U ′) with 0 ≤ η ≤ 1 in U ′ and η = 1 in U , and vn = min{max(un−uU ′+

ε2, 0), 2ε2}. Then since uU ′ is a supersolution of (E) in U ′ and ηvn ∈ H1,p
0 (U ′; µ) is
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nonnegative,

0 ≤
∫

U ′
A (x,∇uU ′) · ∇(ηvn) dx +

∫

U ′
B(x, uU ′) ηvn dx

≤
∫

U ′
A (x,∇uU ′) · (vn∇η) dx +

∫

U ′∩{|un−u|<ε2}
A (x,∇uU ′) · (η∇(un − uU ′)) dx

+ 2ε2

∫

U ′
|B(x, uU ′)| η dx.

Thus ∫

U ′∩{|un−uU′ |<ε2}
A (x,∇uU ′) · (η∇(uU ′ − un)) dx

≤
∫

U ′
A (x,∇uU ′) · (vn∇η) dx + 2ε2

∫

U ′
|B(x, uU ′)| dx

≤ α2ε
2

∫

U ′
|∇uU ′|p−1|∇η| dµ + 2ε2α3(G

′)
∫

U ′
(|uU ′|p−1 + 1)| dµ

≤ cε2

(∫

U ′
|∇uU ′|p dµ

)(p−1)/p (∫

U ′
|∇η|p dµ

)1/p

+ cε2 ≤ cε2

with c > 0 independent of ε and n. Similarly, considering ṽn = min{max(uU ′−un +
ε2, 0), 2ε2}, we have

∫

U ′∩{|un−uU′ |<ε2}
A (x,∇un) · (η∇(un − uU ′)) dx ≤ cε2

with the same c. Thus

|E2
n,ε| ≤

1

ε

∫

E2
n,ε

(A (x,∇un)−A (x,∇uU ′)) · (∇un −∇uU ′) dx ≤ 2cε,

so that, for n ≥ nε,

(3.1) |En,ε| = |E1
n,ε|+ |E2

n,ε| ≤ (c + 1)ε,

where c does not depend on n and ε. To obtain the claim that ∇un → ∇uU ′ a.e. in
U , we will show that for any λ > 0

(3.2) |{x ∈ U | |∇un −∇uU ′| ≥ λ}| → 0

as n → ∞. To the contrary, we assume that there exist λ > 0, a > 0 and the
subsequence {uni

} of {un} such that

(3.3) |{x ∈ U | |∇uni
−∇uU ′| ≥ λ}| ≥ a

for any i. Since uU ′ ∈ H1,p(U ; µ), we have |∇uU ′| < ∞ a.e. in U , so that there exists
a constant R > 0 such that

(3.4) |{x ∈ U | |∇uU ′| > R}| ≤ a

3
.
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Set Ax(ξ, η) = (A (x, ξ)−A (x, η)) · (ξ − η) (ξ, η ∈ RN). If |η| ≤ R, then

Ax(ξ, η) = A (x, ξ) · ξ −A (x, ξ) · η −A (x, η) · ξ + A (x, η) · η
≥ w(x)(−α2|ξ|p−1|η| − α2|ξ||η|p−1 + α1|ξ|p)
≥ w(x)(−α2|ξ|p−1R− α2|ξ|Rp−1 + α1|ξ|p).

There exists a constant R′ > 0 such that

−α2|ξ|p−1R− α2|ξ|Rp−1 + α1|ξ|p ≥ 1

if |ξ| ≥ R′. It follows that Ax(ξ, η) ≥ w(x) for a.e. x ∈ U if |ξ| ≥ R′ and |η| ≤ R.
Since Ax(ξ, η) is continuous in (ξ, η) and Ax(ξ, η) > 0 for a.e. x ∈ U whenever
ξ, η ∈ RN , ξ 6= η, we have

δ(x) := inf{Ax(ξ, η)
∣∣ |ξ| ≤ R′, |η| ≤ R and |ξ − η| ≥ λ} > 0

for a.e. x ∈ U . Therefore, if |η| ≤ R and |ξ − η| ≥ λ, then

Ax(ξ, η) ≥ min(w(x), δ(x)) > 0(3.5)

for a.e. x ∈ U . Setting

Fni
= {x ∈ U

∣∣ |∇uni
−∇uU ′| ≥ λ and |∇uU ′ | ≤ R},

we have by (3.3) and (3.4)

(3.6) |Fni
| ≥ a− a

3
=

2a

3
.

Since min(w(x), δ(x)) > 0 for a.e. x ∈ U , there exists α > 0 such that

|{x ∈ U | min(w(x), δ(x)) < α}| ≤ a

3
.(3.7)

Then from (3.5), (3.6) and (3.7) we obtain

|{x ∈ U |Ax(∇uni
,∇un) ≥ α}| = |Eni,α| ≥ |Eni,α ∩ Fni

|
= |Fni

| − |Fni
∩ {x ∈ U |Ax(∇uni

,∇un) < α}|
≥ |Fni

| − |{x ∈ U | min(w(x), δ(x)) < α}|
≥ 2a

3
− a

3
=

a

3
.

Choosing ε > 0 such that ε < min

(
a

3(c + 1)
, α

)
with c in (3.1), we have

(c + 1)ε ≥ |Eni,ε| ≥ |Eni,α| ≥
a

3
≥ (c + 1)ε,

which is a contradiction. Consequently, (3.2) is established.
Secondly, we relax the assumption that {un} is uniformly bounded. Let U be

an open set with U b G, U ′ be a regular set with U b U ′ b G and h0 be the
continuous solution of (E) in U ′ with boundary values 0 on ∂U ′. By the above
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argument there exist a subsequence {u(1)
n } of {un} and an (A , B)-superharmonic

function u(1) ∈ H1,p(U ; µ) such that

min(u(1)
n , h0 + 1) → u(1) and ∇min(u(1)

n , h0 + 1) → ∇u(1)

a.e. in U . Inductively we define a subsequence {u(k)
n } of {u(k−1)

n } and an (A , B)-
superharmonic function u(k) ∈ H1,p(U ; µ) such that

min(u(k)
n , h0 + k) → u(k) and ∇min(u(k)

n , h0 + k) → ∇u(k)

a.e. in U . Then {u(k)} is a increasing sequence, so that uU := limk→∞ u(k) is (A , B)-
hyperharmonic in U ([MO1, Proposition 2.2]). Since u(k) = min(uU , h0 +k), for any
k = 1, 2, . . . it follows from the diagonal method that

min(u(n)
n , h0 + k) → min(uU , h0 + k) and ∇min(u(n)

n , h0 + k) → ∇min(uU , h0 + k)

a.e. in U . Since min(u
(n)
n , h0 + k) → u

(n)
n (k → ∞), we have u

(n)
n → uU a.e. in U

and Du
(n)
n → DuU a.e. in {x ∈ U |uU(x) < ∞}.

Finally, we show the assertion in G. Let Uk be an open set such that Uk b
Uk+1 b G and G = ∪kUk. There exist a subsequence {u1,n} of {un} and an (A , B)-
hyperharmonic function uU1 in U1 such that u1,n → uU1 a.e. in U1 and Du1,n → DuU1

a.e. in {x ∈ U1 |uU1(x) < ∞}. Inductively we define a subsequence {uk+1,n} of {uk,n}
and an (A ,B)-hyperharmonic function uUk+1

in Uk+1 such that uk+1,n → uUk+1
a.e.

in Uk+1 and Duk+1,n → DuUk+1
a.e. in {x ∈ Uk+1 |uUk+1

(x) < ∞}. Thus uk+1,n =
uk,n a.e. in Uk+1, and hence Corollary 2.2 yields uk+1,n = uk,n in Uk+1. Setting
u = uUk

in Uk, u is (A ,B)-hyperharmonic in G. Again, it follows from the diagonal
method that uk,k → u a.e. in G and Duk,k → Du a.e. in {x ∈ G |u(x) < ∞}. Hence
the proof is complete. ¤

Now we will show the existence of (A ,B)-superharmonic solutions of (Eν) with
weak zero boundary values.

Theorem 3.3. Suppose that G is an open set with G b Ω and ν is a finite
Radon measure in G. Then there is an (A , B)-superharmonic function u in G
satisfying (Eν) with min(u, k) ∈ H1,p

0 (G; µ) for all k > 0.

Proof. By Lemma 3.2, there is a sequence of Radon measures νn ∈ (H1,p
0 (G; µ))∗

such that νn(G) ≤ ν(G) for all n = 1, 2, . . . and νn → ν weakly in G. Let G′ be
a regular set such that G b G′ b Ω. Then by Proposition 1.2 there is a bounded
(A ,B)-harmonic function h0 in G′ with h0 ∈ H1,p

0 (G′; µ) and by Theorem 3.2
there is a unique (A ,B)-superharmonic function un in G satisfying (Eνn) with
un ∈ H1,p

0 (G; µ). Since h0 is bounded, there exists c0 ≥ 0 such that h0 − c0 ≤ 0 in
G. Therefore, comparison principle yields un ≥ h0−c0 in G for all n. By Lemma 3.4
there is a subsequence {uni

} of {un} and an (A ,B)-hyperharmonic function u in
G such that uni

→ u a.e. in G and ∇uni
→ Du a.e. in the set {u < ∞}. On the

other hand, since min(un, k) ∈ H1,p
0 (G; µ) and 0 ≤ (B(x, un)−B(x, 0)) min(un, k),
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we have ∫

G

|∇min(un, k)|p dµ ≤ α−1

∫

G

A (x,∇un) · ∇min(un, k) dx

≤ α−1

∫

G

A (x,∇un) · ∇min(un, k) dx

+ α−1

∫

G

(B(x, un)−B(x, 0)) min(un, k) dx

= α−1

∫

G

min(un, k) dνn − α−1

∫

G

B(x, 0) min(un, k) dx

≤ α−1ν(G)k + α−1α3(G)µ(G)k

(3.8)

for k = 1, 2, . . .. Hence, in the same manner as in the proof of [HKM, Lemma 7.43],
for fixed 0 < s < κ(p− 1), there exists c > 0 such that

∫

G

max(un, 0)s dµ < c,

where c does not depend on n. On the other hand, min(un, 0) ≥ h0− c0 in G for all
n. Therefore

(3.9)
∫

G

|u|s dµ < ∞,

so that u < ∞ a.e. in G. Hence u is (A ,B)-superharmonic in G. Moreover, since
{min(un, k)} is bounded in H1,p

0 (G; µ) and min(uni
, k) → min(u, k) a.e. in G, we

have uk := min(u, k) ∈ H1,p
0 (G; µ) for fixed k > 0.

Theorem 3.1 yields that there exists a Radon measure ν̃ in G such that
∫

G

A (x,Du) · ∇ϕdx +

∫

G

B(x, u)ϕdx =

∫

G

ϕdν̃

for all ϕ ∈ C∞
0 (G). To obtain that ν = ν̃, we will show νn → ν̃ weakly in G. Fix

1 < q < κp
κ(p−1)+1

. Again, in the same manner as in the proof of [HKM, Lemma 7.43],
by (3.8) there exists c > 0 such that

(3.10)
∫

G

|∇un|q(p−1) dµ ≤ c,

where c does not depend n. Hence
∫

G

|A (x,∇un)w−1+ 1
q |q dx ≤ c

∫

G

(|∇un|p−1
)q

wqw−q+1 dx

= c

∫

G

|∇un|q(p−1) dµ ≤ c

for all n. Moreover, since ∇uni
→ Du a.e. in G,

A (x,∇uni
)w−1+ 1

q → A (x,Du)w−1+ 1
q
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weakly in Lq(G; dx). On the other hand, by Theorem 2.3, for any U b G
∫

U

|B(x, un)w−1+ 1
q |q dx ≤ α3(U)

∫

U

(|un|p−1 + 1
)q

wqw−q+1 dµ

≤ c

∫

U

(|un|q(p−1) + 1
)

dµ ≤ c.

Since uni
→ u a.e. in G, we have

B(x, uni
)w−1+ 1

q → B(x, u)w−1+ 1
q

weakly in Lq(U ; dx). Let ϕ ∈ C∞
0 (G) and U be an open set in G with spt ϕ ⊂ U .

Since w1− 1
q∇ϕ ∈ Lq/(q−1)(G; dx) and w1− 1

q ϕ ∈ Lq/(q−1)(U ; dx), we have

lim
i→∞

∫

G

ϕdνni

= lim
i→∞

(∫

G

A (x,∇uni
)w−1+ 1

q w1− 1
q · ∇ϕdx +

∫

G

B(x, uni
)w−1+ 1

q w1− 1
q ϕdx

)

=

∫

U

A (x,Du)w−1+ 1
q w1− 1

q · ∇ϕdx +

∫

U

B(x, u)w−1+ 1
q w1− 1

q ϕdx

=

∫

G

A (x,Du) · ∇ϕ dx +

∫

G

B(x, u)ϕdx =

∫

G

ϕdν̃.

Hence the proof is complete. ¤

4. Upper estimate of (A , B)-superharmonic functions

In this section, we give a pointwise upper estimate for an (A , B)-superharmonic
function in terms of the (weighted) Wolff potential (see below for the definition).
Also, using this estimate, we obtain that an (A ,B)-superharmonic function is finite
(p, µ)-q.e.

As before, we define

Lu = − div A (x, ∇u(x)) + B(x, u(x)).

In order to show the pointwise upper estimate for an (A ,B)-superharmonic func-
tion, we prepare following two lemmas.

Lemma 4.1. Suppose that G is an open set in Ω, u is a supersolution of (E)
in G and ν = Lu in G. If G′ b G, then∫

G′
A (x,∇u) · ∇ϕdx +

∫

G′
B(x, u)ϕ dx =

∫

G′
ϕdν

for all bounded (p, µ)-quasicontinuous ϕ ∈ H1,p
0 (G′; µ).

Proof. Let ϕ ∈ H1,p
0 (G′; µ) be bounded (p, µ)-quasicontinuous in G′. Choose a

sequence of functions ϕn ∈ C∞
0 (G′) such that {ϕn} is uniformly bounded, ϕn → ϕ

in H1,p(G′; µ) and ϕn → ϕ (p, µ)-q.e. in G′. Then, since ϕn → ϕ ν-a.e. in G′ (note
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that ν ∈ (H1,p
0 (G′; µ))∗) and ν(G′) < ∞, by Lebesgue’s convergence theorem we

have

lim
n→∞

∫

G′
ϕn dν =

∫

G′
ϕ dν.

Also, from (A.3) and (B.2), we obtain
∣∣∣
∫

G′
A (x,∇u) · ∇ϕdx +

∫

G′
B(x, u)ϕdx

−
(∫

G′
A (x,∇u) · ∇ϕn dx +

∫

G′
B(x, u)ϕn dx

)∣∣∣

≤ α2

∫

G′
|∇u|p−1|∇ϕ−∇ϕn| dµ + α3(G

′)
∫

G′

(|u|p−1 + 1
)|ϕ− ϕn| dµ

≤ α2

(∫

G′
|∇u|p dµ

)(p−1)/p(∫

G′
|∇ϕ−∇ϕn|p dµ

)1/p

+ 2α3(G
′)
(∫

G′
(|u|+ 1)p dµ

)(p−1)/p(∫

G′
|ϕ− ϕn|p dµ

)1/p

,

where in the last inequality we have used Hölder’s inequality. Because the last
integral tends to zero as n →∞ , we have

∫

G′
A (x,∇u) · ∇ϕdx +

∫

G′
B(x, u)ϕdx

= lim
n→∞

(∫

G′
A (x,∇u) · ∇ϕn dx +

∫

G′
B(x, u)ϕn dx

)

= lim
n→∞

∫

G′
ϕn dν =

∫

G′
ϕdν,

and the lemma follows. ¤
In the following lemma, we use the notation u+ = max(u, 0).

Lemma 4.2. Suppose that G is an open set with G b Ω, u is an (A , B)-
superharmonic function in G, ν = Lu in G, 2B = B(x0, 2R) ⊂ G and p− 1 < γ <
κp(p−1)
κ+p−1

. Then there exists a constant c = c(p, α1, α2, α3(G), cµ, γ) > 0 such that, for
every l ∈ R,

(
1

µ(B)

∫

B

(u− l)γ
+ dµ

)1/γ

≤ c A
1
γ
(1− 1

κ )

(
1

µ(2B)

∫

2B

(u− l)γ
+ dµ

)1/γ

+ cR
p

p−1 A
1

p−1
− 1
κ(p−1)

+ 1
γ (|l|p−1 + 1)1/(p−1) + cA

1
γ
− 1
κ(p−1)

(
Rp ν(2B)

µ(2B)

)1/(p−1)

,

where

A =
µ (2B ∩ {u > l})

µ (2B)
.
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Proof. First, we assume u ∈ H1,p
loc (G; µ), i.e. u is a supersolution of (E) in G.

Let δ > 0. Set τ = γ
p−1

,

Φ(t) =

{(
1 + t−l

δ

)−τ if t > l,

0 if t ≤ l

and

Ψ(t) =

∫ t

l

Φ(s) ds.

Then τ > 1 and Ψ(t) ≤ δ
τ−1

. Let 2Bl+ = {x ∈ 2B |u(x) > l} and η ∈ C∞
0 (2B)

with 0 ≤ η ≤ 1, η = 1 on B and |∇η| ≤ 2/R. Since ϕ(x) = Ψ(u(x))ηp(x) ∈
H1,p

0 (G; µ), we may assume that ϕ is (p, µ)-quasicontinuous and ∇ϕ = ηpΦ(u)∇u +
pΨ(u)ηp−1∇η, by Lemma 4.1 we have

∫

2B

[A (x,∇u) · ∇u]Φ(u)ηp dx + p

∫

2B

[A (x,∇u) · ∇η]Ψ(u)ηp−1 dx

+

∫

2B

B(x, u)Ψ(u)ηp dx =

∫

2B

Ψ(u)ηp dν.

From (A.2), (A.3) and (B.2) it follows that

α1

∫

2Bl+

|∇u|pΦ(u)ηp dµ ≤ pα2

∫

2Bl+

|∇u|p−1Ψ(u)|∇η|ηp−1 dµ

+ α3(G)

∫

2Bl+

(|l|p−1 + 1)Ψ(u)ηp dµ

+

∫

2Bl+

Ψ(u)ηp dν,

(4.1)

where we have used −B(x, u) ≤ −B(x, l) ≤ α3(G)w(x)(|l|p−1 +1) on 2Bl+ . Setting
v = (u−l)+

δ
, from (4.1) we obtain

α1

∫

2Bl+

|∇u|p(1 + v)−τηp dµ ≤ δ

τ − 1

(
pα2

∫

2Bl+

|∇u|p−1|∇η|ηp−1 dµ

+ α3(G)

∫

2Bl+

(|l|p−1 + 1)ηp dµ +

∫

2Bl+

ηp dν

)
.

(4.2)

Young’s inequality yields that, for any ε > 0,

|∇u|p−1|∇η|ηp−1 = |∇u|p−1ηp−1(1 + v)−τ p−1
p (1 + v)τ p−1

p |∇η|
≤ p− 1

p
ε|∇u|p(1 + v)−τηp +

1

p
ε1−p(1 + v)γ|∇η|p.
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It follows from (4.2) that

α1

∫

2Bl+

|∇u|p(1 + v)−τηp dµ

≤ δ

τ − 1

(
α2(p− 1)ε

∫

2Bl+

|∇u|p(1 + v)−τηp dµ

+ α2ε
1−p

∫

2Bl+

(1 + v)γ|∇η|p dµ

)

+
δ

τ − 1

(
α3(G)

∫

2Bl+

(|l|p−1 + 1)ηp dµ +

∫

2Bl+

ηp dν

)
.

(4.3)

Setting α2δ(p−1)
τ−1

ε = α1

2
, that is ε = α1(τ−1)

2α2δ(p−1)
, we have

α1

2

∫

2Bl+

|∇u|p(1 + v)−τηp dµ

≤ c

(
δp

∫

2Bl+

(1 + v)γ|∇η|p dµ + δ(|l|p−1 + 1)

∫

2Bl+

ηp dµ + δ

∫

2Bl+

ηp dν

)
,

(4.4)

where c = c(p, α1, α2, α3(G), γ) > 0. Set g = (1 + v)1− τ
p − 1. Then, we have

g ∈ H1,p
loc (G; µ), so that ηg ∈ H1,p

0 (2B; µ). It follows from the Sobolev inequality
that

(
1

µ(2B)

∫

2B

|ηg|κp dµ

)1/κp

≤ cR

(
1

µ(2B)

∫

2B

|∇(ηg)|p dµ

)1/p

≤ cR

{(
1

µ(2B)

∫

2B

|∇η|pgp dµ

)1/p

+

(
1

µ(2B)

∫

2B

|∇g|pηp dµ

)1/p
}

,

so that
(

1

µ(2B)

∫

2B

|ηg|κp dµ

)1/κ

≤ cRp

µ(2B)

(∫

2B

|∇η|pgp dµ +

∫

2B

|∇g|pηp dµ

)
.

(4.5)

Since

|∇g|p =

∣∣∣∣
(

1− τ

p

)
(1 + v)−

τ
p∇v

∣∣∣∣
p

=

∣∣∣∣1−
τ

p

∣∣∣∣
p

(1 + v)−τ |∇u|pδ−pχ2Bl+
,
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where χ2Bl+
is a characteristic function on 2Bl+ , from (4.4) we obtain

∫

2B

|∇g|pηp dµ = cδ−p

∫

2Bl+

|∇u|p(1 + v)−τηp dµ

≤ c

( ∫

2Bl+

(1 + v)γ|∇η|p dµ + δ1−p(|l|p−1 + 1)

·
∫

2Bl+

ηp dµ + δ1−p

∫

2Bl+

ηp dν

)
.

(4.6)

Also, since p− 1 < γ, we have p− τ < γ, so that

(4.7) gp ≤ (1 + v)p−τ ≤ (1 + v)γ

on 2Bl+ and g = 0 on 2B \ 2Bl+ . It follows from (4.5), (4.6) and (4.7) that
(

1

µ(2B)

∫

2B

|ηg|κp dµ

)1/κ

≤ cRp

µ(2B)

( ∫

2Bl+

(1 + v)γ|∇η|p dµ + δ1−p(|l|p−1 + 1)

·
∫

2Bl+

ηp dµ + δ1−p

∫

2Bl+

ηp dν

)

≤ cRp

(
R−p

µ(2B)

∫

2Bl+

(1 + v)γ dµ + A δ1−p (|l|p−1 + 1) + δ1−p ν(supp η)

µ(2B)

)
,

(4.8)

where

A =
µ (2B ∩ {u > l})

µ (2B)
.

Since γ < κp− γκ
p−1

= κp(1− τ
p
), we have vγ ≤ vκp(1− τ

p
) ≤ c gκp on {v ≥ 1}. Hence

(4.8) yields
(

1

µ(2B)

∫

2B

ηκpvγ dµ

)1/κ

≤
(

µ(2B ∩ {0 < ηκpvγ < 1})
µ(2B)

)1/κ
+

(
1

µ(2B)

∫

2B∩{ηκpvγ≥1}
ηκpvγ dµ

)1/κ

≤ A1/κ + c

(
1

µ(2B)

∫

2B

ηκpgκp dµ

)1/κ

≤ A1/κ

+ cRp

(
R−p

µ(2B)

∫

2Bl+

(1 + v)γ dµ + Aδ1−p(|l|p−1 + 1) + δ1−p ν(supp η)

µ(2B)

)
,
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so that
(

δ−γ

µ(2B)

∫

2B

ηκp(u− l)γ
+ dµ

)1/κ

≤ A1/κ + c δ−γ

(
1

µ(2B)

∫

2Bl+

(u− l)γ
+ dµ

)

+ c Rp δ1−p

(
A (|l|p−1 + 1) +

ν(supp η)

µ(2B)

)
+ c1A,

(4.9)

where c1 = c1(p, α1, α2, α3(G), γ) > 0. Setting
(

δ−γ

µ(2B)

∫

2B

ηκp(u− l)γ
+ dµ

)1/κ
= (2 + c1) A1/κ,

that is,

δ = (2 + c1)
−κ/γ A−1/γ

(
1

µ(2B)

∫

2B

ηκp(u− l)γ
+ dµ

)1/γ

,

from (4.9) we obtain

A1/κ ≤ cA

(
1

µ(2B)

∫

2B

ηκp(u− l)γ
+ dµ

)−1
1

µ(2B)

∫

2Bl+

(u− l)γ
+ dµ

+ cRp A (|l|p−1 + 1) A(p−1)/γ

(
1

µ(2B)

∫

2B

ηκp(u− l)γ
+ dµ

)−(p−1)/γ

+ cRp A(p−1)/γ

(
1

µ(2B)

∫

2B

ηκp(u− l)γ
+ dµ

)−(p−1)/γ
ν(supp η)

µ(2B)
,

where we have used A ≤ A1/κ. It follows that either

A1/κ

2
≤ cA

(
1

µ(2B)

∫

2B

ηκp(u− l)γ
+ dµ

)−1
1

µ(2B)

∫

2Bl+

(u− l)γ
+ dµ

or

A1/κ

2
≤ cRp A (|l|p−1 + 1) A(p−1)/γ

(
1

µ(2B)

∫

2B

ηκp(u− l)γ
+ dµ

)−(p−1)/γ

+ cRp A(p−1)/γ

(
1

µ(2B)

∫

2B

ηκp(u− l)γ
+ dµ

)−(p−1)/γ
ν(supp η)

µ(2B)
.

Therefore, either
(

1

µ(2B)

∫

2B

ηκp(u− l)γ
+ dµ

)1/γ

≤ cA
1
γ
(1− 1

κ )

(
1

µ(2B)

∫

2Bl+

(u− l)γ
+ dµ

)1/γ(4.10)
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or
(

1

µ(2B)

∫

2B

ηκp(u− l)γ
+ dµ

)1/γ

≤ cRp/(p−1)A
1

p−1
(1− 1

κ )+ 1
γ (|l|p−1 + 1)1/(p−1)

+ cA
1
γ
− 1
κ(p−1)

(
Rp ν(supp η)

µ(2B)

)1/(p−1)

.

(4.11)

Therefore the doubling property, (4.10) and (4.11) yield
(

1

µ(B)

∫

B

(u− l)γ
+ dµ

)1/γ

≤ c

(
1

µ(2B)

∫

2B

ηκp(u− l)γ
+ dµ

)1/γ

≤ cA
1
γ
(1− 1

κ )

(
1

µ(2B)

∫

2B

(u− l)γ
+ dµ

)1/γ

+ cRp/(p−1) A
1

p−1
− 1
κ(p−1)

+ 1
γ (|l|p−1 + 1)1/(p−1) + cA

1
γ
− 1
κ(p−1)

(
Rp ν(supp η)

µ(2B)

)1/(p−1)

.

Hence the required inequality holds with ν(B) replaced by ν(supp η) in the case
u ∈ H1,p

loc (G; µ).
To conclude the proof, let u0 be a nonnegative bounded (A , B)-superharmonic

function in G (see Lemma 2.1) and let uk = min(u, u0 + k) for k > 0. Then,
uk ∈ H1,p

loc (G; µ). Letting νk = Luk, we have νk → ν weakly in G by Remark 3.1.
Therefore, we obtain from [M, Lemma 2.11] that

lim sup
k→∞

νk(supp η) ≤ ν(supp η)

in G. Hence Lebesgue’s convergence theorem yields the claim of this lemma. ¤
For x0 ∈ Ω and R > 0, we define

W ν
p,µ(x0, R) =

∫ R

0

(
tp

ν(B(x0, t))

µ(B(x0, t))

) 1
p−1 1

t
dt,

and W ν
p,µ is said to be the (weighted) Wolff potential of ν (cf. [M, §3]).

Using Lemma 4.2, we can show the following theorem.

Theorem 4.1. Suppose that 0 < R, G is an open set with G b Ω, 2B =
B(x0, 2R) ⊂ G, u is an (A ,B)-superharmonic function in G and ν = L(u). Then
for any γ with p − 1 < γ , there exists a constant c = c(p, α1, α2, α3(G), cµ, γ) > 0
such that

u+(x0) ≤ c

(
1

µ(B)

∫

B

uγ
+ dµ

)1/γ

+ c W ν
p,µ(x0, 2R) + cRp/(p−1).
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Proof. By Hölder’s inequality, we may only show the case p− 1 < γ < κp(p−1)
κ+p−1

.
Let Rj = 21−jR, Bj = B(x0, Rj),

Mj =

(
Rp

j

ν(Bj)

µ(Bj)

) 1
p−1

and λ > 0 be a real number. We define a sequence {lj} inductively. Let l0 = 0 and

lj+1 = lj + λ−1

(
1

µ(Bj+1)

∫

Bj+1

(u− lj)
γ
+ dµ

)1/γ

.

Set

Aj =
µ (Bj ∩ {u > lj})

µ (Bj)
.

Then since

µ(Bj ∩ {u > lj}) ≤ (lj − lj−1)
−γ

∫

Bj∩{u>lj}
(u− lj−1)

γ
+ dµ

≤ (lj − lj−1)
−γ

∫

Bj

(u− lj−1)
γ
+ dµ = λγµ(Bj),

(4.12)

we have Aj ≤ λγ. This inequality and Lemma 4.2 yield

lj+1 − lj = λ−1

(
1

µ(Bj+1)

∫

Bj+1

(u− lj)
γ
+ dµ

)1/γ

≤ c λ−1 A
1
γ
(1− 1

κ )

j

(
1

µ(Bj)

∫

Bj

(u− lj)
γ
+ dµ

)1/γ

+ c λ−1 R
p/(p−1)
j A

1
p−1

− 1
κ(p−1)

+ 1
γ

j (lp−1
j + 1)1/(p−1) + c λ−1 A

1
γ
− 1
κ(p−1)

j Mj

≤ cA
1
γ
(1− 1

κ )

j (lj − lj−1) + c λ−1 R
p/(p−1)
j A

1
p−1

− 1
κ(p−1)

+ 1
γ

j (lp−1
j + 1)1/(p−1)

+ c λ−1 A
1
γ
− 1
κ(p−1)

j Mj

≤ c λ1− 1
κ (lj − lj−1) + cR

p/(p−1)
j λ

γ
p−1

− γ
κ(p−1) (lp−1

j + 1)1/(p−1) + c λ−
γ

κ(p−1) Mj.
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It follows that

lk − l1 ≤ lk+1 − l1 =
k∑

j=1

(lj+1 − lj)

≤ c λ1− 1
κ

k∑
j=1

(lj − lj−1) + c λ
γ

p−1
− γ
κ(p−1)

k∑
j=1

R
p/(p−1)
j (lp−1

j + 1)1/(p−1)

+ c λ−
γ

κ(p−1)

k∑
j=1

Mj

≤ c λ1− 1
κ lk + c λ

γ
p−1

− γ
κ(p−1) (lp−1

k + 1)1/(p−1)

k∑
j=1

R
p/(p−1)
j + c λ−

γ
κ(p−1)

k∑
j=1

Mj,

in the last inequality we have used l0 = 0. Choosing λ small enough, we can obtain

(4.13) lk ≤ c l1 + c

∞∑
j=1

Mj + c

∞∑
j=1

R
p/(p−1)
j ,

where c = c(p, α1, α2, α3(G), cµ, γ) > 0. Also, letting λ < 1, by the definition of lj
we have

lj − lj−1 ≥ inf
Bj

(u− lj−1)+ ≥ inf
Bj

u+ − lj−1,

so that

(4.14) inf
Bj

u+ ≤ lj.

Also,

(4.15)
∞∑

j=1

Mj ≤ W ν
p,µ(x0, 2R).

Hence from the lower semicontinuity, (4.13), (4.14) and (4.15) we obtain

u+(x0) ≤ lim
k→∞

inf
Bk

u+ ≤ lim
k→∞

lk

≤ c

(
1

µ(B)

∫

B

uγ
+ dµ

)1/γ

+ cW ν
p,µ(x0, 2R) + cRp/(p−1),

as required. ¤
Let G be an open subset in Ω and E = {x ∈ G |W ν

p,µ(x, r) = ∞ for some r > 0}.
Then, it is known that capp,µE = 0 (for example, see [M, Theorem 3.1] and [HKM,
Theorem 10.1]). Hence, from the above theorem we obtain the following corollary
which will be used to show the uniqueness result of (A , B)-superharmonic solutions
of (Eν) with weak zero boundary values in next section.

Corollary 4.1. An (A , B)-superharmonic function is finite (p, µ)-q.e.
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5. Uniqueness of (A ,B)-superharmonic solutions

In this section, we discuss uniqueness of (A ,B)-superharmonic solutions of (Eν)
with boundary conditions min(u, k) ∈ H1,p

0 (Ω; µ) for all k > 0.
If ν(E) = 0 whenever capp,µE = 0, then we say that ν is absolutely continuous

with respect to (p, µ)-capacity.

Proposition 5.1. ([M, Corollary 6.5]) If G is an open set with G b Ω and
ν is a finite Radon measure in G which is absolutely continuous with respect to
(p, µ)-capacity, then there is a nondecreasing sequence of Radon measures νn ∈
(H1,p

0 (G; µ))∗ such that νn(G) ≤ ν(G) for all n = 1, 2, . . . and

lim
n→∞

∫

G

ϕ dνn =

∫

G

ϕ dν

for any bounded Borel measurable function ϕ on G.

Hereafter, we shall always assume that functions in H1,p
loc (Ω; µ) are (p, µ)-quasi-

continuous. (see [HKM, Theorem 4.4]).
Let G be an open set with G b Ω. If an (A , B)-superharmonic solution u of

(Eν) in G satisfies u ∈ Lp−1(G; dx), |∇T σ
k (u)| ∈ Lp−1(G; µ) and for σ ∈ {+,−}

∫

G

A (x,Du) · ∇T σ
k (u− ϕ) dx +

∫

G

B(x, u)T σ
k (u− ϕ) dx =

∫

G

T σ
k (u− ϕ) dν

for all bounded ϕ ∈ H1,p
0 (G; µ) and k > 0, then we call u an entropy solution of

(Eν) in G. Here,

T+
k (t) = max{min(t, k), 0} and T−

k (t) = min{max(t,−k), 0}.
Then, there exists an (A ,B)-superharmonic entropy solutions of (Eν) with

weak boundary values zero.

Theorem 5.1. Suppose that G is an open set with G b Ω, ν is a finite
Radon measures in G which is absolutely continuous with respect to (p, µ)-capacity.
Then, there exists an (A ,B)-superharmonic entropy solution u of (Eν) in G with
min(u, k) ∈ H1,p

0 (G; µ) for all k > 0.

Proof. By Proposition 5.1, we can choose Radon measures νn ∈ (H1,p
0 (G; µ))∗

such that νn ≤ νn+1 ≤ ν for all n = 1, 2, . . . and νn → ν weakly in G. Then, Theorem
3.2 yields that there exists an (A ,B)-superharmonic function un ∈ H1,p

0 (G; µ) such
that Lun = νn. By Lemma 3.1, un ≤ un+1. As in the proof of Theorem 3.3, we can
choose a subsequence {uni

} and an (A ,B)-superharmonic function u in G such that
uni

→ u a.e. in G, ∇uni
→ Du a.e. in G and Lu = ν with min(u, k) ∈ H1,p

0 (G; µ)
for k = 1, 2, . . ..

By (3.8) in the proof of Theorem 3.3, we see that {∫
G
|∇min(uni

, k)|p dµ} is
bounded, so that {A (x,∇min(uni

, k))w−1/p} is bounded in Lp/(p−1)(G; dx). Since
∇uni

→ Du a.e. in G, it follows that

A (x,∇min(uni
, k))w−1/p → A (x,∇min(u, k))w−1/p
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weakly in Lp/(p−1)(G; dx) for any k > 0. Moreover, since un increases to u a.e. in
G, B(x, uni

) → B(x, u) a.e. in G and B(x, u1) ≤ B(x, uni
) ≤ B(x, u) a.e. in G.

Choosing s = p − 1 in (3.9) in the proof of Theorem 3.3, we see that B(x, u) ∈
L1(G; dx).

Let ϕ ∈ H1,p
0 (G; µ) be bounded and let |ϕ| ≤ M . Since un ≤ u ≤ k + M

whenever u− ϕ ≤ k and |∇T σ
k (u− ϕ)|w1/p ∈ Lp(G; dx), we have

∫

G

T σ
k (u− ϕ) dν = lim

i→∞

∫

G

T σ
k (u− ϕ) dνni

= lim
i→∞

(∫

G

A (x,∇uni
) · ∇T σ

k (u− ϕ) dx +

∫

G

B(x, uni
)T σ

k (u− ϕ) dx

)

= lim
i→∞

( ∫

G

A (x,∇min(uni
, k + M))w−1/p · ∇T σ

k (u− ϕ)w1/p dx

+

∫

G

B(x, uni
)T σ

k (u− ϕ) dx

)

=

∫

G

A (x,∇min(u, k + M))w−1/p · ∇T σ
k (u− ϕ)w1/p dx

+

∫

G

B(x, u)T σ
k (u− ϕ) dx

=

∫

G

A (x, Du) · ∇T σ
k (u− ϕ) dx +

∫

G

B(x, u)T σ
k (u− ϕ) dx.

Hence the proof is complete. ¤
In the same manner as [KX, Lemma 2.3], we obtain the following lemma.

Lemma 5.1. Suppose that G is an open set with G b Ω, ν is a finite Radon
measure in G which is absolutely continuous with respect to (p, µ)-capacity, and u
is an (A ,B)-superharmonic entropy solution of (Eν) in G. Then for any M > 0
and k > 0,

α1

∫

{x∈G | k≤u(x)≤k+M}
|Du|p dµ

≤ Mν({x ∈ G |u(x) > k}) + M

∫

{x∈G |u(x)>k}
|B(x, u)| dx.

By the above lemma and Corollary 4.1, we have the following corollary.

Corollary 5.1 Suppose that M is a positive constant, G is an open subset in
Ω, ν is a finite Radon measure in G which is absolutely continuous with respect to
(p, µ)-capacity, and u is an entropy solution of (Eν) in G. Then

lim
k→∞

∫

{x∈G | k≤u(x)≤k+M}
|Du|p dµ = 0.
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Using the above corollary, as in the proof of [KX, Theorem 2.5], we can show the
following uniqueness result of (A ,B)-superharmonic solutions of (Eν) with weak
zero boundary values. (Note that we use Corollary 2.2 to show that the inequality
u1 ≤ u2 holds everywhere in G.)

Theorem 5.2. Suppose that G is an open set with G b Ω, ν1 and ν2 are
finite Radon measures in G that are absolutely continuous with respect to (p, µ)-
capacity and ui is an (A ,B)-superharmonic entropy solution in G of (Eνi

) with
min(ui, k) ∈ H1,p

0 (G; µ) for all k > 0 for i = 1, 2. If ν1 ≤ ν2, then u1 ≤ u2 in G.
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