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Abstract. We exhibit compact totally disconnected sets in R
n, with Hausdorff dimension

n − 1, whose complements fail to be quasiconvex, and similar sets with positive n-measure whose

complements are quasiconvex. We characterize the finitely connected quasiconvex plane domains.

We present related results for bounded turning.

1. Introduction

A rectifiable path is c-quasiconvex, c ≥ 1, if its length is at most c times the
distance between its endpoints. A metric space is c-quasiconvex if each pair of
points can be joined by a c-quasiconvex path. That is, for all points x, y there exists
a rectfiable path γ joining x, y and satisfying

ℓ(γ) ≤ c |x − y| .
Quasiconvex spaces are precisely the spaces which are bilipschitz equivalent to length
spaces. The notion of quasiconvexity plays a prominent role in the theory of analysis
in the metric space setting; especially, there are strong connections with the so-
called John and uniform spaces. For example, a John disk is a quasidisk if and
only if it is quasiconvex. See [Geh82], [Geh87], [Väi88], [NV91] and the references
mentioned therein. Also, the quasiconvexity of a bounded simply connected plane
domain is closely related to Hölder continuity properties of the associated Riemann
map and/or its inverse, as explained in [NP83]. Other examples of quasiconvex
spaces are upper regular Loewner spaces and doubling metric measure spaces which
support a (1, p)-Poincaré inequality; this list includes Carnot groups and certain
Riemannian manifolds with non-negative Ricci curvature; see [HK98, 3.13, 3.18,
§6].

The primary purpose of this article is to investigate Euclidean quasiconvexity.
In particular, we seek to understand which closed sets in Euclidean n-dimensional
space R

n (n ≥ 2) have quasiconvex complements. An example is provided by any
closed set whose projections onto each coordinate (n−1)-plane have (n−1)-measure
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zero. To prove this, use the ACL characterization of Sobolev functions to see that
such a set is removable for Sobolev functions, hence a null set for capacity and
therefore a so-called null set for extremal distance; a ‘modulus of curves argument’
now gives quasiconvexity as explained in [GM85, 2.7, 2.9]. Thus the complement
of a closed set is quasiconvex if, e.g., the set itself has zero (n − 1)-dimensional
Hausdorff measure.

Geometric reasoning reveals the result stated below. Note that the proof of
this provides an alternative elementary argument for the aforementioned result.
As an application we see that, by taking products of closed totally disconnected
(i.e., nowhere dense) subsets of R, we can construct closed totally disconnected
sets in R

n—even with positive n-measure—whose complements are quasiconvex. In
particular, there are quasiconvex domains in R

n whose boundaries have positive
n-measure.

Theorem A. Let A be a closed set in R
n. Suppose each projection of A onto

a coordinate (n − 1)-plane is nowhere dense. Then R
n \ A is quasiconvex.

In light of the above, the following result† completes the picture regarding the
relations, or lack thereof, between the Hausdorff dimension of a closed set and quasi-
convexity of its complement. This result should be contrasted with Proposition 4.1.

Theorm B. There exists a compact totally disconnected set in R
n that has

Hausdorff dimension n − 1 and a non-quasiconvex complement.

Combining Theorem B with Theorem A, and the comments preceding it, we
obtain the following information concerning the quasiconvexity of the complement
of a totally disconnected closed set versus its Hausdorff dimension or measure.

Corollary C. If a closed set in R
n has (n−1)-measure zero, then its complement

is quasiconvex. On the other hand, for each d ∈ [n−1, n], there exist compact totally
disconnected sets Ad and Bd, each having Hausdorff dimension d and with Ac

d not
quasiconvex while Bc

d is quasiconvex. Moreover, we can select Bd so that it is has
positive finite Hausdorff d-measure. For d ∈ (n − 1, n], the same holds for Ad.

Indeed, we can take Bd = Cn
d where Cd ⊂ [0, 1] is an appropriate Cantor type set.

Similarly, we can take Ad := An−1 ∪Cn
d where An−1 is the set given by Theorem B.

Our original interest in studying totally disconnected sets was due to the fact
that one knows exactly what the complements of quasiconvex plane domains ‘look
like’. For this discussion, it is convenient to introduce the terminology Jordan curve

domain for an open connected plane region each of whose boundary components is
either a single point or a Jordan curve. The reader may consult Figures 1, 2, and 3
for several illuminating examples of Jordan curve domains.

Quasiconvex plane domains enjoy a number of nice properties.

Theorem D. Suppose D ( R
2 is a c-quasiconvex domain. Then:

†We would like to thank the many participants at the recent Workshop in Geometric Function
Theory (May 8–12, 2006 at the University of Michigan) with whom we discussed this issue.
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(1) D is a Jordan curve domain‡,
(2) ∂D has at most π/ arcsin(1/c) unbounded components, and
(3) for any b > c, each pair of points ξ, η ∈ D̄ can be joined by a b-quasiconvex

path in D ∪ {ξ, η}; in particular, each point of ∂D is rectifiably accessible.

Note that condition (3) above is best possible since there may be boundary
points which cannot be joined by c-quasiconvex paths. Also, using (2) with c = 1
we see that any convex plane domain can have at most two unbounded boundary
components. In fact (2) is sharp: given an integer n with n ≥ 2, there exists a
simply connected c-quasiconvex plane domain with c = 1/ sin(π/n) and having n
unbounded boundary components; see Example 2.8.

The above necessary conditions are also sufficient for plane domains which have
finitely many boundary components.

Theorem E. Let D ( R
2 be a Jordan curve domain with ∂D having finitely

many components. Suppose c ≥ 1 and each pair of rectifiably accessible points
ξ, η ∈ ∂D can be joined by a c-quasiconvex path in D ∪ {ξ, η}. When c > 1, D
is c-quasiconvex; if c = 1, then D = G \ F where G is strictly convex and F is a
finite set.

We mention that if E is any closed set of points lying on some strictly convex
curve, then the complement of E satisfies all the hypotheses of the above with
c = 1, but clearly it is not convex. We can weaken the hypothesis that there be
‘finitely many boundary components’ if instead we require that all boundary points
be joinable by quasiconvex paths. We use this alternative to characterize finitely
connected quasiconvex plane domains. We note that there are simply connected
Jordan curve domains having infinitely many unbounded boundary components;
see Figure 3.

Corollary F. Let D ( R
2 be a finitely connected domain. Then D is c-

quasiconvex if and only if

(1) D is a Jordan curve domain, and
(2) each pair of points ξ, η ∈ ∂D can be joined by a b-quasiconvex path in

D ∪ {ξ, η}.
For the necessity, we can take any b > c; for the sufficiency, c = b works (provided
b > 1).

For a simply connected quasiconvex domain D we find that either ∂D is a Jordan
loop (which occurs when D is bounded), or a union of finitely many Jordan lines
(when D is unbounded).

Thus we know precisely when a finitely connected plane region will be quasi-
convex. Perhaps the simplest non-finitely connected domains are complements of
closed totally disconnected sets, hence our interest in these regions. (Note that the
complement of a closed totally disconnected set in R

n is rectifiably connected; see

‡In fact, each non-degenerate component of Dc is a closed b-John disk with b = b(c); see
Corollary 3.4.
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§4.B for even more information.) It would be worthwhile to have criteria describing
when such a region is quasiconvex and so we ask the following.

1.1. Question. Suppose A ⊂ R
n is compact and totally disconnected with

Hausdorff dimension in [n − 1, n]. When will Ac be quasiconvex?

Of course, Theorem A and the comments just preceding it provide topologic
and measure-theoretic sufficient conditions for Ac to be quasiconvex.

Looking carefully at the proof of Theorem B we see that the set constructed
there has infinite (n − 1)-dimensional Hausdorff measure. Thus it is natural to ask
the following.

1.2. Question. Does there exists a compact totally disconnected set in R
n with

a non-quasiconvex complement and finite (n − 1)-dimensional Hausdorff measure?

This document is organized as follows: Section 2 contains preliminary informa-
tion including basic definitions and terminology as well as elementary examples. In
Section 3 we examine quasiconvexity and bounded turning of plane domains and
corroborate Theorems D, E and Corollary F; see 3.9, 3.10 and 3.11 respectively. We
establish Theorems A and B in Section 4.

We thank the two referees for their thoughtful suggestions which improved our
paper. We especially thank the referee who drew our attention to Fact 3.5, which
in turn provided simplifications to our original proofs of Propositions 3.6 and 3.8,
and who also recommended that we examine bounded turning and suggested the
argument for Corollary 4.2.

2. General metric spaces

Here we set forth our (relatively standard) notation and terminology, provide
fundamental definitions, present basic information, and exhibit elementary exam-
ples. Throughout this section (X, d) denotes a general metric space which we usually
refer to as just X. In this setting, all topological notions refer to the metric topol-
ogy. We write X̄d and ∂dX := X̄d \ X to denote the metric completion and metric
boundary, respectively, of (X, d).

2.A. Basic definitions. We write the distance between points x, y ∈ X as
|x − y| = d(x, y). The open ball (sphere) of radius r centered at the point x is
B(x; r) := {y : |x − y| < r} (S(x; r) := {y : |x − y| = r}).

Points of X are separated by a closed set F if they lie in different components
of X \ F .

A continuum is a non-empty compact connected space that we always assume
is non-degenerate which means that it contains more than a single point. Points are
joined by a continuum if they belong to it. We require the following result which
can be found in [Kur68, p. 172] or [HY88, p. 47].

2.1. Fact. If A is a closed subspace of a continuum K and C is a component
of A, then C ∩ (K \ A) 6= ∅.
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A path (arc) is a continuous (homeomorphic) map of an interval; intervals are
assumed to be compact unless explicitly indicated otherwise. We use the notation
|γ| for the trajectory (i.e., image) of a path γ. However, for points x, y ∈ R

n, we
write [x, y] both for the line segment joining x and y as well as the affine path
[0, 1] ∋ t 7→ x + t(y − x). For paths and arcs, the phrase joins x to y is also
meant to describe an orientation, and when x, y are points on an arc α, we write
α[x, y], α(x, y), α[x, y) for the various (closed, open, etc.) subarcs of α joining x to y.
We mention that every path contains an arc which joins its endpoints; see [Väi94].

When α and β are paths which join x to y and y to z respectively, we write α⋆β
for the concatenation of α and β; so α⋆β joins x to z. Of course, |α⋆β| = |α| ∪ |β|.

The length of a path γ : [0, 1] → X is defined in the usual way by

ℓ(γ) := sup{
n

∑

i=1

|γ(ti) − γ(ti−1)| : 0 = t0 < t1 < · · · < tn = 1} .

We call γ rectifiable when ℓ(γ) < ∞, and X is rectifiably connected provided each
pair of points in X can be joined by a rectifiable path. Every such metric space X
admits a natural (or intrinsic) metric, its so-called length distance given by

l(x, y) := inf{ℓ(γ) : γ a rectifiable path joining x, y in X} .

A metric space (X, d) is a length space provided d(x, y) = l(x, y) for all points
x, y ∈ X; it is also common to call such a d an intrinsic distance function. If A is
the trajectory |α| of some arc α, we also write ℓ(A) := ℓ(α).

2.B. Quasiconvexity & bounded turning. Here we examine these concepts
for a metric space which possesses no additional presumed properties. A metric
space satisfies the bounded turning condition if points can be joined by continua
whose diameters are no larger than a fixed constant times the distance between
the original points. To be precise, given a constant a ≥ 1, we say that X has
the a-bounded turning property if each pair of points x, y ∈ X can be joined by a
continuum K satisfying diam K ≤ a |x− y|; we abbreviate this by declaring that X
is a-BT. The bounded turning condition has a venerable position in quasiconformal
analysis; see the references in [Geh82], [NV91], [Tuk96].

There are related notions where one replaces ‘joined by a continuum’ with ‘joined
by a connected set’ or ‘joined by a path’; cf. [NP83], [Tuk96]. Below we consider
the related condition obtained by replacing ‘joined by a continuum’ with ‘joined by
a rectifiable path’ and using arc length in place of diameter. We remark that, in an
ambient length space, for each ε > 0 one can always replace a continuum K, which
joins two points in some open set, by a path γ, which joins the same two points in
the same open set, with diam |γ| ≤ (1 + ε) diamK. Tukia established a far more
interesting result in [Tuk96].

A rectifiable path γ with endpoints x, y is a c-quasiconvex path, c ≥ 1, if ℓ(γ) ≤
c |x − y|. A metric space is c-quasiconvex if each pair of points can be joined by
a c-quasiconvex path. (Note that in general, the trajectory of a quasiconvex path
need not be quasiconvex.) Thus a metric space is a length space if and only if it
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is c-quasiconvex for each c > 1. A 1-quasiconvex metric space is usually called a
geodesic space. By cutting out any loops, we can always replace a c-quasiconvex
path with a c-quasiconvex arc having the same endpoints; see [Väi94].

Since |x − y| ≤ l(x, y) for all x, y, the identity map (X, l)
id→ (X, d) is always

Lipschitz continuous. Evidently, X is quasiconvex if and only if this identity map is
bilipschitz. In particular, if X is c-quasiconvex, then this map is c-bilipschitz. Since
Lipschitz maps are a fortiori uniformly continuous, id would have a c-bilipschitz
extension between the completions X̄l and X̄d; in particular, for quasiconvex spaces,
∂lX = ∂dX as sets. Also, id : (X, l) → (X, d) being c-bilipschitz implies that X̄d is
b-quasiconvex for each b > c. Thus the metric completion of a quasiconvex space is
quasiconvex. In fact, slightly more is true; e.g., all boundary points of a quasiconvex
space are rectifiably accessible.

2.2. Lemma. Fix b > c ≥ 1 and let ξ, η ∈ ∂dX. If X is c-quasiconvex (or
c-BT), then X ∪ {ξ, η} is b-quasiconvex (or b-BT, respectively); in particular, X̄d is
b-quasiconvex (or b-BT, respectively).

This result is sharp in that it may not be possible to join boundary points by
c-quasiconvex paths; see Example 2.7.

Proof. This is established for quasiconvex domains in Euclidean space in [HK91,
2.7]. The same argument works in the general metric space setting. Minor modifi-
cations yield the corresponding result for bounded turning. �

In [New51, Theorem 3.3, p. 78] we find the following fact:

If X is a connected subspace of a connected space Z and C is a
component of Z \ X, then Z \ C is connected.

In Lemmas 2.4 and 2.5 we present analogs of this for the quasiconvex, bounded
turning and locally connected settings. Roughly speaking, we can always assume
that the complement of an open quasiconvex (or BT) subspace of a quasiconvex (or
BT) space is connected. Our proofs use the following fact.

2.3. Lemma. Let X be an open subspace of Z, let C be a component of Z \X,
and put Y := Z \ C. Suppose K ⊂ Z is a continuum with K ∩ Y 6= ∅ 6= K ∩ C.
Then for each y ∈ K∩Y there is a subcontinuum Ky ⊂ K that satisfies y ∈ Ky ⊂ Y
and Ky ∩ X 6= ∅.

Proof. Fix a point y ∈ K ∩ Y . The assertion is not hard to check when
y ∈ X, so assume y /∈ X. This means that y lies in some component, say Cy, of
Z \ X and Cy ∩ C = ∅. Since y 6∈ C, d := dist(y, C) > 0. For each ε ∈ (0, d),
let Nε =

⋃

z∈C B(z; ε) and let Kε be the component of K \ Nε which contains y.
According to Fact 2.1, Kε ∩ N̄ε 6= ∅.

We claim that there is an ε ∈ (0, d) with Kε∩X 6= ∅. For if this were false, then
the set S :=

⋃

ε∈(0,d) Kε would satisfy S̄ ⊂ Cy, but as S̄ ∩ C 6= ∅ this would yield a
contradiction. Pick such an ε; then Ky := Kε has the asserted properties. �
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2.4. Lemma. Let X be an open subspace of Z. Let C be a component of Z \X
and put Y := Z \ C. If X is c-quasiconvex (or c-BT) and Z is b-quasiconvex (or
b-BT), then Y is bc-quasiconvex (or b(c + 1)-BT, respectively).

Note that when Z is geodesic, this asserts that Z\C is c-quasiconvex (or (c+1)-BT).

Proof. The two proofs are quite similar, so we only sketch the argument for the
quasiconvex case. Assume X is c-quasiconvex and Z is b-quasiconvex.

Fix x, y ∈ Y and let α be a b-quasiconvex arc joining x to y in Z. If α stays
in Y we are done, so assume otherwise; thus α meets C. We claim there are points
u, v ∈ |α|∩X with |α[x, u]|, |α[y, v]| ⊂ Y . Given this, we select a c-quasiconvex path
β joining u, v in X; then the concatenation α[x, u] ⋆ β ⋆ α[v, y] is a bc-quasiconvex
path joining x, y in Y .

Now assume X is c-BT and Z is b-BT. Fix x, y ∈ Y and let K ⊂ Z be a
continuum joining x, y with diam K ≤ b|x − y|. If K ⊂ Y we are done, so assume
otherwise; thus K ∩ C 6= ∅. Choose subcontinuua Kx, Ky ⊂ K ∩ Y , as provided by
Lemma 2.3, which contain x, y respectively and which both meet X. Pick u ∈ Kx ∩
X, v ∈ Ky ∩X and select a continuum B ⊂ X joining u, v with diam B ≤ c|u− v|.
Now we easily check that A = Kx ∪ B ∪ Ky is a continuum joining x, y in Y with
diam A ≤ b(c + 1)|x − y|. �

2.C. Local connectivity. Recall that X is locally connected at x ∈ X provided
for all t > 0 there is an r > 0 such that points in B(x; r) can be joined by a connected
set in B(x; t); that is, B(x; r) lies in a component of B(x; t). We call X uniformly

locally connected if such an r can be chosen independently of x. It is not hard to
see that quasiconvex and bounded turning spaces are uniformly locally connected.

A subspace A ⊂ X is locally connected at x ∈ X provided for all t > 0 there
is an r > 0 such that A ∩ B(x; r) lies in a component of A ∩ B(x; t); cf. [New51,
VI.13, p. 159]. This is only an interesting notion for points on ∂A; we say that A
is locally connected along its boundary when A is locally connected at each point of
∂A. A subspace A ⊂ X is finitely connected at x ∈ X provided for all t > 0 there is
an r > 0 such that A ∩ B(x; r) lies in finitely many components of A ∩ B(x; t). A
standard reference for these notions is the classic text [New51, §4 in Chapters IV &
VI]. See also [Näk70].

For future reference, we note that every set which is bounded turning or quasi-
convex is locally connected along its boundary.

Open subspaces of BT or quasiconvex spaces which are locally connected along
their boundaries can always be assumed to have a connected complement.

2.5. Lemma. Let X be an open connected subspace of some a-BT space Z.
Let C be a component of Z \X and put Y := Z \C. Suppose X is locally connected
along its boundary. Then Y is locally connected along its boundary.

Proof. First we note that ∂Y = ∂C ⊂ ∂X. The equality statement is trivial;
that ∂C ⊂ ∂X follows from Lemma 2.3 in conjunction with Z being BT.
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Now let ζ ∈ ∂Y , t > 0, and choose s > 0 so that X ∩B(ζ ; s) lies in a component
of X ∩ B(ζ ; t). Put r = s/(2a + 1). We show that Y ∩ B(ζ ; r) lies in a component
of Y ∩ B(ζ ; t).

Let x, y ∈ Y ∩ B(ζ ; r). Select a continuum K joining x, y in Z with diam K ≤
a |x − y|. For each z ∈ K,

|z − ζ | ≤ |z − x| + |x − ζ | < diam K + r ≤ (2a + 1)r

so K ⊂ B(ζ ; s). Therefore, if K ⊂ Y , we are done; assume otherwise, so K ∩C 6= ∅.
An appeal to Lemma 2.3 produces subcontinua Kx, Ky ⊂ K ∩Y containing x, y

respectively and both meeting X. Pick points u ∈ Kx ∩ X, v ∈ Ky ∩ X and select
a connected set A ⊂ X ∩B(ζ ; t) joining u, v. We readily check that Kx ∪A∪Ky is
a connected set joining x, y in Y ∩ B(ζ ; t). �

2.D. Examples. We finish this section with a few simple, but illustrative
examples. Using the Law of Cosines, it is easy to establish the following handy
estimate.

2.6. Fact. If the angle 2ϕ between x, y ∈ R
n satisfies 0 ≤ 2θ ≤ 2ϕ ≤ π, then

|x − y| ≥ sin θ (|x| + |y|).
We identify R

2 with the complex num-

2θ

Dθ is c-quasiconvex
where c = csc(θ)

Dθ = R
2 \ Cθ

Cθ

Figure 1. Sectors.

ber field C and use complex variables no-
tation. In particular, given θ ∈ (0, π/2]
we let Cθ and Dθ be the closed convex
sector and open concave sector pictured
in Figure 1 and defined by Cθ = {z ∈ C :
|Arg(z)| ≤ θ} and Dθ = R

2 \ Cθ.
First we present an example which pro-

vides (among other things), for each c ≥
1, a c-quasiconvex plane domain having
exactly one unbounded boundary compo-
nent.

2.7. Example. Fix 0 < θ ≤ π/2. The concave sector Dθ = R
2 \ Cθ is c-

quasiconvex and a-BT with c = csc θ and a = csc 2θ for θ ∈ (0, π/4], a = 1 for
θ ∈ [π/4, π/2]. However, there exist points ξ, η ∈ ∂Dθ such that any rectifiable path
α joining ξ and ζ in Dθ ∪ {ξ, η} has ℓ(α) > c |ξ − η|.

We leave the straightforward proof to the reader but make a few comments.
When x, y are points in Dθ lying in different half-planes, we can select 0 < ε <
(1/2)(c |x − y| − |x| − |y|) and use Fact 2.6 to check that the path [x,−ε] ∪ [−ε, y]
is c-quasiconvex. For the last claim, choose boundary points ξ, η with {ξ, η} =
∂Dθ ∩ S(0; 1).

Next we exhibit a quasiconvex plane domain which has a maximal number of
unbounded boundary components.
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D2

A convex domain

D4

A
√

2-quasiconvex domain

Figure 2. Complements of closed convex sectors.

2.8. Example. Let n ∈ N with n ≥ 2. Put θ = π/n and c = 1/ sin θ. For
each 1 ≤ k ≤ n, define ζk = e2kiθ, Ck = ζkCθ, and Bk = Ck + ζk. Thus Ck is a
closed convex sector obtained by rotating Cθ and Bk is a translation of Ck. Then
Dn = R

2\∪n
k=1Bk—see Figure 2—is a simply connected c-quasiconvex plane domain

with n unbounded boundary components.

Again we leave the justification of this to the reader.

3. Plane domains

Here we focus our attention on quasiconvex domains in the Euclidean plane R
2.

After providing certain preliminary information, we establish Theorems D, E and
Corollary F.

As mentioned in the Introduction, all Euclidean toplogy is with respect to R
n;

we add a ĥat to indicate notions relative to the extended space R̂
n = R

n ∪{∞}. In
particular, given A ⊂ R

n, we write Ac := R
n\A, Ā, ∂A for the complement, closure,

boundary of A in R
n, whereas Â and ∂̂A denote the ĉlosure and b̂oundary of A in

R̂
n; e.g., Â = Ā when A is bounded and Â = Ā ∪ {∞} when A is unbounded.

A path λ in R
n is called piecewise linear, abbreviated PL, if its trajectory

consists of finitely many straight line segments; that is, λ is a so-called ‘broken-line-
segment path’.

A Jordan loop is the homeomorphic image of a round circle, and thus always
compact. We use the phrase Jordan line for the trajectory of an arc λ : R → R

n

which has the property that λ(t) → ∞ (in R̂
n) as t → ±∞; every Jordan line in

R
n corresponds to a Jordan loop in R̂

n. We call C a Jordan curve in R
n if it is a

Jordan loop in R
n or a Jordan line in R

n.

3.A. Plane topology. First we state a useful result which provides a one-to-
one correspondence between the boundary components of a plane domain and its
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complementary components. This can be found in the proof of [New51, Theorem
VI.16.3, p. 168].

3.1. Fact. Let D be a Euclidean plane domain, B a component of ∂D, C the
component of Dc which contains B, and put G = Cc. Then G is a domain containing
D with ∂G = ∂C = B.

Recall from the Introduction that a plane domain with the property that each
boundary component is either a point or a Jordan curve is termed a Jordan curve

domain. Figure 3 displays a simply connected Jordan curve domain having infinitely
many non-degenerate unbounded boundary components. A Jordan disk in R

2 is a
simply connected plane domain whose boundary is a single Jordan curve in R

2. The
celebrated Jordan Curve Theorem tells us that each Jordan curve C in R

2 divides
the extended plane R̂

2 into two disjoint Jordan disks, say G and G∗, each having
common boundary ∂G = C = ∂G∗. (Of course when C is a Jordan loop in R

2, the

êxterior of C is a Jordan disk in R̂
2.) Whenever G is a Jordan disk in R̂

2 we write

G∗ := R̂
2\Ĝ to denote the complementary Jordan disk. Also, every boundary point

of a Jordan disk is accessible.
By a crosscut of a domain D we mean the trajectory of an arc in D̄ with

endpoints in ∂D and all other points in D. An endcut of D is the trajectory of an
arc having one endpoint in ∂D but all other points in D.

As is well known, for a simply connected plane domain D there is a close connec-
tion between local connectivity of ∂D, D being locally connected along its boundary,
D being a Jordan disk, and the homeomorphic extendability of any Riemann map
for D (i.e., any conformal map from the unit disk D to D). For example, see [New51,
Theorems 14.1 & 16.2, pp. 161 & 167], [Näk70, 4.2], [Pal91, Theorems 4.8 & 4.9,
pp. 443 & 445] or [Pom92, Theorem 2.6, p. 24]. In addition, these notions also come
into play in describing when Riemann maps have continuous extensions, which is
the case precisely when ∂D is locally connected or when D is finitely connected
at every boundary point; see [Näk70, 4.2], [Pal91, Theorem 4.7, p. 441] or [Pom92,
Theorem 2.1, p. 20]. (We caution the reader that here we must use the extended
plane topology!)

b b b b b b

A simply connected Jordan curve domain

Figure 3. Infinitely many unbounded boundary components.
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The following surely belongs to folklore; lacking a precise reference, we present
a proof. A result for domains in R̂

2, similar to Corollary 3.3, is [New51, Theorem
VI.16.3, p. 168].

3.2. Proposition. Let G ( R
2 be a domain with Gc = R

2 \ G connected and
non-degenerate (i.e., not an isolated point). Suppose G is locally connected along
its boundary. Then ∂G is a Jordan curve in R

2.

Proof. First, suppose ∂G is bounded. We show that it is a Jordan loop in R
2.

If G is also bounded, then G is simply connected and so this follows from [New51,
Theorems VI.13.1 & VI.16.2, pp. 160 & 167]. If G is unbounded, then G′ = G∪{∞}
is a simply connected domain in R̂

2 and the same argument confirms that ∂G′ = ∂G
is a Jordan loop in R

2.
Next, suppose ∂G is unbounded. We show that it is a Jordan line in R

2.
According to [HK95, 2.1], when viewed as a domain in R̂

2, G is finitely connected at

∞ ∈ ∂̂G. It then follows, e.g., from [Pal91, Theorem 4.7, p. 441], that any Riemann

map f : D → G has a continuous extension to a map f : D̄ → Ĝ = Ḡ ∪ {∞}, that
f−1 has a continuous extension to a map g : Ḡ → D̄, and thus that g : Ḡ → D̄ \ I
is a homeomorphism where I = f−1{∞}.

Since Gc is connected, [New51, Theorem V.14.5, p. 124] tells us that ∂G is con-
nected. Thus ∂G is homeomorphic to an open arc g(∂G) ⊂ ∂D and has ‘endpoints
at ∞’, so it is a Jordan line. �

3.3. Corollary. Suppose D is a plane domain which is locally connected along
its boundary. Then D is a Jordan curve domain.

Proof. Let B be a non-degenerate component of ∂D, let C be the component
of R

2 \D containing B and let G = R
2 \C. Then by Fact 3.1, G is a domain with

∂G = B. According to Lemma 2.5, G is also locally connected along its boundary.
Since R

2 \ G is connected, we can appeal to Proposition 3.2 and conclude that
B = ∂G is a Jordan curve. �

We record the following ‘folklore fact’ as it may have independent interest.
Roughly speaking, it says that the interior of each non-degenerate complementary
component of a c-quasiconvex (or c-BT) plane domain is a b-John disk with b = b(c).
Here we employ the terminology of [NV91, 2.26]. The converse of this is false: there
are even Jordan John disks whose complements fail to be quasiconvex.

By a hole of A ⊂ R
2 we mean a ĉomponent of R̂2\Â. For example, the unit disk

D has one hole, D
∗, whereas [0, 1]×R has two holes each being an open half-plane.

Notice that when A is unbounded, R̂
2 \ Â = R

2 \ Ā and these two spaces have the

same components; whereas when A is bounded, R̂
2 \ Â = (R2 \ Ā) ∪ {∞}, so each

bounded component of R
2 \ Ā is a ĉomponent of R̂

2 \ Â and the unique unbounded

component C of R
2 \ Ā has the property that C ∪ {∞} is the ĉomponent of R̂

2 \ Â
containing ∞.
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3.4. Corollary. Each hole of a c-quasiconvex (or a c-BT) plane domain is a
b-John disk with b = b(c).

Proof. It suffices to consider a hole, say G, of a c-BT domain D ( R
2. According

to [New51, Theorem VI.4.4, p. 144 ], G is simply connected. Appealing to [NV91,

4.2, 4.5(6)], it suffices to show that R
2 \G = (R̂2 \G)∩R

2 has the bounded turning
property.

Let C be the component of R
2 \ D̄ which corresponds to G; that is, when G

contains the point at infinity, G = C ∪ {∞}, and otherwise G = C. Evidently,
R

2 \ G = R
2 \ C. Thanks to Lemmas 2.2 and 2.4, respectively, we deduce that for

any b > c, R
2 \ C is (b + 1)-BT. �

Recall that points are separated by a closed set if they lie in different components
of its complement. When the topology is simple, it is easy to understand separation.
For example, every crosscut of a Jordan disk G divides the disk into two simply
connected regions each of which is separated in G from the other by the crosscut.
On the other hand, an endcut does not separate any points.

We require the following information; this follows from [New51, Theorem V.14.3,
p. 123], because a simply connected plane domain is homeomorphic to R

2.

3.5. Fact. Let G ⊂ R
2 be a simply connected domain and F ⊂ G be a relatively

closed set. If F separates points x, y ∈ G in G, then some component of F separates
x, y in G.

3.B. Technical details. Here we establish several geometric facts required for
the proofs of our main theorems. Our first result provides a quantitative estimate
describing the size of the complement of a quasiconvex or BT Jordan disk.

3.6. Proposition. Let G be Jordan disk in R
2 with ∂G unbounded. Suppose

each pair of points ξ, η ∈ ∂G can be joined in G ∪ {ξ, η} either by a b-quasiconvex
path or by a continuum whose diameter is at most a |ξ− η|. Then for all 0 < τ < 1,
there exists an R > 1, depending only on τ and dist(0, ∂G), such that for all r > R
there is a subarc A of G∗ ∩ S(0; r) with

ℓ(A) ≥ rϑ where ϑ =

{

2 arcsin(τ/b) in the quasiconvex case,

2 arcsin(τ/2a) in the bounded turning case.

Proof. Choose ζ ∈ ∂G with |ζ | = dist(0, ∂G), set R = |ζ |/(1− τ) and fix r > R.
Note that (r − |ζ |) ≥ τ r. Put S = S(0; r). Then S separates ζ and the point at
infinity, so there are endcuts of G∗—which do not meet S—joining ζ to some point
w0 and joining ∞ to some point w1 with w0, w1 ∈ G∗. Since S∩G∗ separates w0, w1

in G∗, Fact 3.5 says that there is a component A of S ∩ G∗ which also separates
w0, w1 in G∗.

Now Ā is a crosscut of G∗ and Ā also separates ζ and ∞ in G∗. Let ξ, η ∈ S∩∂G
be the endpoints of A; note that ξ and η belong to different components of ∂G\{ζ}.
Let ϑ be the angular measure of A, so ℓ(A) = rϑ. If ϑ ≥ π, then we are done.
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Suppose 0 < ϑ < π. By rotating, and relabeling if necessary, we can assume that
ξ = reiϑ/2 and η = re−iϑ/2. (Note that this rotation does not change |ζ |.)

By hypothesis, ξ and η can be joined in G ∪ {ξ, η} via a b-quasiconvex path γ,
or by a continuum K with diam K ≤ a|ξ − η|. In either case we obtain a closed set
C, C := Ā ∪ |γ| or C := Ā ∪ K, which separates ζ and the point at infinity. Since
L = (−∞, 0] ∪ [0, ζ ] joins ζ to ∞, it must intersect C. (Here (−∞, 0] is the closed
negative real axis.) Let z ∈ L ∩ C.

When C = Ā ∪ K we obtain

diamK ≥ |z − ξ| ≥ dist(ξ, L) ≥ r − |ζ | ,
and when C = Ā ∪ |γ| we obtain

ℓ(γ) ≥ |z − ξ| + |z − η| ≥ dist(ξ, L) + dist(η, L) ≥ 2(r − |ζ |) .

Finally, since |ξ − η| = 2r sin(ϑ/2), we either have

τ r ≤ (r − |ζ |) ≤ diam K ≤ a|ξ − η| = 2a r sin(ϑ/2) =⇒ ϑ ≥ 2 arcsin(τ/2a)

or

2τ r ≤ 2(r − |ζ |) ≤ ℓ(γ) ≤ b|ξ − η| = 2b r sin(ϑ/2) =⇒ ϑ ≥ 2 arcsin(τ/b)

as asserted. �

3.7. Corollary. Let D be a Jordan curve domain with the property that each
pair of points ξ, η ∈ ∂D can be joined in D∪{ξ, η} by a b-quasiconvex path (or by a
continuum whose diameter is at most a |ξ−η|). Then ∂D has at most π/ arcsin(1/b)
(or π/ arcsin(1/2a), respectively) unbounded components.

Proof. Let B be an unbounded component of ∂D. Then B is a Jordan line in
R

2. Let G and G∗ be the components of R
2 \ B with G ⊃ D. Notice that if A

is another different unbounded component of ∂D and H, H∗ are the components
of R

2 \ A with H ⊃ D, then G∗ ∩ H∗ = ∅ (e.g., by the Jordan Curve Theorem).
Assume the quasiconvexity hypothesis holds; the argument for the BT version is
identical.

Fix 0 < τ < 1. According to Proposition 3.6, once r is large enough, G∗∩S(0; r)
contains an arc with angular measure at least 2 arcsin(τ/b). Clearly there can be at
most π/ arcsin(τ/b) such disjoint arcs. Since different unbounded components B of
∂D correspond to disjoint components G∗ of R

2 \ D̄ (see Fact 3.1), it follows—by
letting τ ր 1—that there are at most π/ arcsin(1/b) unbounded components of
∂D. �

Next we examine paths which join interior points to a boundary point.

3.8. Lemma. Let D ( R
2 be a Jordan curve domain having finitely many

boundary components. Fix points x, y ∈ D and ζ ∈ ∂D. Suppose E and F are
continuua in D ∪ {ζ} which join x and y to ζ respectively. Then for all sufficiently
small r > 0, there is a component A of D ∩ S(ζ ; r) with

A ∩ E 6= ∅ 6= A ∩ F .
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Proof. First, let γ be any path joining x and y in D. Then dist(ζ, |γ|) ≥
dist(|γ|, ∂D) > 0. Next, let C be the ζ-component of ∂D. Since ∂D has finitely
many components, there is little to do if C = {ζ}: in this case, for all 0 < r <
dist(ζ, ∂D \ {ζ}) we have S(ζ ; r) ⊂ D. We assume C is non-degenerate. Thus C is
a Jordan curve and diam(C) > 0.

Let G be the component of R̂
2 \ Ĉ containing D. Then G is a Jordan disk with

∂G = C. Since ∂D has finitely many components, so does Dc by Fact 3.1; therefore
(G ∩ R

2) \ D is a closed set, whence d := dist(ζ, |γ| ∪ (G \ D)) > 0. We establish
the claim for r ∈ (0, d).

Let r ∈ (0, d). Since G is locally connected at ζ , we can find points u ∈
E ∩ B(ζ ; r) and v ∈ F ∩ B(ζ ; r) which can be joined by an arc α in G ∩ B(ζ ; r).
Since D ∩ S(ζ ; r) = G ∩ S(ζ ; r) separates u and x in G, an appeal to Fact 3.5
produces a component A of D ∩ S(ζ ; r) which also separates these points in G.
Then A separates |γ| and |α| in G, and hence A must meet both E and F . �

3.C. Proofs of Theorems D & E. Here we establish these results as well as
Corollary F.

3.9. Proof of Theorem D. Let D be a c-quasiconvex proper subdomain of R
2.

Since quasiconvex sets are locally connected along their boundaries (see §2.C), Corol-
lary 3.3 validates (1). As indicated in Lemma 2.2, (3) holds in the general metric
space context. To corroborate (2) we appeal to Corollary 3.7—which is permissable
because (1) and (3) hold—and then let b ց c. �

3.10 Proof of Theorem E. We assume that D ( R
2 is a Jordan curve domain

with finitely many boundary components and that there is a constant c ≥ 1 such
that all rectifiably accessible points ξ, η ∈ ∂D can be joined by a c-quasiconvex path
in D ∪ {ξ, η}.

First, suppose c = 1. Let F be the set of all points ζ ∈ ∂D with {ζ} being a
component of ∂D. Then F is a finite set and G := D ∪ F is a domain. We claim
that Ḡ is convex. This is an easy consequence of Motzkin’s Theorem (see [Val76,
Theorem 7.8, p. 94]): we must check that each point z ∈ R

2 has a unique nearest
point in Ḡ, and this is clear from our hypotheses. It now follows that G is convex
(cf. [Val76, Theorem 1.11, p. 10]), and hence that G is strictly convex.

Now suppose c > 1. We demonstrate that D is c-quasiconvex. Let x, y ∈ D.
There is nothing to prove if [x, y] ⊂ D, so we assume [x, y] ∩ ∂D 6= ∅. Select
ξ, η ∈ [x, y] ∩ ∂D so that [x, ξ) ∪ [y, η) ⊂ D. Let γ be a c-quasiconvex path joining
ξ and η in D ∪ {ξ, η}. Then the concatenation [x, ξ] ⋆ γ ⋆ [η, y] is a c-quasiconvex
path joining x and y, but it does not lie in D.

Let r > 0 be small; precisely how small to be explained below. According
to Lemma 3.8, there are components A and B (respectively) of D ∩ S(ξ; r) and
D ∩ S(η; r) with

[x, ξ] ∩ A 6= ∅ 6= |γ| ∩ A and [y, η]∩ B 6= ∅ 6= |γ| ∩ B .
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Let u, v be the unique points of [x, ξ]∩A, [y, η]∩B (respectively) and select points
w ∈ |γ| ∩ A, z ∈ |γ| ∩ B. Next let α and β denote the subarcs of A and B
(respectively) joining the points u to w and v to z. Put

δ = [x, u] ⋆ α ⋆ γ[w, z] ⋆ β ⋆ [v, y] .

Clearly δ is a path joining x and y in D. It remains to confirm that δ is c-
quasiconvex. Note that x, u, ξ, η, v, y are successive points along the Euclidean line
segment [x, y]. Thus

|x− y| = |x−u|+ |u− ξ|+ |ξ− η|+ |η− v|+ |v− y| = |x−u|+ |ξ− η|+ |v− y|+2r .

Note too that

ℓ(γ) = ℓ(γ[ξ, w]) + ℓ(γ[w, z]) + ℓ(γ[z, η]) ≥ ℓ(γ[w, z]) + 2r .

Using the c-quasiconvexity of γ, and recalling that α and β are subarcs of circles of
radius r, we obtain

ℓ(δ) ≤ |x − ξ| + ℓ(γ) + |η − y|+ 4(π − 1)r

≤ |x − ξ| + c |ξ − η| + |η − y|+ 4(π − 1)r

= c (|x − ξ| + |ξ − η| + |η − y|) − (c − 1) (|x − ξ| + |y − η|) + 4(π − 1)r .

Thus ℓ(δ) ≤ c |x − y| if and only if 4(π − 1)r ≤ (c − 1) (|x − ξ| + |y − η|). Since
c > 1, we certainly can choose r > 0 small enough so that this latter inequality
holds. �

3.11. Proof of Corollary F. The necessity follows immediately from parts (1)
and (3) of Theorem D. For the sufficiency, we first appeal to Corollary 3.7 to see
that ∂D has finitely many unbounded components. This together with D being
finitely connected now permits us to apply Theorem E. �

3.D. Bounded turning analogs. For the sake of completeness, here we state
the bounded turning versions of Theorems D, E and Corollary F. Their proofs are
similar to those for the quasiconvex versions.

3.12. Theorem. Suppose D ( R
2 is an a-BT domain. Then:

(1) D is a Jordan curve domain‡,
(2) ∂D has at most π/ arcsin(1/2a) unbounded components, and
(3) for any b > a, each pair of points ξ, η ∈ D̄ can be joined by a continuum K

in D ∪ {ξ, η} with diam K ≤ |ξ − η|.
3.13. Theorem. Let D ( R

2 be a Jordan curve domain with ∂D having finitely
many components. Suppose b ≥ 1 and each pair of rectifiably accessible points
ξ, η ∈ ∂D can be joined by a continuum K in D ∪ {ξ, η} with diam K ≤ b |ξ − η|.
Then D is b-BT.

‡In fact, each non-degenerate component of Dc is a closed b-John disk with b = b(a); see
Corollary 3.4.
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b

bdisks in Ac

joining points in Ac via a PL path λ

Lx

Ly

Figure 4. A ⊂ R
2 closed with nowhere dense horizontal and vertical projections.

3.14. Corollary. Let D ( R
2 be a finitely connected domain. Then D is a-BT

if and only if

(1) D is a Jordan curve domain, and
(2) each pair of points ξ, η ∈ ∂D can be joined by a continuum K in D ∪ {ξ, η}

with diam K ≤ b |ξ − η|.
For the necessity, we can take any b > a; for the sufficiency, a = b works.

4. Complements of closed sets

Proof of Theorem A. We assume that each projection of a closed set A ⊂ R
n

onto a coordinate (n − 1)-plane is nowhere dense. We show that for any c >
√

n,
Ac is c-quasiconvex.

Since the plane case is easy, we start by explaining the argument in this special
setting. See Figure 4. The hypotheses ensure that there are plenty of horizontal and
vertical lines in Ac. Given points a, b ∈ Ac, we select open disks D(a; r), D(b; r) ⊂
Ac. Next we pick a horizontal line Lx ⊂ Ac which meets D(a; r) and a vertical line
Ly ⊂ Ac which meets D(b; r). Now the pictured PL (i.e., ‘broken-line-segment’)
path λ—from a to Lx, along Lx to Ly, along Ly into D(b; r), and then to b—lies in
Ac and has length

ℓ(λ) ≤ 2r + |a − b|1 ≤ 2r +
√

2|a − b| .∗

Thus for any c >
√

2, we can choose r > 0 and small enough so that such a path λ
will be c-quasiconvex.

∗Here |·|
1

denotes the ℓ1 or box distance: |(x1, . . . , xn)−(y1, . . . , yn)|1 = |x1−y1|+· · ·+|xn−yn|.
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The proof in higher dimensions follows the above idea, but—in addition to
cumbersome notation—requires a little care. Fix c >

√
n. Let a, b be points in Ac.

Choose ε > 0 so that B(a; ε), B(b; ε) ⊂ Ac and so that

ε +
√

n|a − b| ≤ c |a − b| .
We construct a piecewise linear path in Ac which joins a to b and has length at
most ε + |a − b|1 (and thus is c-quasiconvex). In fact, we find points zk and wk

(1 ≤ k ≤ n) such that the ‘broken-line-segment’

[a, z1] ⋆ [z1, w1] ⋆ [w1, z2] ⋆ [z2, w2] ⋆ · · · ⋆ [wn−1, zn] ⋆ [zn, wn] ⋆ [wn, b]

has these properties.

Let R
n Pi→ R

n
i := {(x1, . . . , xn) ∈ R

n : xi = 0} denote orthogonal projection
onto the ith coordinate (n−1)-plane. Then Ai := Pi(A) is a nowhere dense subspace
of R

n
i . The points wk will be chosen to lie on R

n
k ; that is, we will have

wk = (wk
1 , . . . , w

k
n) where wk

k = 0 .

The points zk will be chosen to lie on the ‘coordinate line’ Lk which goes through
wk and is normal to R

n
k ; thus we will have

zk = (zk
1 , . . . , z

k
n) with zk

i = wk
i for all 1 ≤ i ≤ n, i 6= k .

Put r := ε/n2. We may assume that b = o = (0, . . . , 0). Write a = (a1, . . . , an).
Since A1 is nowhere dense in R

n
1 , we can select a point w1 ∈ P1[B(a; r)] \A1. Then

the normal line L1 to R
n
1 at w1 lies in Ac and meets B(a; r), so there exist points

z1 = (z1
1 , . . . , z

1
n) ∈ L1 ∩B(a; r). We choose the point z1 with z1

1 = a1 (and z1
i = w1

i

for i = 2, . . . , n). Note that

|a − z1| < r and |z1 − w1| = |a1| .
Since A2 is nowhere dense in R

n
2 , we can select a point w2 ∈ P2[B(w1; r)] \ A2.

Then the normal line L2 to R
n
2 at w2 lies in Ac and meets B(w1; r), so there exist

points z2 = (z2
1 , . . . , z

2
n) ∈ L2 ∩B(w1; r). We choose the point z2 with z2

2 = w1
2 (and

z2
i = w2

i for i = 1, 3, . . . , n). Note that

|w1 − z2| < r and |z2 − w2| = |w1
2| = |z1

2 | < |a2| + r ,

where the last inequality holds because z1 ∈ B(a; r).
Since A3 is nowhere dense in R

n
3 , we can select a point w3 ∈ P3[B(w2; r)] \ A3.

Then the normal line L3 to R
n
3 at w3 lies in Ac and meets B(w2; r), so there exist

points z3 = (z3
1 , . . . , z

3
n) ∈ L3 ∩B(w2; r). We choose the point z3 with z3

3 = w2
3 (and

z3
i = w3

i for i = 1, 2, 4, . . . , n). Note that

|w2 − z3| < r and |z3 − w3| = |w2
3| = |z2

3 | < |w1
3| + r < |a3| + 2r ,

where the last two inequalities hold because z2 ∈ B(w1; r) and w1
3 = z1

3 with z1 ∈
B(a; r).

Continuing in this manner, we select points wk ∈ Pk[B(wk−1; r)] \ Ak and zk =
(zk

1 , . . . , zk
n) ∈ Lk ∩ B(wk−1; r) where Lk is the normal line to R

n
k at wk (which lies
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in Ac and meets B(wk−1; r)). We choose the point zk with zk
k = wk−1

k (and zk
i = wk

i

for i = 1, . . . , k − 1, k + 1, . . . , n). Note that

|wk−1 − zk| < r and |zk − wk| = |wk−1
k | = |zk−1

k | < |ak| + (k − 1)r .

Now the coordinates of wn satisfy |wn
i | < (n − i)r for 1 ≤ i ≤ n. Thus

|wn| ≤ |wn|1 =
n

∑

i=1

|wn
i | <

n
∑

i=1

(n − i)r = [(n − 1)n/2]r < ε .

In particular, wn ∈ B(o; ε) ⊂ Ac. Therefore the PL (i.e., ‘broken-line-segment’)
path

Λ := [a, z1] ⋆ [z1, w1] ⋆ [w1, z2] ⋆ [z2, w2] ⋆ · · · ⋆ [wn−1, zn] ⋆ [zn, wn] ⋆ [wn, o]

joins a to b = o in Ac. Finally,

ℓ(Λ) = |a − z1| +
n

∑

k=1

|zk − wk| +
n−1
∑

k=1

|wk − zk+1| + |wn|

≤ n2r +
n

∑

k=1

|ak| = ε + |a − b|1 . �

4.B. Linear local connectivity. A subspace A of a metric space X is b-
linearly locally connected, or b-LLC, if b ≥ 1 and the following two conditions hold
for all points x ∈ X and all r > 0:

points in A ∩ B̄(x; r) can be joined in A ∩ B̄(x; b r)(LLC1)

and

points in A \ B(x; r) can be joined in A \ B(x; r/b) .(LLC2)

Here the phrase ‘can be joined’ means ‘can be joined by a continuum’. We also
employ the terminology LLC with respect to paths in which case ‘can be joined’
means ‘can be joined by a path’. Note that quasiconvexity implies LLC1 with respect
to rectifiable paths, but the converse is false. The LLC1 and LLC2 conditions were
first introduced by Gehring to characterize quasidisks and are well known in the
literature.

The bounded turning property is quantitatively equivalent to the LLC1 prop-
erty: If A is a-BT, it is (2a + 1)-LLC1. If A is b-LLC1, it is 2b-BT. For subspaces of
Euclidean space we find that b-LLC1 =⇒ b-BT. All these implications hold both
for ‘joining by continua’ as well as ‘joining by paths’.

The following result is probably folklore, but it does not seem to appear in the
literature. We thank the referee for drawing this to our attention.

4.1. Proposition. Let A ⊂ R
n be closed and totally disconnected. Then Ac

is 1-LLC with respect to paths.
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Proof. First we note that A has topological dimension zero, and hence does
not disconnect any open subset of R

n; see [HW41, Corollary 1, p. 48]. Fix a point
z ∈ R

n, let r > 0, and set B := B(z; r).
Suppose x, y ∈ Ac ∩ B̄. Since Ac is open, we can select points u, v ∈ B with

u ∈ [z, x], v ∈ [z, y] and so that A ∩ [x, u] = ∅ = A ∩ [y, v]. Since A does not
disconnect B, B \A is a domain, so there is an arc α joining u and v in B \A. Then
the concatenation γ := [x, u] ⋆ α ⋆ [v, y] joins x, y in Ac ∩ B̄ as desired.

Suppose x, y ∈ Ac \ B. Now choose u, v ∈ R
n \ B with x ∈ [z, u], y ∈ [z, v] and

so that A ∩ [x, u] = ∅ = A ∩ [y, v]. Since A does not disconnect R
n \ B̄, there is an

arc α joining u and v in Ac \ B̄. Now γ := [x, u] ⋆ α ⋆ [v, y] joins x, y in Ac \ B as
desired. �

4.2. Corollary. Let A ⊂ R
n be closed and totally disconnected. Then points

x, y ∈ Ac can be joined by a path γ in Ac with diam |γ| = |x− y|. In particular, Ac

is 1-BT.

4.C. The main example. Here we prove Theorem B. Our construction is
based on the following result.

4.3. Proposition. Given any M > 0, there exists a compact totally dis-
connected set A ⊂ [−M, M ]n−1 × [−1/2, 1/2] ⊂ R

n with Hausdorff dimension
dimH A ≤ n − 1 and such that each rectifiable path γ joining ±e := (0, . . . ,±1) in
Ac has length ℓ(γ) ≥ M .

Assuming the above, we proceed as follows.

4.4. Proof of Theorem B. For each m ∈ N, select a set Am as given by Propo-
sition 4.3 for M = m. Let Bm be the scaled and translated copy of Am defined
via

Bm := tm Am + bm , where tm := (2m+2 diamAm)−1 and bm := (1/2m, 0, . . . , 0) .

Thus diam Bm = 1/2m+2 and dist(Bm, Bm+1) ≥ 1/2m+3 (so the sets B1, B2, . . . are
‘far apart’). In addition, there are points xm, ym = bm ± tm e (corresponding to the
points ±e scaled and translated) in Bc

m with the property that each rectifiable path
γ joining xm, ym in Bc

m has ℓ(γ) ≥ (m/2)|xm − ym|.
We now see that A := {0} ∪ ⋃∞

1 Bm is compact (because it is closed and
bounded) and totally disconnected (because the component of A containing the
origin is {0}) with dimH (A) ≤ n− 1 and Ac non-quasiconvex. The latter assertion
follows from the fact that all of the points xm, ym lie in Ac.

Finally, A must have non-zero (n − 1)-dimensional Hausdorff measure, for oth-
erwise the comments preceding Theorem A would tell us that Ac is quasiconvex. �

It remains to establish Proposition 4.3, a task which we complete in §4.C.7.

4.C.1. Main idea. The set A, whose existence is asserted by Proposition 4.3,
is constructed as a Cantor type set, A := ∩iEi where E1 ⊃ E2 ⊃ . . . are decreasing
compact sets given as Ei = ∪jBij with Bij closed rectangular boxes which are
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appropriately nested and satisfy

lim
i→∞

max
j

diam Bij = 0 .

This easily gives A closed and totally disconnected. Below we provide an explicit
description of the sets Bij . The idea is as follows. We start with a thin flat closed
rectangular box. Inside this box we create a ‘maze’ by placing ‘barriers’ which are
even thinner closed rectangular boxes parallel to the ‘top’ and ‘bottom’ faces of B.
We do this so that each path joining these faces in B is long. Then we repeat this
process for each of the ‘barriers’.

Here, briefly, is the idea for our

s

t/4

ε t

s/3

a ‘penetrating path’ traversing a plane maze

Figure 5. A plane maze.

construction in the R
2 case. See

Figure 5. We start with a thin
flat rectangle, say [0, s]×[0, t] with
t << s. We divide this into four
horizontal corridors ([0, s]×[0, t/4],
etc.) and place thin barriers of size
(2s/3) × (ε t) in the vertical mid-
dles of each of these corridors. We
alternate the horizontal placement
of the barriers putting them first
at the left, then at the right, etc. Any path in the original rectangle which joins
the two horizontal edges and avoids all the barriers must have ‘horizontal length’ at
least s. Such a ‘penetrating path’ can be replaced—without increasing ‘horizontal
length’—by an ‘avoiding path’ which stays on the original rectangle’s boundary.
Now we repeat this process replacing each barrier with four more even thinner bar-
riers.

We give explicit construction details for the case n = 3 and leave the general
case for the industrious reader. We consider points (x, y, v) in R

3. By the vertical, or
V , direction we mean parallel to the v-axis whereas the horizontal, or H , directions
are parallel to the xy-plane. The Hx and Hy directions are parallel to the x-axis
and y-axis respectively.

We call B a rectangular s× s× t box if B is congruent to [0, s]2 × [0, t] via some
translation of R

3 (so no rotations are allowed). In general we will consider thin
flat boxes meaning that t << s. The top, bottom, front, back, left, right faces of
[0, s]2 × [0, t] are, respectively,

[0, s]2 × {t} , [0, s]2 × {0} ,

{s} × [0, s] × [0, t] , {0} × [0, s] × [0, t] ,

[0, s] × {0} × [0, t] , [0, s] × {s} × [0, t] .

Of course, the top and bottom faces are horizontal whereas the other four faces each
have a vertical component.
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4.C.2. Piecewise horizontal-vertical paths. We call λ a piecewise horizon-

tal-vertical, or PHV, path if it is PL and each line segment is either vertical (parallel
to the v-axis) or parallel to the x-axis or parallel to the y-axis. Thus a PHV path
is a ‘broken-line-segment’ path whose segments all have direction either V or Hx or
Hy. Given a PHV path λ, we write ℓH(λ) to denote the sum of the lengths of all
the horizontal segments of λ. We note that if π is the orthogonal projection of a
PHV path λ onto some plane which is parallel to a coordinate plane, then

ℓH(π) ≤ ℓH(λ) .

It is straightforward to approximate an arbitrary path by PL and PHV paths.

4.5. Lemma. Let F ⊂ R
3 be closed. Suppose γ is any path in F c. There exist

a PL path λ and a PHV path κ, both in F c and having the same endpoints as γ,
and satisfying

ℓ(γ) ≥ ℓ(λ) ≥ 1√
2

ℓH(κ) .

Proof. Suppose [0, 1]
γ→ F c. Choose 0 = t0 < t1 < · · · < tm = 1 so that

∀i : t, s ∈ [ti−1, ti+1] =⇒ |γ(t) − γ(s)| ≤ δ := dist(|γ|, F ) .

Setting zi := γ(ti) we obtain a PL path λ := [z0, z1] ⋆ · · · ⋆ [zm−1, zm] ⊂ F c and
evidently, ℓ(γ) ≥ ℓ(λ). Since each ball B(zi; δ) lies in F c, we can replace each
segment λi := [zi−1, zi] by a PHV path, say κi := ξ ⋆ η ⋆ ν, with Hx, Hy, V segments
respectively. Then

ℓH(κi) = ℓ(ξ) + ℓ(η) ≤
√

2[ℓ(ξ)2 + ℓ(η)2]1/2 ≤
√

2 ℓ(λi) . �

4.C.3. Box mazes. We start with

s

s

2s/3

2s/3

a BL barrier

Figure 6. A bird’s-eye view of a BL barrier.

a parameter ε ∈ (0, 1/24) and a thin
flat rectangular s × s × t box B with
0 < t << s. We divide B into six con-
gruent rectangular horizontal corridors
with dimensions s×s×(t/6). In the ver-
tical middle of each of these corridors, we
place a submaze—described below and
pictured in Figure 8—consisting of four
s × s × ε t walls. We call the region so
constructed a box maze based on B.

Consider one of the rectangular s ×
s × (t/6) horizontal corridors, say C, in
B. Divide C into four congruent (real
thin) rectangular horizontal subcorridors
with dimensions s × s × (t/24). In the
vertical middle of each of these subcorri-
dors we construct (really thin) s×s×ε t
walls which we now describe.
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a BR barrier a TR barrier a TL barrier

Figure 7. The other three types of barriers.

Figure 8. A submaze in C with four (2s/3) × (2s/3)× (ε t) barriers.

Each wall consists of a (2s/3) × (2s/3) × (ε t) barrier which is partially sur-
rounded on two sides by open space. There are four types of walls which we label
as BL, BR, TR, TL for bottom or top left or right. (See Figures 6 and 7.) In each
of these the associated barrier is attached at a different corner of the wall as indi-
cated in the accompanying pictures. We place these four walls, one per subcorridor
and in the described order, into the vertical middle of each of the four horizontal
subcorridors of C. See Figure 8. We call the region just constructed in C a submaze.

Note that any PHV path λ in C which joins the top and bottom faces of C and
avoids all the barriers must have ‘horizontal length’ ℓH(λ) ≥ s/3.

Now the box maze based on B is constructed by stacking six such submazes on
top of each other, one into each of the six (real thin) horizontal corridors C of B.
Thus this box maze consists of 24 rectangular (2s/3)× (2s/3)× (ε t) subboxes of B
(i.e., all the different, but congruent, barriers). We call these subboxes the children
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of B and write Cε(B) to denote the collection of these 24 rectangular box barriers.
Notice that each child C ∈ Cε(B) satisfies

tC = ε tB , sC = (2/3)sB , and diam(C) ≤ (2/3) diam(B)

where B and C are tB × sB × sB and tC × sC × sC boxes respectively.

4.C.4. Key lemmas.

4.6. Lemma. Let B be a s× s× t rectangular box. Each pair of points on ∂B
can be joined by a PHV path λ in ∂B with ℓH(λ) ≤ 2s.

Proof. We consider the cases where the points lie on the same face, adjacent
faces, or opposite faces. The first two cases are left to the reader (but see the proof
of Lemma 4.7).

Suppose our points are on opposite faces. If these two faces have a vertical
component, then we can use ‘purely vertical’ paths to join our points to, say, the
top face and then appeal to an earlier case. Thus we are left with, say, a point
p = (x, y, 0) on the bottom face and a point q = (a, b, t) on the top face.

Consider the two PHV paths from p to q given by

λ := [p, (s, y, 0)] ⋆ [(s, y, 0), (s, y, t)] ⋆ [(s, y, t), (s, b, t)] ⋆ [(s, b, t), q]

and

κ := [p, (0, y, 0)] ⋆ [(0, y, 0), (0, y, t)] ⋆ [(0, y, t), (0, b, t)] ⋆ [(0, b, t), q] .

Writing P for orthogonal projection onto the xy-plane, we see that P (|λ| ∪ |κ|) is a
rectangle inside an s×s square. Thus ℓH(λ)+ℓH(κ) ≤ 4s, and so min{ℓH(λ), ℓH(κ)}
≤ 2s. �

Given a collection C of sets (e.g., a finite collection of closed sets) we write
⋃

C :=
⋃

C∈C

C .

The following provides the crucial step in verifying that our construction has
the property that every path joining ±e must be long. It says that we can replace
‘penetrating’ PHV paths with associated ‘avoiding’ PHV paths without increasing
‘horizontal length’. That is, ‘going around is no longer than going through’.

4.7. Lemma. Let B be a s × s × t rectangular box and fix 0 < ε < 1/24. Put
F :=

⋃

Cε(B). Suppose λ is a PHV path in F c ∪ ∂F . Then there exists a PHV
path κ in Bc ∪ ∂B with the same endpoints as λ and satisfying ℓH(κ) ≤ ℓH(λ).

Proof. By looking at the components of |λ| ∩B we see that it suffices to assume
that λ has endpoints p, q ∈ ∂B and that |λ| \ {p, q} lies in the interior of B. As
in the proof of Lemma 4.6 we consider the cases where p, q lie on the same face,
adjacent faces, or opposite faces. Again, except for brief comments, we leave the
first two cases for the reader.

If p, q lie on some face F , we let κ be the concatenation of two adjacent edges
of the rectangle on F with opposite vertices p, q; then, writing P for the orthogonal
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projection onto the plane determined by F , we see that

ℓH(λ) ≥ ℓH(P ◦ λ) ≥ ℓH(κ) .

If p, q lie on adjacent faces with common edge E, then we join them by going
‘straight’ to E and then along E.

Suppose p, q are on opposite faces. If these two faces have a vertical component,
then we can use ‘purely vertical’ paths to join p, q to, say, points p′, q′ on the top
face and then join p′, q′ by a PHV path on the top face. Here we get a PHV path
κ joining p, q with

ℓH(κ) = ℓH(P ◦ κ) ≤ ℓH(P ◦ λ) = ℓH(λ)

where now P denotes projection onto the horizontal plane determined by the top
face.

Finally, we are left with, say, p on the bottom face and q on the top face. In
this situation, λ must pass through six submazes. As we noted above, each submaze
forces λ to travel at least s/3 in some horizontal direction. Thus ℓH(λ) ≥ 6(s/3) =
2s. On the other hand, an appeal to Lemma 4.6 produces a path κ on ∂B which
joins p, q and has ℓH(κ) ≤ 2s. �

4.C.5. The construction. Let M > 0 be given. We start with the rectangular
box

B0 := [−M, M ]2 × [−1/2, 1/2] ⊂ R
3 and G0 := {B0} .

In §4.C.6 below we indicate exactly how we choose the sequence (εn)∞n=1. Our first
generation of subboxes is G1 := Cε1

(B0), and E1 :=
⋃

G1. Our second generation of
subboxes is

G2 :=
⋃

B∈G1

Cε2
(B) , and then E2 :=

⋃

G2 .

In general, our nth generation of subboxes is

Gn :=
⋃

B∈Gn−1

Cεn
(B) , and then En :=

⋃

Gn =
⋃

B∈Gn

B .

Then E1 ⊃ E2 ⊃ . . . are decreasing compact sets and we put A := ∩∞
n=1En.

Moreover, if C is a component of En (i.e., C ∈ Gn), then there is some B ∈ Gn−1

with C ∈ Cεn
(B). So the components of the En are appropriately nested. We also

see that

diam(C) ≤ (2/3) diam(B) , and so , diam(C) ≤ (2/3)n diam(B0) .

Thus A is a Cantor type set and in particular A is compact and totally disconnected.

4.C.6. Estimating dimension. Here we describe how to choose (εn)
∞
n=1 to

ensure that A has Hausdorff dimension dimH (A) ≤ 2. In fact, we shall see that it
suffices to have

lim
n→∞

[n/ log(1/
∏n

i=1εi)] = 0 .
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Write N(E; r) to denote the smallest number of closed r × r × r cubes needed
to cover the set E. Note that if B is a closed s× s× t rectangular box with t << s,
then N(B; t) ≤ 2(s/t)2.

We examine the set En which has (24)n components, each an sn × sn × tn
rectangular box with sn = (2/3)n2M and tn = ε1 × · · · × εn. Every C ∈ Gn satisfies
N(C; tn) ≤ 2(sn/tn)2, so

N(En; tn) = (24)nN(C; tn) ≤ 8M2(32/3)n/t2n .

Thus log N(En; tn) ≤ c n + 2 log(1/tn) where c = c(M) depends only on M .
We estimate the Hausdorff dimension of A by

dimH (A) ≤ lim inf
r→0

log N(A; r)

log(1/r)
≤ lim

n→∞

log N(En; tn)

log(1/tn)
= 2 + lim

n→∞

c n

log(1/tn)
.

Taking, e.g., εn = 1/n!, we get n/ log(1/tn) → 0, and then dimH (A) ≤ 2 as desired.

4.C.7. Proof of Proposition 4.3. We have constructed, above, a totally discon-
nected compact set A ⊂ [−M, M ]2 × [−1/2, 1/2] with dimH (A) ≤ 2. It remains to
check that any path in Ac which joins ±e = (0, 0,±1) has length at least M .

We begin by corroborating a stronger statement for H-lengths of PHV paths.
We claim that any PHV path joining ±e in some Ec

n ∪ ∂En has H-length at least
2M . Clearly any PHV path λ joining ±e in Bc

0 ∪ ∂B0 has ℓH(λ) ≥ 2M (because
any such path must meet one of the planes x = ±M or y = ±M). Suppose λ is a
PHV path joining ±e in Ec

1 ∪ ∂E1. We appeal to Lemma 4.7, with B = B0, to find
a PHV path κ in Bc

0 ∪∂B0 which joins ±e and has ℓH(λ) ≥ ℓH(κ) ≥ 2M (the latter
inequality holding by our first case).

Suppose our claim holds for PHV paths joining ±e in Ec
n ∪ ∂En and let λ be

a PHV path joining ±e in Ec
n+1 ∪ ∂En+1. We may assume |λ| meets the interior

of some box B ∈ Gn. Since |λ| lies in Ec
n+1 ∪ ∂En+1, it is also in F c ∪ ∂F with

F =
⋃

Cεn+1
(B). According to Lemma 4.7, we can replace λ—without increasing

horizontal length—by a PHV path in Bc ∪ ∂B. Doing this for each such B we find
a PHV path κ joining ±e in Ec

n ∪ ∂En and with ℓH(λ) ≥ ℓH(κ) ≥ 2M (the latter
inequality holding by our induction hypothesis).

Finally, suppose γ is a path joining ±e in Ac. The open sets Ec
n, which increase to

Ac, form an open cover of |γ|. Since |γ| is compact, there is an n ∈ N with |γ| ⊂ Ec
n.

Employing Lemma 4.5, we find a PHV path λ in Ec
n with the same endpoints as

γ and ℓ(γ) ≥ (1/
√

2)ℓH(λ) ≥ 2M/
√

2 ≥ M (the penultimate inequality holding by
our claim). �
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