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Abstract. We consider superharmonic functions relative to a quasi-linear second order elliptic
differential operator L with lower order term and weighted structure conditions. We show that,
given a nonnegative finite Radon measure v, there is a superharmonic function u satisfying Lu = v
with weak zero boundary values. Moreover, we give a pointwise upper estimate for superharmonic
functions in terms of the Wolff potential.

Introduction

Let G be an open set in RY (N > 2). In the classical potential theory, it is
well known that given an ordinary superharmonic function u in G, there exists a
nonnegative Radon measure v in GG such that the equation

(1) —div(Vu) =v

holds in the distribution sense in G. Conversely, if G is bounded and v is a nonneg-
ative finite Radon measure, then

2) u(x) = /G 9(z,y) dv(y)

is superharmonic and satisfies the equation (1), where g(z,y) is the Green function
for the Laplace equation (for example, see [AG, Chapter 4]).

In nonlinear setting, no integral representation such as (2) is available. However,
in [KM1], [KM2] and [M], relations between &7-superharmonic functions (see [HKM,
Chapter 7| for the definition) and solutions for quasi-linear second order elliptic
differential equations involving measures

(3) —div (z, Vu(z)) = v
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are investigated, where o7 (z,£): RY x RY — R satisfies structure conditions
of p-th order with 1 < p < oco. They showed that for every nonnegative finite
Radon measure v, there is an ./-superharmonic function satisfying the equation (3)
with weak zero boundary values. Moreover, they gave a pointwise estimate for an
&7 -superharmonic function in terms of the Wolff potential. The existence and the
uniqueness of the solution to more generally quasi-linear elliptic equations involving
measures, including the equation (3), have been studied in many papers |[BG|, [B+5],
[R] and [KX], etc.

On the other hand, in the previous papers [MO1|, [MO2] and [MO3|, we devel-
oped a potential theory for elliptic quasi-linear equations of the form

(E) —div# (z, Vu(z)) + B(z,u(x)) =0

on a domain Q in RY (N > 2), where &/ (z,£): Q x RY — RY satisfies weighted
structure conditions of p-th order with weight w(x) as in [HKM]| and [M], and
PB(z,t): QxR — R is nondecreasing in ¢ (see section 1 below for more details). We
called superharmonic functions relative to the equation (E) (&7, %)-superharmonic
functions (see section 2 below for the definition).

The purpose of the present paper is to extend results in [KM1]|, [KM2| and
[M] to those relative to the equation (E), namely, to investigate relations between
(o7, #B)-superharmonic functions and solutions of the equation

(E,) —div e/ (z, Vu(z)) + B(z,u(x)) =v

with & and % as above.

We first investigate properties of (o, %)-superharmonic functions. Actually
we show the "ess lim inf” property, the fundamental convergence theorem, and the
integrability of (&7, %)-superharmonic functions. In section 3, we show that every
(o7, B)-superharmonic function determines a nonnegative Radon measure v by the
equation (E,) and conversely for every nonnegative finite Radon measure v, there
is an (&7, #)-superharmonic function u satisfying the equation (E,) with weak zero
boundary values. In section 4, we give a pointwise upper estimate for (&7, %)-
superharmonic functions in terms of the weighted Wolff potentials, and using this
estimate, we can show that an (&7, %)-superharmonic function is finite except on
o/ -polar set (see [HKM, Chapter 10| for the definition). Finally, in section 5, we
discuss the uniqueness of the so-called entropy solution to the equation (E,).

Throughout this paper, we use some standard notation without explanation.
One may refer to [HKM] for most of such notation. Also, we say that v is a Radon
measure if v is a nonnegative, Borel regular measure which is finite on compact
sets.
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1. Preliminaries

Let © be a domain in RY (N > 2). As in [MO1], [MO2| and [MO3| we assume
that &7 Q x RY — RY and %4: Q x R — R satisfy the following conditions for
1 < p < oo and a weight w which is p-admissible in the sense of [HKM]:

(A1) 2 — & (,€) is measurable on Q) for every ¢ € RN and ¢ — &/ (,€) is
continuous for a.e. x € ;
(A.2) o (x,€) - € > apw(x)|€P for all £ € RY and a.e. z € Q with a constant

o > 0,

(A.3) | (2,8)| < apw(x)|€[P~L for all € € RY and a.e. x € Q with a constant
ag > 0;

(A.4) (%(m,ﬁl) — %(:p,fg)) . ({1 — 52) > 0 whenever £;,& € RY, & # &, for a.e.
x €

(B.1) z — H(x,t) is measurable on  for every t € R and t — H(x,t) is continu-
ous for a.e. x € ();

(B.2) For any open set G € €2, there is a constant a3(G) > 0 such that |Z(z,t)| <
az(GQ)w(z)(|t|P~' + 1) for all t € R and a.e. v € G;

(B.3) t — A(x,t) is nondecreasing on R for a.e. x € ).

We consider elliptic quasi-linear equations of the form
(E) —dive/(z, Vu(x)) + B(z, u(z)) =0

on €.

For the nonnegative measure p: du(x) = w(z)dx and an open subset G of €,
we consider the weighted Sobolev spaces H'?(G; 1), Hy?(G; 1) and HEP (G p) (see
[HKM] for details).

Let G be an open subset of Q. A function u € HLP(G; ) is said to be a (weak)
solution of (E) in G if

/%(m,VU)~Vgpd&t+/%(m,u)cpdw—o
€ ¢

for all ¢ € CS°(G). A function u € H2P(G; ) is said to be a supersolution (resp.
subsolution) of (E) in G if

/sz/(x,Vu) : Vgpdz+/ B(r,u)pdr >0 (resp. <0)
G G

for all nonnegative p € C§°(G) .

Proposition 1.1. (Comparison principle) [O1, Lemma 3.6] Let G be a bounded
open set in 2 and let u € H"(G;u) be a supersolution and v € H"Y(G;u) a
subsolution of (E) in G. If min(u — v,0) € Hy?(G; ), then u > v a.e. in G.

A continuous solution of (E) in an open subset G of €2 is called (<7, %)-harmonic

in G.



174 Takayori Ono

We say that an open set G in Q is (&7, B)-reqular, if G € Q and for any

S Hllo’f (Q; 1) which is continuous at each point of OG, there exists a unique

h € O(G) N H“(G; i) such that h = 6 on OG and h is (&7, %)-harmonic in G.

Proposition 1.2. ([MO1, Theorem 1.4] and [HKM, Theorem 6.31|) Any ball
B € Q and any polyhedron P € () are (<, #)-regular.

We recall the definition of the (p, u)-capacity which is given in [HKM]. For a
compact set K and an open set G such that K ¢ G C R, let

cap, . (K,G) = inf/ |VulP du,
G

where the infimum is taken over all u € C§°(G) with v > 1 on K. Moreover, for an
open set U C G, set

cappyu(U,G): sup cappM(K,G),

KcU
K compact

and, finally, for an arbitrary set £ C G, define
cap, ,(E,G) = inf cap, (U G),

EcUCG
U open

and the number cap, ,(E, G) is called the (p, u)-capacity of (E,G).
If a set E C RY satisfies
cap, ,(ENG,G) =0

for all open sets G C RY, then we say that E is of (p, u)-capacity zero, and write
cap, ,F2 = 0. Also if a property holds except on a set of (p, u1)-capacity zero, we say
that it holds (p, u)-quasieverywhere, or simply (p, it)-q.e.

For E Cc RN and z € RV, let

1/(p—1
W, . (x, E) = /1 capp#(B(a:,t) NE,B(z, 2t)) /(p )@
pulT, 0 Capp’u(B(x,t)’ Bz, 2t)) =

In this paper, B(z,r) denotes an open ball with center x and radius 7.

Proposition 1.3. (M, Theorem 5.12], [HKM, Theorem 6.27 and Theorem 8.10])
Suppose that G is an open set with G € Q. Let T = {z € 0G| W, ,(z,CG) < oo}.
Then cap,, T = 0.

2. Properties of (<7, #)-superharmonic functions

In this section, we will investigate properties of (7, %)-superharmonic func-
tions. Actually we will show the “ess lim inf” property, the fundamental convergence
theorem, and the integrability of (<7, %)-superharmonic functions.

Let G be an open subset in Q. A function u: G — R U {oo} is said to be
(o, B)-superharmonic in G if it is lower semicontinuous, finite on a dense set in

G and, for each open set U € Q2 and for h € C(U) which is (&, %)-harmonic in
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U, u> hon OU implies u > h in U. (<, B)-subharmonic functions are similarly
defined. Note that a continuous supersolution of (E) is (&7, #)-superharmonic (cf.
[MO1, §2]). If w is (&7, $)-superharmonic in G, then so is u+ ¢ for any nonnegative
constant c. If u; and uy are (&7, %)-superharmonic in G, then so is min(uy, us).

Lemma 2.1. For any open set U & (2, there exists a nonnegative bounded
continuous (&, )-superharmonic function ug in U.

Proof. Let V be an (&, %)-regular open set such that U C V' € Q. There
exists hg € C(V) such that it is (&, #)-harmonic in V' and hy = 0 on OV. Then hq
is bounded, so that there exists a constant ¢ > 0 such that hg + ¢ > 0 in U. Then,

ug = hg + ¢ has the required properties. 0

Proposition 2.1. ([MO1, Corollary 4.1]) Any supersolution of (E) has an
(o , B)-superharmonic representative.

In general, an (&7, #)-superharmonic function is not always a supersolution (for
example, see [HKM, Example 7.47| or [K, p. 108]). Using [MO1, Proposition 1.2,
we can show the following proposition in the same manner as in the proof of [HKM,
Theorem 7.19 and Corollary 7.20| (see [O2, Proposition 5.2.2] for details).

Proposition 2.2. Let G be an open set in Q2 and u be an (/' , %)-superharmonic
function in G. If there is g € H-P(G; ) such that u < g a.e. in G, then u is a
supersolution of (E) in G.

Corollary 2.1. Let u be an (<, %)-superharmonic functions in an open set
G C Q, then min(u, k) € HP(G; ) for any k > 0.

loc
Proof. Let U €@ G and ug be a function as in Lemma 2.1. Then, u; = min(u, uy+
k) is a bounded (7, %)-superharmonic function, and hence it belongs to H"(U; )
by the above proposition. Hence min(u, k) = min(uy, k) € H2P(U; ). Since U € G
is arbitrary, we have the required assertion. 0
Next, we will establish the “ess lim inf” property for (<7, %)-superharmonic
functions (Theorem 2.1). To show this property, we prepare the following lemma.

Lemma 2.2. For each xy € Q2 and v € R there exist a ball B(xy,r) € {2 and
an (<, %)-harmonic function h on B such that h(zq) = 7.

Proof. Let T > 0 such that —T < < T. Choose By = B(z¢,7) with By C 2.
Set by(z) = B(x, T + 1), ba(x) = B(x,—T — 1) and u; be the continuous solution
of —div.#/(x,Vu) + b;(z) = 0 in By with boundary values 0 on 0By (j = 1,2).
Since each u; is continuous, there is r > 0 (r < rg) such that |u; — u;(xp)] < 1 on
B = B(xg,7), j =1, 2. Set v; = u; — uy(wg) + T and vy = uy — ug(z9) — T on B.
Since v; < T+ 1 on B,

—div.e/ (x, Vui(x)) + B(z,v1(x)) < —dive/ (x, Vuy(z)) + bi(x) =0

on B. Hence, since vy is continuous, v; is (&7, %)-subharmonic in B. Similarly
we see that vy is (&, Z)-superharmonic in B. Set T} = supgv; + 1 and Ty =
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—infgpvy + 1. Then T" < T; < oo, j = 1,2. Let h; be the (&, %)-harmonic
function on B with boundary values t on 0B. By the comparison principle, we have
hr,(z9) > v1(xo) = T and h_p,(x¢) < ve(xg) = —T'. Since t — hy(z) is continuous
(see [MO1, Corollary 3.1 and the proof of Proposition 3.1]), it follows that

{hi(z0) | — T2 <t < T} D [-T,T),
as required. O

To show the “ess lim inf” property, we need the following proposition (see [MO1,
Proposition 2.3]).

Proposition 2.3. (Poisson modification) Let G' be an open set in Q and let
V € G be an (&7, B)-regular open set. For an (<, %)-superharmonic function u
on G, we define

uy =sup{h € O(V)|h < on 0V and h is (o7, %)-harmonic in V'}.

Then
u inG\V,
uy in V

P(u,V) = {

is (&, #B)-superharmonic in G and (&7, %)-harmonic in V, and P(u,V) < u in G.
Ifu € H-"(G;p), then uly —uy € HyP(V: ).

loc
Theorem 2.1. (The “ess lim inf” property) Let G be an open subset in ). If
u is an (&, $)-superharmonic function in G, then u(x) = essliminf u(y) for each
y—x
r e .

Proof. Fix x € G and let A = essliminf, ,, u(y). Then A > liminf, ., u(y) >
u(z). To show the converse inequality, let v < A. By the above lemma, there is a
ball By = B(x,r;) and an (&7, %)-harmonic function h on B; such that B; C G
and h(x) = ~. Since h is continuous,

essliminf{u(y) — h(y)} =X =~ > 0.
y—T

Hence there is B = B(z,r) with 0 < r < 7y such that u > h a.e. on B. Now,
min(u, h) is (&, #)-superharmonic on B; and min(u, h) < h, which assures min(u,h)
€ H'?(B; ) by Proposition 2.2. Let 0 < p < r and v = P(min(u, h), B(x, p)) in the
notation in Proposition 2.3. Then v is a supersolution of (E) on B by Proposition 2.2,
v < min(u, k) and min(u, h) — v € Hy?(B;u). Hence, noting that min(u, h) = h
a.e. on B, we have

/M(x,Vv)-(Vh—Vv)dx+/%’(x,v)(h—v)dxzo

and

/ (2, V) - (Vh — Vo) dz + / B, h)(h — v) dz = 0,
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so that

/ [ (x,Vh) — o (x,Vv)] - (Vh — Vv) dz —I—/ (B(x,h) — B(x,v)](h —v)dz <O0.
B B
This implies Vh = Vv a.e. on B by (A.4) and (B.3). Since v = min(u, h) = h a.e.
on B\ B(z,p), it follows that v = h a.e. on B, and hence v = h everywhere on
B(z, p) by virtue of continuity of both v and h on B(z,p). In particular, v(z) =
h(z). Since v < min(u,h) < h, this implies that min(u(z), h(x)) = h(x), namely,
u(z) > h(z) =7. O
Corollary 2.2. Let G be an open subset in §) and let w and v be (<, %)-
superharmonic functions in G. If u > v a.e. in G, then u > v everywhere in G.

Next, we will show the fundamental convergence theorem (Theorem 2.2). For
this, we prepare a proposition and two lemmas. The following proposition can be
shown in the same manner as [HKM, Theorem 7.4] (see [02, Proposition 5.1.4] for
details).

Proposition 2.4. Let G be an open subset in Q). Let % be a family of (<, B)-
superharmonic functions in G which is locally uniformly bounded below. Then the
lower semicontinuous regularization of inf.# is (&7, 9)-superharmonic in G.

Suppose that G be an open set with G € QQ and F C G. Let h be a bounded
(o7, #)-harmonic function in G, u be an (&7, %)-superharmonic function in G with

u > h in G. We define
uM(G) = {v

RYM@) = inf ®%"(G) and RY"(G)(x) = lim _inf R%"(G) for each = € G. By

r—0 B(z,r)NG

vis (&7, A)-superharmonic in G,
v>wuon Fandv>hon G\ FE ’

the above proposition, R%"(G) is (&, %)-superharmonic in G.

The following lemma can be shown in the same manner as [HKM, Lemma 8.4].

Lemma 2.3. Suppose that GG is an open set with G € ) and E C G. Let
h be a bounded (<7, %)-harmonic function in G, u be an (&, %)-superharmonic
function in G withw > h in G. Then R%" is (<7, %8)-harmonic in G\ E, R%" = R%"
in G\ OF and RY" = u in the interior of E.

Lemma 2.4. Suppose that G is open set with G € Q and E C G is com-
pact. Let h be a bounded (47 ,98)-harmonic function in G and u be an (<, $)-

superharmonic function in G with w > h in GG. Then,
cap,,, {v € G| R (G)(@) < REM(G) ()} = 0.
Proof. Set S = {z € G|RY"(G)(z) < RY"(G)(z)}. By the above lemma,

S COE. Let T'={x € OE | W, (v, F) < oo}. Since cap, , T = 0 (Proposition 1.3),
the proof is complete if we show S C T.
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Let U be an (7, %)-regular set such that £ C U € G. Choose an increasing
sequence of nonnegative functions ¢; € C§°(U) such that ¢); + h — w on E. Set
= 1); + h. For each i there exists an (<, %Z)-harmonic function s; in U \ E with
—¢; € HyP(U\ E; p). Tt follows from [O1, Theorem 5.3| that lim,, ., yein g 5i(y) =
pi(x) for z € OE \ T. We shall show R%"(G) > s;in U\ E.
Choose ¢ > 0 such that h+¢ > 0 on U. For ¢ > 0, let v € ®%5"(G). Then
v; = min(v, h+ c+supy 1) is bounded and (&7, Z)-superharmonic in U, and hence
it is a supersolution of (E) in U by Proposition 2.2. Since v > u+¢ > ¢; on E
and ¢; = h on a complement of suppv;, v; > ¢; outside a compact set in U \ E.
Thus 0 > min(v; — s4,0) > min(v; — @;,0) +min(g; — s4,0) € Hy?(U \ E; 1), so that
min(v; — s;,0) € Hy?(U \ F;p). The comparison principle (Proposition 1.1) yields
v; > s; a.e.in U\ E. Since v; is (&7, #)-superharmonic and s; is (<7, %)-harmonic,
by Corollary 2.2 v; > s; in U\ E. Hence v > s;, so that R%"(G)+e > RE™"(G) > s
in U\ E. Letting ¢ — 0, we have R%"(G) > s, in U \ E.
Therefore, for x € OE \ T,

RY"(G) () > min (lim inf  RY"(G)(y), u(z )>

y—z,yeU\E

y—x,ycU\E

> min ( lim s ) 2),u(z)) = ().
> R

Letting i — oo, we have RY"(G)(x) > u(x) “M(G)(z) for z € OE \ T. This
implies S C T. O

Now, by using the above lemmas, we can show the fundamental convergence
theorem.

Theorem 2.2. (Fundamental convergence theorem) Let G be an open subset
in Q and let % be a family of (&, B)-superharmonic functions in G which is locally
uniformly bounded below. Then the lower semicontinuous regularization § of s =
inf F is (o, #)-superharmonic in G and § = s (p, p)-q.e. in G.

Proof. By Proposition 2.4, we only show that § = s (p,u)-q.e. in G. In the
same manner as in the proof of [HKM, Theorem 8.2], Choquet’s topological lemma
(JHKM, Lemma 8.3|) yields that there exists a decreasing sequence v; € .% with the
limit v such that the lower semicontinuous regularizations § and v coincide. Let

%:{$€G|@(x)+%<v(x)}.

Since s < v, we have {z € G|3(z) < s(x)} C |U;2,V;. Therefore, if we can show
cap, ,V; = 0, the subadditivity of the capacity yields § = s (p, u)-q.e. in G. Since
V; is a Borel set, it suffices to show that cap, , K = 0 for any compact set K C Vj.

Let G' € G be an open neighborhood of K and h be a bounded (7, #)-harmonic
function in G’. Since .# is locally uniformly bounded below, there exists a constant
¢ > 0 such that 0 +c¢ > h. Letting u =0+ c+ %, we have v; + ¢ € %"(G) for all
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i. Therefore R%"(G") < v; + ¢ in G’ for all 7, so that R%"(G") < v+ ¢ in G’. Hence
RYMG") <+ cin G'. This implies

. 1
RUMG) < b+ c+ = =u=RYG)
J
on K. Hence by Lemma 2.4 we have cap, , /A’ = 0, so that the proof is complete. [

The rest of this section is devoted to showing the integrability of (<7, %)-
superharmonic functions. First, following the discussion in [MZ], in which the un-
weighted case, namely the case w = 1, is treated, we will show a weak Harnack
inequality for supersolutions of (E). Hereafter, ¢, denotes a constant depending

only on those constants which appear in the conditions for w to be p-admissible
(see [HKM, Chapter 1]).

Lemma 2.5. Suppose that G is an open set with G € 2 and B(x,2r) C G. If
u is a nonnegative supersolution of (E) in G, then, for any o, T € (0, 1), there exists
a constant ¢ = ¢(N, p, a1, az, a3(G),r,v,0,7,¢,) > 0 such that

1 1/
_ u’ du) <c (ess inf w+ r)
([,L(B(ZE, O-T)) /B(:r,ar) B(z,r)

whenever 0 < v < s(p — 1), where » > 1 is the exponent in the Sobolev inequality.

Proof. Fixr > 0 and let w = u—+1r. Let § > 0. For a ball B C G and a
nonnegative € C°(B), set ¢ = u PnP. Then ¢ € Hy?(B;p) and ¢ > 0. Since u
is a supersolution of (E) and

Vo = —pu " 'nPVu + pu Py~ v,
we have
/ o (x,Vu) - (—Ba P nPVu + pu PPt V) do +/ B(x,u)u PnPdr > 0.
B
From (A.2), (A.3) and (B.2) it follows that
a3 / [VulPa= 1P dp < pas / VP~ Vet dp
(2.1) B B
+ a3(G) / (P~ 4 1)a PP dp.
B
By Young’s inequality,
|Vl Vyla Pyt

<o w4 e8|V
pa

with ¢ = ¢(p, a1, ) > 0. Also, note that uP™t + 1 < 2max(1,7'7P)uP~!. Hence,
by (2.1)

(2.2) /|Vu|pﬂ_ﬂ_1npdu§ C{B_p/ |Vn|Par =51 d,u—i—ﬁ_l/ﬂp_l_’gnpdu}
B B B

with ¢ = ¢(p, a1, as, a3(G),r) > 0.
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Now let s < p—1, s # 0, and set v = @*?. Then, |Vv|? = (|s|/p)?|Vul|Pu*P.
Hence, applying (2.2) with 8 =p — 1 — s we have

/ Vol dp < C{ISIP(p —1- 8)‘p/ [VnPo” dp
B B

(2.3) T lsPp—1— )" /

vPnP du}
B

<elsPl4 (p—1— )y / (1 + Vo) du
B

with ¢ = ¢(p, a1, a2, a3(G), ) > 0. The Sobolev inequality and (2.3) yield

(g [ an) () (7 [ 1wt an) "

1/p
24)  <26,0(B) (@ [ v+ (wiee du>

1/p
<ep(B)(ls| + (14 (p—1— )™ (ﬁ [ o ey du) |

where p(B) is the radius of B and ¢ = ¢(p, a1, ag, a3(G), r,¢,) > 0.

Now, we consider the ball B(x,r) as in the lemma and let B(h) = B(x,h)
for h > 0. Let ro = min(o,7)r. We note that u(B(h)) < cu(B(rg)) with ¢ =
c(o,7,¢,) > 0 for ry < h < r by the doubling property of . Let ro < h' < h <r
and n € C§°(B(h)) be chosen so that n = 1 on B(h'), 0 < n < 1 in B(h) and
|Vn| <3(h—R')~'. Then, since n <1 < h(h—1)7!, (2.4) with B = B(h) yields

(it ™)

(2.5) ) \/p
<O (h— )11+ (-1 ) ( / . v”du)

with Cl = Cl(p, a1, g, CV3<G)7 T, Cu, 0, T) > 0.
If s > 0, by (2.5) we have

(2.6) 1 9
<[Cyh—R) (14 s) 1+ (p—1—s)~H)P/s ( 3 /B(h) @ du> .
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If s <0,since (p—1—s)"' < (p—1)71 from (2.5) we obtain

> [Cy(h—B) " (1 — s)]P/* ( m /B ) . du) e

Let 0 <y < »(p—1). Suppose s = » /v for some integer j > 2. Set s; = s
fori =1,2,...,j—1. Then0 < s; < s 'y < p—1, and hence p—1—s; > p—1—2"17.
Also, set h; = r{o + 271 — o)} and h} = h;y;. Then h; — b, = 2= Fr(1 — o).
Thus, by (2.6) we have

1 1/siy1 . 1 1/s;
P — usitt d,u) S (C’ 2102) Si (_/ us d#)
<M(B(hi+1)) /B(hm) ? (B(hi)) Jemy

with Cy = Cy(p, a1, g, a3(G), 1, ¢y, 0,7,7) > 0. Thus, since v = sdsy = ss;_1,
or < hj and r = hy, we obtain by iteration

(iters o)

. 1/s0
f;l 1/siopSi=ti/s; 1 —80
(2.8) < O Vrigp o, ( T dy
2 u(B(r)) B(r)

with ¢ = ¢(p, ay, az, a3(G), 7, ¢4, 7, 0,7, 50) > 0. Since this holds for any so = » 7,
7 =2,3,..., by Holder’s inequality, the same inequality holds for any sy > 0.

Next, given so > 0, set s; = —»'sg, h; = {7 +27(1 —7)} and h; = h;y;. Then
by (2.7) we have

1/sit1
( 1 / ﬂ8i+1 du)
p(B(hit1)) B(hit1)

1/s;

Since 1 — s; = 1+ s'sg < (1 + s0)»", again by iteration we obtain

-1 1 1/sq
— 1 . s,
ess sup u = lim (—/ u® du)
( B(rr) ) i—oo \ u(B(hi)) Jan,)

S 1/ss o 1 —1/s0
> 03 i=0 51(2%)1721':0 i/si ( /B( )E—SO dﬂ)

(2.7)
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with Cs5 = Cs(p, oq, a2, a3(G), 1, ¢y, 0,7, 50) > 0, that is,

1 —1/s0
2.9 ess inf w>c (—/ u %o du)
(29) 5™ =\ G BE) Jay

with ¢ = ¢(p, a1, ag, a3(G), r, ¢y, 0,7, 50) > 0.
Finally, we show

for some sy > 0. Set v = logu and let B be any ball in B(z,r). Since |VulP =
|VulPu=?, by (2.2) with 3 = p — 1 we have

(2.11) / Vol dp < c / (o + [VlP) du
2B 2B

with ¢ = ¢(p, a1, a9, a3(G),r) > 0 for nonnegative n € C§°(2B). Choose 1 so that
n=1onB,0<n<1in2B and |Vny| <3p(B)~". Then, (2.11) yields

/B Vol? dyi < ep(B) P u(B)

with ¢ = ¢(p,aq, 0, a3(G),r) > 0. By using Holder’s inequality and Poincaré
inequality, we have

1/p
1 1 P
m/BW—UBMMSCpP(B) <m/B|V7J’ dﬂ) < Cy

with Cy = Cy(p, a1, o, a3(G), r,¢,) > 0, where vg = ﬁ [ vdu. Hence v satisfies
the hypothesis of the John—Nirenberg lemma ([HKM, Appendix I]), so that there
are positive constants so and ¢y depending only on Cy4, N and ¢, such that

1 Sov 1 —Ssov
ey /Bm ) (5 /Bm ) < o

Hence we obtain (2.10) with s = so(N, p, a1, g, a3(G), 7, ¢,) > 0and ¢ = ¢(N, p, o4,
as, a3(G), 1, ¢c,) > 0. Thus, by (2.8), (2.9) and (2.10) the proof is complete. O

In general, an (&7, %)-superharmonic function in G' does not belong to H,2"(G; 1).
Hence, we give a definition of generalized gradient Du.

Suppose that G is an open subset in €. For a function v in an open set G such
that min(u, k) € HP(G; ) for all k > 0, we define

Du = klim V min(u, k).

By Corollary 2.1, Du is defined for any (<7, %)-superharmonic function w.

Now, using the above lemma, we can show the following integrability theorem
for (&7, %#)-superharmonic functions.
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Theorem 2.3. Let G be an open subset in Q). If u is an (&7, B)-superharmonic

function in G, then v € L} (G:p) and Du € LYY V(G;p) whenever 0 < ~ <
»(p—1) and

xp

2.12 0<g< —F/——F—.
(2.12) 1 x(p—1)+1

Proof. Let G' € (G. Since u is bounded below on G’, by adding a positive
constant we may assume that u is nonnegative. By Lemma 2.1, there is a nonneg-
ative bounded continuous (.7, %)-superharmonic function uy in G’. For k > 0, let
u = min(u, up + k). Then, wuy is a supersolution of (E) in G'.

Let B = B(xz,r) be a ball with 2B C G'. By the above lemma, we have

1/~
T <c l(essinfur+7) <c (essinfu+17) < o0
k B B
B

whenever 0 < v < #(p — 1) with a constant ¢ independent of k. Hence, letting
k — oo, we have [, du < co.

Next, we show the integrability of Du. Let ¢ satisfy (2.12). Since hg > 0,
min(u, k) = u = uy on {u < k}, so that Vmin(u, k) = Vuy, a.e. on {u < k}. Hence

/ 1V min(u, &)1 dyy = / IV min(u, £)|"* dy
B Bn{u<k}

—/ ‘Vuk’q(pfl) dﬂﬁ/ ’vuk|q(p71) du
Bn{u<k} B

Set ur = ug, + r. If € > 0, by Hélder’s inequality and (2.2) in Lemma 2.5 we have

/IVukl‘”” Vdp = /|Vuk\qp g (- Da/pg L) e=Vafp g,

(p—1)q/p {p—(-1)a}/p
= (/ |Vuk|1’uk1 Edu) </ —(1+e)(p—L)a/{p—a(p—1)} d,u>
B B
(w=vafr {r—(p-1)a} /p
<c (/ k —1- Ed,u) (/ ESJF&)(I)_I)Q/{Z)_Q(]?_I)}d,u>
2B B

(p=1)a/p {p—(p—1)q}/p
<c (/ (u+ r)p‘l‘adu> (/ (u+ 7~)(1+e>(p—1>q/{p—q(p—1)} du> .
2B B

Now choose € so that 0 <& <p—1 and

(1+¢e)(p—1)q
p—qlp—1)

< x(p-1).

Thus, the integrability of v implies the integrability of Du. O
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3. Existence of (&7, #)-superharmonic solutions

In this section, we investigate relations between (7, %)-superharmonic func-
tions and solutions for the equation (E,) with weak zero boundary values.
We define

Lu = —div o (z, Vu(z)) + B(z, u(z)).

Let G be an open subset in Q. If u is a supersolution of (E) in G, then u € H,2*(G; 1),
and hence by Riesz representation theorem it is clear that Lu is a Radon measure
in G. In general, an (&, %)-superharmonic function in G' does not always belong to
H!P(G; 1) (see section 2). However, by the integrability of (.27, %)-superharmonic

loc
functions the following theorem holds.

Theorem 3.1. Let G be an open subset in 2 and u be an (<7 , #)-superharmonic
function v in G. Then there is a Radon measure v on G such that

/Jaf(x,Du)~Vg0dx+/%’(m,u)gpdmz/cpdl/
G G G

for all ¢ € C3°(G).

Proof. Let ¢ € C3°(G) be nonnegative, U be an open set with sptp C U € G
and ug be a bounded nonnegative (o7, %)-superharmonic function in U (see Lemma
2.1). Set ux = min(u, ug + k). Then Vuy — Du a.e. in U. Hence, by (A.1)

o (x,Vuy) - Vo — o (x, Du) -V
a.e. z € U. Moreover, by Theorem 2.3, |DulP~ € L(U), so that,
| (2, Vur) - Voo| < ol VPV < 277 (| DulP™" +[Vho[P71)[ V| € LY(U).
Again, by Theorem 2.3, |u[P~t € L'(U), so that,
| (2, we)p| < as(U)(Ju"~" + Dl < as(U)(Jul”™" + 1)]¢| € LY(U).

Hence, by Lebesgue’s convergence theorem we have

/d(as,Du)-Vgodz—i—/(@(x,u)apdx
G G

= lim (/ M(I,Vuk)-Vgodx+/93(x,uk)godx> > 0.
U U

k—o00

Therefore, from the Riesz representation theorem we obtain the claim of this theo-
rem. U

Remark 3.1. By the proof of Theorem 3.1 we can see: if u is an (o, %)-
superharmonic function, {uy} is the sequence of functions as in the proof of Theorem
3.1, v = Lu and vy = Luy, in G, then vy — v weakly in GG, namely,

lim gpdyn:/gpdu
G

n—od G

for all p € C5°(G).
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Next, we will show that given a nonnegative Radon measure v, there is an
(o7, B)-superharmonic function which satisfies the equation (E,) with weak zero
boundary values. We use the notation X* as the dual space of X.

Let G be an open set with G € Q. We can regard L as an operator Hy? (G i) —

(Hy™" (G5 )" by
(Lu,v) :/GM(:L’,VU)-Vvdx—i-/cz%’(x,u)vdx.

In fact, by (A.3) and (B.2),

1/
/42737 Vu) - Vodzr| < ay /|Vu|pdu /|Vv\pd/,c "

/G%’(x,u)vdx < 2a3(G)(/ (Ju] +1)" / ]U|pd,u /p,

so that, L is a bounded operator. Moreover, in the same manner as [O1, Lemma 3.3],
we can show that L is demicontinuous and coercive. Thus, if v € (Hy”(G; 1))*, then
it follows from [M, Lemma 2.6| that there exists a solution u € Hy*(G;p) which
satisfies (E,). Then, u is a supersolution of (E), so that u can be chosen to be
(o7, #)-superharmonic in G by Proposition 2.1. Further, by Lemma 3.1 below, u is
unique. Namely, the following theorem holds.

Theorem 3.2. Suppose that G is an open set with G € Q and v € (Hy? (G5 p))*
is a Radon measure in G. Then there is a unique (%, %)-superharmonic function
u in G which satisfies (E,) and belongs to Hy" (G p).

Lemma 3.1. Suppose that G is an open set with G € Q and uy, uy € Hy?(G; 1)
are (<, #)-superharmonic functions in G with Lu; = v; fori = 1, 2. If vy < vy,
then uy < uy in G.

Proof. Let 1 = min(uy — uy,0). Since n € HyP(G;p) and n < 0, we have by
(A.4) and (B.3)

Oz/ndm—/ndvl
G G

— [ @V Vst [ Bwua) s
G G

_ (/Gsz%(x,Vul)-Vndm+/0%(x,u1)ndx>

= / (o (x,Vuy) — (x,Vuy)) - Vndx
{u1>u2}

+/ (B(x,uz) — B(x,u1)) ndx > 0.
{ur>u2}
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Hence,

/ ( (2, Viia) — (2, Vn)) - (Vur — V) dar = 0.
{u1>ug}

Again from (A.4), we obtain Vu; — Vuy = 0 a.e. in {u; > us}, and hence Vi) = 0
a.e. in G. Since n € Hy?(G; 1), we have = 0 a.e. in G. Therefore, we conclude
that u; < us a.e. in G. By Corollary 2.2 we see that u; < us in G. Hence the proof
is complete. O

In order to show the existence of (&7, #)-superharmonic solutions of (E,) with
weak zero boundary values for general finite Radon measures, we prepare some
lemmas.

Lemma 3.2. (|M, Lemma 2.12|) If G is a bounded open set in Q and v is a finite
Radon measure in G, then there is a sequence of Radon measures v, € (Hy?(G; j1))*
such that v,(G) < v(QG) for alln = 1,2, ... and v, — v weakly in G.

Lemma 3.3. (|[M, Theorem 2.14|) Suppose that G is an open set with G € Q.
If {u,} is a bounded sequence in Hy”(G; 1), then there is a subsequence {u,, } and
a function u € Hy?(G; ) such that u,, — u in L*(G; ) for all 1 < s < sp.

Suppose that G is an open set in 2. A function u is said to be (&, %)-
hyperharmonic in G if it is lower semicontinuous, and for each open set U € G
and for h € C(U) which is (&, %)-harmonic in U, u > h on U implies u > h in
U. Note that Du is defined for every (.27, #)-hyperharmonic function u in G, since

min(u, k) € H-P(G; ) for any k > 0 by Corollary 2.1.

loc
Lemma 3.4. Suppose that G is an open set in Q. If {u,} is a sequence of
(o, B)-superharmonic functions in G which is locally uniformly bounded below,
then there is a subsequence {u,,} and an (<, %)-hyperharmonic function u in G
such that u,, — w a.e. in G and Du,, — Du a.e. in the set {u < oc}.

Proof. First, let U € G, U € G’ € G and we assume that there is a constant
M > 0 such that u,, < M in G’ for all n. Then, by Proposition 2.2, u,, € H-P(G'; 1)
is a supersolution of (E) in G'. Let U € U’ € G'. Choosen € C§°(G") with0 <7 <1
in G', 7 = 1in U’. Then since (M — u,)n” € Hy?(G'; ) and (M — u,)n? > 0 we

have

o (x,Vuy,) - V(M — u,)n")de + | PB(x,u,) (M — u,)n” de > 0.
G/ G/
Hence,
/ (o (2, Vuy,) - Vu,|nP de <p / [ (2, Vuy) - V(M — u,)nP~t dx

G/

+/ B(x,up) (M — u,)nP dz.
Gl
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We may assume that w, > —m for any n in G’ (m > 0). From the structure
condition and the inequality % (z,u,) (M — u,) < |%B(x, M)| (M + m) we obtain

o / |V, |PnP dip < pos YV, [P~ V| (M +m)nP~t du
G G

+ as(G) / (M7 1) (M ) d

(p—1)/p 1/p
< pas(M +m) ( / !Vun|”npdu> ( / |ande>
G’ G’

+ as(G) (MP1 + 1) (M +m) u(G").

An application of Young’s inequality yields that X < AX®=D/P 1 C implies X <
AP + pC for X > 0, A > 0 and C > 0. Therefore, {fG, |Vu, |[PnP du} is bounded.
Moreover, since { [, [un|?|Vn[P du} is bounded, {nu,} is bounded in HyP (G5 ).
By Lemma 3.3, there is a subsequence {nu,,,} and a function ug» € Hy*(G'; i) such
that nu,, — uy in L°(G’;p) for all 1 < s < sp, especially u,, — uy a.e. in U’.
It follows from [HKM, Theorem 1.32| that Vu,, — Vuy weakly in LP(U’; ). We
write this subsequence wu,, by w,.

Now we will show that uys has an (47, %)-superharmonic representative. Set
v; = inf,>;u, and 0;(z) = lim inf v;(z) (i = 1,2,...). Then, the fundamental

Yy—

convergence theorem yields that o; is (&7, %)-superharmonic in U’ and 0; = v;
(p, p)-q.e., and hence a.e. in U’. Moreover, since {0;} is an increasing sequence of
bounded (7, %)-superharmonic functions, 0 = lim; ., v; is (&7, %)-superharmonic
in U’ (]MOL1, Proposition 2.2|). Moreover, we have

upr(x) = lim w,(z) = lim v;(x) = lim 9;(x) = 0(z)

n—oo 1—00 1—00

for a.e. € U'. Thus uys has an (o, %)-superharmonic representative.
Next, we will show that Vu,, — Vuy a.e. in U. Fix € > 0. Let

E,. ={x e U|((z,Vu,) — (x,Vuy)) - (Vu, — Vuy) > €},
Eihs ={z € E,.||lup, —uy| > g2} and Efw =FE,:\ Ei’g.

Since u, — uyr in LP(U; ), |E} .| — 0 as n — oco. On the other hand,
1
|E..| < g/ (o (x,Vu,) — o (x,Vuy)) - (Vu, — Vuy) dz.
EZ

Let n € C5°(U’) with 0 <np < 1in U’ and n = 1in U, and v, = min{max(u, —uy, +
£2,0),2e2}. Then since uy is a supersolution of (E) in U’ and nv, € Hy?(U’; ju) is
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nonnegative,

0< o (x,NVuy:) - V(nu,)de + | B(x,uy) nu, dx
U U

< [ (e, Vup) - (0.V) dz + / o (2, V) - (09 (1t — ) da
U'N{|un—ul<e?}

U/

+ 2¢? | B (z, uy)| nde.
U/

Thus
/ o (x,Vuy ) - (nV(ug — uy)) dx
U'N{|un—uyr|<e?}
< | o(x,Vuy) - (v, Vn)de +2* | |B(x,up)| de
U/ U/

< ape? [ |Vup|P V| du + 26%a3(G) / (Jugr [P~ + 1) dpe
U’ U’

(p=1)/p 1/p
< ([ 1vwrad) ([ v et <o
U’ U’

with ¢ > 0 independent of £ and n. Similarly, considering v,, = min{max(uy — u, +
€2,0), 2%}, we have

/ A (x,Vuy,) - (nV (u, — ugr)) dov < ce?
U'n{|un—uyr|<e?}
with the same c¢. Thus

1

|E7216] < E/ (o (x,Vu,) — o (x,Vuy)) - (Vu, — Vuy) de < 2ce,
EZ .

so that, for n > n,,

(3.1) | Enel = |Ep ol + | Encl < (c+ D,

where ¢ does not depend on n and . To obtain the claim that Vu,, — Vuy a.e. in
U, we will show that for any A > 0

(3.2) {z € U||Vu, — Vuyg| > A} — 0

as n — o0o. To the contrary, we assume that there exist A > 0, a > 0 and the
subsequence {uy,} of {u,} such that

(3.3) {x € U||Vu,, — Vuy| > A} > a

for any 7. Since uy: € HYP(U; i), we have |Vug:| < oo a.e. in U, so that there exists
a constant R > 0 such that

(3.4) {z € U||Vuy| > R}| < %
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Set ,(¢n) = ((2,8) — (z,n)) - (—n) (&ne€RY). I n] < R, then
(&) = A (2,6) - & — A (0,§) - n— A (z,n) - E+ A (x,n) 1
> w(z)(—azE["™ n| — aslélln|"~" + ail¢]P)
> w(z)(—aol¢PT R — asl€| P 4 an[€]P).
There exists a constant R’ > 0 such that
—w|¢[PTT R — aolé| RPN+ an ¢ > 1

if |¢€] > R'. It follows that <7.(&,n) > w(z) for a.e. x € U if [¢] > R and |n| < R.
Since ,(£,7n) is continuous in (£,7n) and <7.({,n) > 0 for a.e. z € U whenever
n € RY, £ # 1, we have

0(x) := inf{ef,(&n) [ |€] < R |n] < R and € —n] > A} >0
for a.e. x € U. Therefore, if |n| < R and |£ — n| > A, then
(3.5) (&, m) = min(w(z),0(x)) > 0
for a.e. x € U. Setting
F,, ={z € U||Vu,, — Vur| > X and |Vuy| < R},
we have by (3.3) and (3.4)

a 2a
>aq— - = —.
- 3 3

Since min(w(x),d(z)) > 0 for a.e. x € U, there exists a > 0 such that

(3.6) | En;

(3.7) H{z € U| min(w(z),d(z)) < a}| < %.
Then from (3.5), (3.6) and (3.7) we obtain
{z € Ul #(Vun,, Vuy) 2 a}| = |En ol 2 |En o 0 Fy

= |F,,| — |Fn, N{x € U| %,(Vuy,, Vu,) < a}|
> [Fo,] = {z € Ul min(w(z),6(x)) < a}|
20 a a
P
-3 3

Choosing ¢ > 0 such that € < min (3(0(—11— 1

(c+1)e > ‘Em,s| > |Eni,a‘

which is a contradiction. Consequently, (3.2) is established.

Secondly, we relax the assumption that {u,} is uniformly bounded. Let U be
an open set with U € G, U’ be a regular set with U € U’ € G and hgy be the
continuous solution of (E) in U’ with boundary values 0 on 0U’. By the above
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argument there exist a subsequence {ug)} of {u,} and an (&7, %)-superharmonic
function u) € H“P(U; i) such that

min(u), by +1) — vV and Vmin(ulM, ho + 1) — VuV

a.e. in U. Inductively we define a subsequence {u%k)} of {u(k Y } and an (<7, B)-
superharmonic function u*) € H'?(U; i) such that

min(u®™, ho + k) — «® and Vmin(u®, by + k) — Vu

a.e.in U. Then {u®} is a increasing sequence, so that uy := limy_.o u® is (o7, B)-
hyperharmonic in U ([MO1, Proposition 2.2]). Since u®*) = min(uy, ho + k), for any
k=1,2,...it follows from the diagonal method that

min(u{™, hy + k) — min(uy, ho + k) and V min(u(™, ho + k) — V min(uy, ho + k)
a.e. in U. Since min(u\”, ho + k) — ul” (k — 00), we have ul) — uy ae. in U
and Dul) — Duy a.e. in {z € Uluy(x) < oo}

Finally, we show the assertion in GG. Let Uy be an open set such that U, &
Uk+1 € G and G = U,Uy. There exist a subsequence {u,} of {u,} and an (&7, £)-
hyperharmonic function uy, in U; such that u; ,, — uy, a.e. in U; and Du; ,, — Duy,
a.e.in {z € Uy |uy, (z) < oo}. Inductively we define a subsequence {ug1,,} of {ug}
and an (&7, #)-hyperharmonic function uy,,, in Uy such that ugy1, — vy, ae.
in Upy1 and Dugyy, — Duy,,, a.e. in {x € Uy |uy,,,(x) < oo}. Thus upyr, =
U, a.e. in Ugyq, and hence Corollary 2.2 yields wpy1,, = Ugy in Ugyr. Setting
u = uy, in Ug, uis (&, $)-hyperharmonic in G. Again, it follows from the diagonal
method that ugx — v a.e. in G and Dugr — Du a.e. in {x € G|u(z) < co}. Hence
the proof is complete. [l

Now we will show the existence of (&7, #)-superharmonic solutions of (E,) with
weak zero boundary values.

Theorem 3.3. Suppose that GG is an open set with G € ) and v is a finite
Radon measure in G. Then there is an (&7, %)-superharmonic function u in G
satisfying (E,) with min(u, k) € Hy?(G; ) for all k > 0.

Proof. By Lemma 3.2, there is a sequence of Radon measures v,, € (Hy?(G; 1))*
such that v,(G) < v(G) for all n = 1,2,... and v, — v weakly in G. Let G’ be
a regular set such that G € G’ € Q. Then by Proposition 1.2 there is a bounded
(o/, %)-harmonic function hy in G’ with hy € Hy"(G'; ) and by Theorem 3.2
there is a unique (&7, %)-superharmonic function w, in G satisfying (E,,) with
Uy € H&’p(G; ). Since hg is bounded, there exists ¢g > 0 such that hg — ¢y < 0 in
G. Therefore, comparison principle yields u,, > hg—co in G for all n. By Lemma 3.4
there is a subsequence {u,,} of {u,} and an (<, Z)-hyperharmonic function u in
G such that w,, — v a.e. in G and Vu,, — Du a.e. in the set {u < co}. On the
other hand, since min(u,, k) € Hy”(G; ) and 0 < (B(z,u,) — B(z,0)) min(u,, k),
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we have
/ |V min(u,, k)P du < a_l/ o (x,Vuy,) - Vmin(uy,, k) dx
G G
< oz_l/ o (x,Vuy,) - Vmin(u,, k) dx
G
(3.8) -1 _ .
+ (B(x,u,) — B(x,0)) min(u,, k) dx
@
=a! / min(uy,, k) dv, — o™ / PB(x,0) min(u,, k) dx
G G
<a'v(@)k+atas(G)u(G)k
for k =1,2,.... Hence, in the same manner as in the proof of [HKM, Lemma 7.43|,

for fixed 0 < s < 3(p — 1), there exists ¢ > 0 such that

/ max(u,, 0)* du < ¢,
@

where ¢ does not depend on n. On the other hand, min(u,,,0) > hg — ¢ in G for all
n. Therefore

(3.9) / |ul® dp < oo,
¢

so that u < oo a.e. in G. Hence u is (&7, #)-superharmonic in GG. Moreover, since
{min(u,, k)} is bounded in Hy”(G; ) and min(u,,, k) — min(u, k) a.e. in G, we
have uy, := min(u, k) € Hy?(G; u) for fixed k > 0.

Theorem 3.1 yields that there exists a Radon measure 7 in G such that

/d(as,Du)~Vg0dx—l—/ %’(:{:,u)gpdx:/ pdv
¢ e e

for all ¢ € C§°(G). To obtain that v = U, we will show v, — © weakly in G. Fix

l<qg< ﬁ. Again, in the same manner as in the proof of [HKM, Lemma 7.43],

by (3.8) there exists ¢ > 0 such that

(3.10) / |V, |77~V dy < ¢,
a
where ¢ does not depend n. Hence

/ |'Q{(x7 vun)w_H_%lq dx < C/ (|Vun|p_1)qwqw—q+1 dr
¢ G

e
for all n. Moreover, since Vu,,, — Du a.e. in G,

A (x, Vum)wa% — o (z, Du)wiH%
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weakly in LY(G;dz). On the other hand, by Theorem 2.3, for any U € G
/ | B (x, up,)w +§|‘1 dx < ag(U)/ (|un|p—1 +1)qwqw_q+1 d
U

<e [ (4 1) du<e
U

Since u,, — u a.e. in G, we have

Q%’(%um)w*lﬁ o z%’(x,u)wfué
weakly in L9(U;dz). Let ¢ € C3°(G) and U be an open set in G with spt ¢ C U.
Since w1V € LY@ D(G; dx) and w' 1 € LY/ (U; dz), we have

lim go dvy,

1—00

1—1 —141 -1
= lim @7 (@, Vi, )w Tow! -Vodr + B(x,up, )w  Taw  apdr
G

1—00

Q

:/ %<x’Du)w_l+awl_5 'V<Pd=’15+/ Bz, ww Fiw' i de
u U

:/ %(x,Du)-Vgpdw+/ ,@(x,u)godx:/ pdp.
G G G

Hence the proof is complete. O

4. Upper estimate of (<7, %)-superharmonic functions

In this section, we give a pointwise upper estimate for an (&7, #)-superharmonic
function in terms of the (weighted) Wolff potential (see below for the definition).
Also, using this estimate, we obtain that an (&7, #)-superharmonic function is finite

(p, p)-a.e.
As before, we define

Lu = —div . (z, Vu(z)) + B(z, u(z)).
In order to show the pointwise upper estimate for an (o, #)-superharmonic func-
tion, we prepare following two lemmas.

Lemma 4.1. Suppose that G is an open set in ), u is a supersolution of (E)
inGandv=LuinG. If G @G, then

o (x,Vu) - Veodr + ,%’(x,u)godx:/ pdv
G/ G/ !
for all bounded (p, j1)-quasicontinuous ¢ € Hy?(G'; ).

Proof. Let ¢ € Hy?(G'; 1) be bounded (p, p)-quasicontinuous in G’. Choose a
sequence of functions ¢,, € C§°(G’) such that {y,} is uniformly bounded, ¢, — ¢
in H'"?(G'; ) and ¢, — ¢ (p, )-q.e. in G’. Then, since ¢, — ¢ v-a.e. in G’ (note
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that v € (Hy"(G';p))*) and v(G') < oo, by Lebesgue’s convergence theorem we
have

lim O dv = / wdv.
G/ !

n—oo

Also, from (A.3) and (B.2), we obtain
’ o (x,Vu) -Veodr+ | Blx,u)pdr
o o

— ( A (x,Vu) - Vo, de+ [ Bz, u)p, d:v) ’
e e
<ay [ [VulT Ve — V| dp+ a3(G') / (Il + 1)l — ¢ul du
el o
(p=1)/p 1/p
<as( [ (vupan)”" ([ Ve - Vo)
o o

(—1)/p 1/p
200(@)( [ (el + 17 ) ([ o= olran)

where in the last inequality we have used Holder’s inequality. Because the last
integral tends to zero as n — oo , we have

o (x,Vu) - Veodr+ | B(zx,u)pdr
el el
= lim ( o (x,Vu) - Vo, de+ | Bz, u)p, da:)
el el

n—oo

= lim ©n dv :/ pdv,
n—oo G/ !
and the lemma follows. O
In the following lemma, we use the notation u; = max(u,0).

Lemma 4.2. Suppose that G is an open set with G € (), u is an (<, A#)-
superharmonic function in G, v = Lu in G, 2B = B(z,2R) C G andp—1 <y <

%. Then there exists a constant ¢ = c(p, ay, g, a3(G), ¢,,y) > 0 such that, for
every |l € R,
1 1/~ 1(1 1) 1 1/
— u—lvdu> <cAv T+ (—/ u—lvdu)
(N(B) /B( a 1(2B) QB< S
p 11 41 11 2B) YD)
4+ c R A1 =05 (I[P 4 D)YPD 4 e AFTEED (RP V(—) ,
(= + 1) e

where

W @BN{u>1})
A=TeE
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Proof. First, we assume u € H-P(G;p), i.e. u is a supersolution of (E) in G.

loc
Let § > 0. Set 7 = p71,

o(t) - {(1+t6;l)7 it > 1,

0 if t <l

and

Then 7 > 1 and ¥(t) < =%, Let 2B+ = {z € 2B|u(z) > I} and n € CF(2B)

1
with 0 <9 < 1,7 =1on B and |Vy| < 2/R. Since p(z) = V(u(z))n’(x) €

Hy?(G; ), we may assume that o is (p, pt)-quasicontinuous and Vi = nP® (u)Vu +
p¥(u)nP~1Vn, by Lemma 4.1 we have

/ [ (x,Vu) - Vu]D(u)n? dx —|—p/ [ (z,Vu) - V¥ (u)nP~ ! do

2B

/ PB(x,u) pdm—/ U (u)n? dv.
2B

From (A.2), (A.3) and (B.2) it follows that
o / VulP (P die < p | [Vl W) Vil d
2B, 2B,
(4.1) + ag(G)/ (1P~ 4+ 1)U (u)n? du

+/ U(u)n? dv,
2B,
where we have used —B(z,u) < —%(z,1) < az(G)w(z)(|I[P"1+1) on 2B+. Setting

_ (w=hy
é

, from (4.1) we obtain

)
a / Va1 + o) dp < —2—{ pas / IVl [Vl du
2B} T—1 2B,

+ Oég(G)/ (JIP~ + 1)n? dp + / n? du).

Young’s inequality yields that, for any € > 0,

(4.2)

p—1 p—1
VP VPt = Va1 o) (L40) 7 [V

<P=

1 1
e|VulP(14+v) ™" + 551—17(1 + )7 |VnP.
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It follows from (4.2) that

o / V(1 + o) dy
2B,

7' JE—
g / (1+ )|Vl du
2B,

o
+ (aa(G)/ (P~ + 1) dp + / n” dV>-
T—1 2B, + 2B+

Setting ME = %, that is ¢ = 2‘;;;}:1), we have

)
< <a2<p— e / Va1 4+ )P dy
1 2B,
(4.3)

& Vul?(1 + )" dp
2 2B,

¢ (5”/ (1+v)”|Vn\pdu+5(\l!p‘1+1)/ npdu+5/ npdV>,
2B 2B, 2B,

where ¢ = ¢(p, ay, s, a3(G),y) > 0. Set ¢ = (1 +v)""» — 1. Then, we have
g € H1 P(G; ), so that ng € H&’p (2B; p). Tt follows from the Sobolev inequality

that
1 1/»p 1 1/p
- g%Pd) §cR(—/Vgpd>
<u(23) /23|n| a 1(2B) ZB| ()" dy

1 1/P 1 1/17
<cR —/Vpgpd) +(—/ Vgppd) ,
<u(2B) | VI i H2B) Jo VO

so that

(4.5) (ﬁ/ ol > ’
<

(4.4)

Since
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where x2p,, is a characteristic function on 2B;+, from (4.4) we obtain

| vaP du=csr [ wup o) i

2B 2B,

(4.6) < c(/ (1+ )| VnPdu+ 6 P(IP~ + 1)
2B,

/ npdu—i—élp/ n’dv|.
2B+ 2B,

Also, since p — 1 < «, we have p — 7 < 7, so that
(4.7) ¢ < (1+0p < (1+0)
on 2B+ and g = 0 on 2B\ 2B;+. It follows from (4.5), (4.6) and (4.7) that

(4.8)
: / N’ du + 51_”/ n? dy)
2B+ 2B,
R p ({7(p— _p v(supp 1)
<cRP —/ L4+o)du+ AP (Pt 4+ 1)+ 67— )
(M(QB> 2Bl+( ) (i ) u(2B)
where

u (2B N {u> 1))
1 (2B)

Since v < sp — 5 = 3p(1 — 7), we have v7 < v?175) < ¢g® on {v > 1}. Hence
(4.8) yields

1 1/5¢
- n%pvwdu)
(/J(2B) /23
2B Pyt < 11)\ 1 1/
S(M( N{0 <y < })) +( / n%pvvdu)
1(2B) 1(2B) 2BN{n*Pv7>1}

1 1/5¢
< AV —/ P g ]
= +C(u(2B) i “)

< Al/%

A:

R . —p v(supp )
+ cRP / L+0) du+ A" P(lIP 4+ 1) + 6" :
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so that
5 1/5¢
»p _ ol
(o [, o)
1
(4.9) gAl/”+c6—7 —/ u—10)71d
W(2B) Jo, T
p $1—p p—1 V<SUPP77>
+cRPYH (A(\l] +1)+—M(23) >+01A,

where ¢; = ¢1(p, aq, g, a3(G),y) > 0. Setting

5 1/3¢ )
(i [orw=odn) =2t

that is,

1 1/7
0= (2+c) AT < / P (u—1)] d“) ’
2B

from (4.9) we obtain

1 |
Al/%<c,4(—/ ”pu—ﬂd) —/ u—107d
<A e@n) L DR ey L, T

~(p=1)/
+ cRPA(JIP 4 1) A=D1 (L/ n””(u—l)ldy) o
1(2B) Jap

—(p-1)/v
_ 1 v(suppn)
+ cRP A—D/y (—/ n”pu—lvdu> _—
W2B) Jop T 1(2B)

where we have used A < AY*. Tt follows that either

1/ 1 S|
<cA —/ Wu—l”d) —/ u—10)>1d
2 (,U(QB) 2Bn ( )+ i 1(2B) 2Bl+( )+ du

or

1/ ) o-1)/ 1 —(p=1)/v

< cRPA(IP 1) APV ([ e )1 g

< ey ) (o [ - o dn)

—(p=1)/v
- 1 v(suppn)
L CRP AP 1)/7(_/ n””u—ﬂdﬂ) v(suppn)

hB) Jop T #(2B)

Therefore, either

(g et vean) )

(4.10) . 1/y
1 1
S I L
(N(2B) QBer( S

197
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or
1 1/
— [ -1y du)
(#(23) /23 "
(4.11) < CRP/(P—l)Ap%l(l—iH%(|l|p—1 + 1)Y=
1/(p—1)
1o (o v(supp 77))
+ cAY =D (Rp— .
1(2B)

Therefore the doubling property, (4.10) and (4.11) yield

<CA#<1—3«>( ! / (u—l)ldu)w
- M(QB) 2B

1/(p=1)
+ cRP/(P=1) AT ety T (|1|P~ 1—|—1)1/(p’1)+cfﬁfﬁ (Rpl/(su—ppn)> i
1(2B)

Hence the required inequality holds with v(B) replaced by v(suppn) in the case
u € Hyg?(Gs p).

To conclude the proof, let uy be a nonnegative bounded (&7, #)-superharmonic
function in G (see Lemma 2.1) and let uy = min(u,uo + k) for & > 0. Then,
up € H1 P(G; ). Letting v, = Lug, we have v, — v weakly in G by Remark 3.1.

Therefore we obtain from [M, Lemma 2.11| that

lim sup v (supp ) < v(suppn)

k—o0

in G. Hence Lebesgue’s convergence theorem yields the claim of this lemma. O

For zq € Q2 and R > 0, we define

and W), is said to be the (weighted) Wolff potential of v (cf. [M, §3]).
Usmg Lemma 4.2, we can show the following theorem.

Theorem 4.1. Suppose that 0 < R, G is an open set with G € 2, 2B =
B(zo,2R) C G, u is an (&, #)-superharmonic function in G and v = L(u). Then
for any v with p — 1 < ~y, there exists a constant ¢ = c¢(p, oy, a2, a3(G), ¢, y) > 0
such that

1 1/~ V B
uy(z9) < ¢ <@/Bu1 du> +c WY (x0,2R) + ¢ RP/P71),
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Proof. By Holder’s inequality, we may only show the case p —1 < v < %-
Let R; =29 R, B; = B(xo, R;),

and A > 0 be a real number. We define a sequence {/;} inductively. Let iy = 0 and

/v
1
Ligp =1 + 271 / w—1;)) dp .
J+1 J <N<Bj+1> Bj+1< ])+

Set
4= pBin{u>4})
’ 1 (Bj)
Then since
pB > ) <G4 [ bt
(4 12) Bjﬁ{u>lj}

< (- lj—l)_W/B (u = li—1)3 dp = A'u(By),

J

we have A; < A7. This inequality and Lemma 4.2 yield

1/
1
g —1; = A7 / u—1,)7 dp
7+1 J (N(BjJrl) B]-+1( J)—i— >

1
<extato (L /( 1)l d :
<ec : u—10;)) du

’ 1(Bj) Jp, .

J
1
+’Y

1

+en? R;J/(pfl) A;%l’»«pfl)

(-1

7+ )V 4 A AT
<7 (1~ 1Ly e RY®TY AT (et gy

+ et Af‘ﬁ M;
<N (= ) e RTINS (74 YO 4 e\
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It follows that

k
Iy =1l <lpg1 — L = Z (L1 — 1))
j=1
k
1
72 L) + c A1 70m 1>ZR”/” Dt 1)y
: ,] 1
+ AT Z M,
j=1
k k
<N TEL AT En (7 Ve N R ey Y M,
j=1 i=1

in the last inequality we have used [y = 0. Choosing A small enough, we can obtain

(4.13) k<clhitcy Mj+cy RV

j=1 j=1
where ¢ = ¢(p, o, a2, a3(G), ¢y, y) > 0. Also, letting A < 1, by the definition of /;
we have

b= Zinf (u=lio), = infuy =1,

so that
(4.14) igf ugp <.

Also,
(4.15) Z (20, 2R).

Hence from the lower semicontmulty, (4.13), (4.14) and (4.15) we obtain

uy(zg) < 11_>nr01o 111;1f uy < I}LIgO U

1 1/~ , .
<c (m/Bul d,u> +cW, (20,2R) + ¢ RP/P=1),
as required. O

Let G be an open subset in Q and £ = {z € G | W)/ ,(x,7) = oo for some r > 0},
Then, it is known that cap, ,FF = 0 (for example, see [M Theorem 3.1] and [HKM,
Theorem 10.1]). Hence, from the above theorem we obtain the following corollary
which will be used to show the uniqueness result of (&7, #)-superharmonic solutions
of (E,) with weak zero boundary values in next section.

Corollary 4.1. An (&7, #)-superharmonic function is finite (p, j1)-q.e.
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5. Uniqueness of (<, #)-superharmonic solutions

In this section, we discuss uniqueness of (27, %)-superharmonic solutions of (E,)
with boundary conditions min(u, k) € Hy?(Q; ) for all k > 0.

If v(E) = 0 whenever cap,, ,E =0, then we say that v is absolutely continuous
with respect to (p, u)-capacity.

Proposition 5.1. (|M, Corollary 6.5]) If G is an open set with G € § and
v is a finite Radon measure in G which is absolutely continuous with respect to
(p, i )-capacity, then there is a nondecreasing sequence of Radon measures v, €

(Hy?(G; p))* such that v,(G) < v(G) for allm = 1,2, ... and

lim gpdyn:/ @ dv
G

n—oQ G

for any bounded Borel measurable function ¢ on G.

Hereafter, we shall always assume that functions in H,;?(Q; u) are (p, p)-quasi-

continuous. (see [HKM, Theorem 4.4]).
Let G be an open set with G € Q. If an (&7, #)-superharmonic solution u of
(E,) in G satisfies v € LP~Y(G;dx), |VT? (u)| € LP~Y(G; ) and for o € {+,—}

/G%(x,Du)-VTg(u—w)dx+/G%(x,u)Tg(u—gp)dx:/GT,f(u—gp)dl/

for all bounded ¢ € H&’p (G;p) and k > 0, then we call u an entropy solution of
(E,) in G. Here,

TF (t) = max{min(¢, k),0} and T} (¢t) = min{max(¢, —k),0}.

Then, there exists an (47, %)-superharmonic entropy solutions of (E,) with
weak boundary values zero.

Theorem 5.1. Suppose that G is an open set with G € §2, v is a finite
Radon measures in G which is absolutely continuous with respect to (p, j1)-capacity.
Then, there exists an (&7, %)-superharmonic entropy solution u of (E,) in G with
min(u, k) € Hy?(G; ) for all k > 0.

Proof. By Proposition 5.1, we can choose Radon measures v, € (Hy?(G;u))*
such that v, < 1,1 <vforalln=1,2,...and v, — v weakly in G. Then, Theorem
3.2 yields that there exists an (7, %)-superharmonic function u,, € Hy”(G; i) such
that Lu, = v,. By Lemma 3.1, u,, < u,,1. As in the proof of Theorem 3.3, we can
choose a subsequence {u,, } and an (o, %#)-superharmonic function u in G such that
Up, — u ae. in G, Vu, — Du ae. in G and Lu = v with min(u, k) € Hy?(G; )
for k=1,2,....

By (3.8) in the proof of Theorem 3.3, we see that { [, |V min(un,, k)P du} is
bounded, so that {.o(z, V min(u,,, k))w='/?} is bounded in LP/®?~Y(G;dxr). Since
Vu,, — Du a.e. in G, it follows that

o (z,V min(u,,, k))w " — o (x,V min(u, k))w= /7
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weakly in LP/*=V(G; dz) for any k > 0. Moreover, since u,, increases to u a.e. in
G, B(x,uy,) — B(r,u) ae. in G and B(r,u1) < B(x,uy,,) < B(x,u) ae. in G.
Choosing s = p — 1 in (3.9) in the proof of Theorem 3.3, we see that #(x,u) €
LY(G; dx).

Let ¢ € Hy"(G;p) be bounded and let |p| < M. Since u, < u < k + M
whenever u — ¢ < k and |VT¢ (u — ¢)|w!/? € LP(G;dz), we have

/T,f(u— ¢)dv = lim T (u — ) duy,
e

1— 00 G

1— 00

~ lim ( /G A (@, V) - VT (4 — @) d + /G Bl un )T (u— o) dx)

1—00

= lim (/ o (z,V min(u,,, k + M))w™ P . VT (u — p)w'/P do

+/ B(x,un,)TE (u— @) d:v)

/ o (z,V min(u, k + M))w™ 7. VT (u — p)w'/? dx

/,%’:ruTk u—)dr
:/ d(x,Du)~VT,f(u—gp)dx+/ B(x,u)TY (u— ¢)dz.
a a

Hence the proof is complete. 0
In the same manner as [KX, Lemma 2.3|, we obtain the following lemma.

Lemma 5.1. Suppose that G is an open set with G € (), v is a finite Radon
measure in G which is absolutely continuous with respect to (p, j)-capacity, and u
is an (&7, B)-superharmonic entropy solution of (E,) in G. Then for any M > 0
and k > 0,

ay / | Dul? dp
{z€G | k<u(z)<k+M}

< Mv({zx e Glu(z) > k})+ M | B (x,u)| dx.
{z€G |u(x)>k}

By the above lemma and Corollary 4.1, we have the following corollary.

Corollary 5.1 Suppose that M is a positive constant, G is an open subset in
(2, v is a finite Radon measure in G which is absolutely continuous with respect to
(p, j)-capacity, and u is an entropy solution of (E,) in G. Then

lim | Dul? dp = 0.
k=00 Jireq | k<u(z)<k+M}
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Using the above corollary, as in the proof of [KX, Theorem 2.5, we can show the
following uniqueness result of (o, %)-superharmonic solutions of (E,) with weak
zero boundary values. (Note that we use Corollary 2.2 to show that the inequality
uy < ug holds everywhere in G.)

Theorem 5.2. Suppose that GG is an open set with G € €, v, and vy are
finite Radon measures in G that are absolutely continuous with respect to (p, u)-
capacity and w; is an (&7, 98)-superharmonic entropy solution in G of (E,,) with
min(u;, k) € HyP(G;p) for all k > 0 fori = 1,2. If v; < vy, then uy < uy in G.
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