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Abstract. In this paper, we consider the regularity of weak solutions u € W?(RN) N
Whe4(RN) of the elliptic partial differential equation

—Apu—Agu = f(z), z € RY,
where 1 < ¢ < p < N. We prove that these solutions are locally in C** and decay exponentially
at infinity. Furthermore, we prove the regularity for the solutions u € WP (RN) n Wh4(RY) of
the following equations
—Apu— Agu = f(z,u), z € RY,
where N > 3,1 < ¢ < p < N, and f(z,u) is of critical or subcritical growth about u. As an
application, we can show that the solution we got in [8] has the same regularity.

1. Introduction

In this paper, we study the regularity of weak solutions to the following nonlinear
elliptic equations with p&g-Laplacians:

—Ayu+ mlulP?u — Aju + nlu|?u = g(z,u), =€ RN,
w e W2(RN) A Wha(RY),

where m,n >0, N > 3,1 < q<p< N, Awu = div(|Vu[72Vu) is the t-Laplacian
of u for t > 1.

The p&g-Laplacian problem (1.1) comes, for example, from a general reaction
diffusion system

(1.2) up = div[D(u)Vu] + c(x, u),

where D(u) = (|Vul|P™? + |Vu|??). This system has a wide range of applications
in physics and related sciences, such as biophysics, plasma physics, and chemical
reaction design. In such applications, the function u describes a concentration, the
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first term on the right-hand side of (1.2) corresponds to the diffusion with a diffusion
coefficient D(u), whereas the second one is the reaction and relates to source and
loss processes. Typically, in chemical and biological applications, the reaction term
¢(x,u) has a polynomial form with respect to the concentration w.

Recently, the eigenvalue problem for a p&g-Laplacian type equation with p = 2
was studied by Bence [1]| and the stationary solution of (1.2) was studied by Cherfils
and Il’yasov in [4] on a bounded domain Q C RY with D(u) = (|Vu[P~2 + |[Vu|?7?)
and c(x,u) = —p(z)|ulP~?u — q(z)|u|9?u + A\g(z)|u]""?u for 1 < p < v < ¢ and
’y<p*,wherep*:n”—iifp<n, and p* = +o0, if p > n.

In [8], using the concentration compactness principle and Mountain Pass The-
orem, we proved the existence of a nontrivial solution to (1.1) under suitable as-
sumptions on g(z,u)(see (C1)—(Cs) in [8]). It is natural to study the regularity of
weak solutions of (1.1). To this end, we consider the following equation

(1.3) ~Aju— A= f(o),

where f € L (RY). By a weak solution u to (1.3), we mean a function u €

Wh2(RN) N WH(RN) (or WoP(RN)) such that
/ [[VulP*VuVe + [Vu|"*VuVy — f(z)p] dz = 0 for any ¢ € C3°(RY).
RN

It is obvious that (1.1) is a special case of (1.3) if we take f(x) = g(z,u(z)) —
mlu(z)[P~*u(z) — nju(z)[**u(z).
For degenerate elliptic equations

(1.4) —Ayu = f(x,u)

and systems with some special structure, the C1 regularity of weak solutions was
proved in [7] when p = 2, and in [11, 17, 18] and [6] when p > 2. The existence and
integrability of second-order derivatives of weak solutions to (1.4) were studied in
[13, 15, 19] for all 1 < p < 400, from which the C"® regularity of weak solutions to
(1.4) is obtained.

With an extra assumption that u € L>®(Q), [5] and [16] proved the local C''
regularity of the solutions u to a general class of quasilinear elliptic equations

N
(1.5) / Z {aj(z,u,Vu) - ¢y, } — h(z,u, Vu)pdr =0, ¢ € C(Q),
Qi

where a; belongs to CO(QxRxRM)NCH(Qx Rx RN —{0}) and h is a Caratheodory
function, i.e., for each (t,p) € RV, h(x,t,p) is measurable in z and continuous in
t and p for a.e. z € RY. It was shown that their results can be applied to (1.4) for
all 1 < p < o0.

The decay of the solution u of p-Laplacian type equations were considered by
many authors. When p = 2, [2] showed that under some conditions on f, if u is a
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radially symmetric solution of

—Au = f(u) in RY,
(1.6) {uEHl(RN), u # 0,

then u € C*(RY) and
(1.7) |Du(z)| < Cel*l 2 e RY,

for some C, § > 0 and for |a| < 2. By introducing exponential weighted spaces, [3]
showed that positive solutions of
(18) —Au+ f(x,u) =0 in R",
' u—0 at infinity,
decay exponentially at infinity.

Under suitable assumptions on V(z) and f, the existence and C'H® regularity of
weak solutions of the p-Laplacian type Schrodinger equations

(1 9) _Apu + V($>|U|p72u = f(x7u)7
' ue WH(RN), 1 <p< +oo,

were proved in [11]. Furthermore, it was shown in [11] that the solutions decay
exponentially in « when |z| > R for some R > 0. We extend this result to p&g-
Laplacian type equations, too.

Our main results are as follows:

Theorem 1. Suppose that f € L. (RN) and u € WP(RN) N L (RN) is a

loc loc loc

weak solution of (1.3) where p > 1. Then
(i) |Vu| € L2 (RYN) and for every compact K C RY, there exists a constant C

loc

depending only on N, p, q, esssup |u| and esssup | f| such that
K K

(1.10) IVl r) < C

(ii) # — Vu(z) is locally Holder continuous in RY | i.e., there exists an o € (0, 1)
and a constant C' depending only upon N, p, q, esssup |u| and esssup | f| for
K K

every compact K C RY, such that
(1.11) |\Vu(z) — Vu(y)| < Clz —y|*, =x,yeK.

Theorem 2. Suppose that f(z,t) satisfy:

(A1) f(z,t): RY x R' — R! satisfies the Caratheodory conditions, i.e., for a.e.
r € RN, f(z,t) is continuous in t € R! and for each t € R, f(x,t) is
Lebesgue measurable with respect to x € RY.

(A2) f(z,t) is of critical or subcritical growth about u at infinity, i.e., for any
e > 0, there is a C. > 0 such that |f(z,t)] < elt|? ! + C.|t|P" L for all
(x,t) € RY x R, where p* = ]ffv—i it N >p, 0<p*<4o0if N <p.
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Ifue WHRNM) N W (RN), 1 < g <p< N, is a weak solution of
(1.12) —Aju— Ayu = f(x,u),

then there is an o > 0 and a constant C' depending only on N, p, q, ess sup |ul for
Br(zo)
any R > 0, such that

(1.13) |\Vu(z)| < C,
(1.14) [Vu(z) = Vu(y)| < Clo —y|*

for all z,yy € Br(xg) and any xo € RY.

In [8] the existence of a weak solution of (1.1) was obtained under the following
assumptions:

(C1) g: RY x R! — R! satisfies the Caratheodory conditions; g(x,t) > 0, for
t>0and g(x,t) =0, for t <0 and all x € RV,

(Cq) lim+ *‘ﬁfﬁ? = ( uniformly in z € RY; hlll igﬁ? = ( uniformly in € RY for
t—0 S$——+00

some ¢ € (0,+00),

and some extra technical conditions.

By Theorem 1 and 2, it is easy to see that weak solutions of (1.1) are locally
in C**. We also get the exponential decay of weak solutions at infinity under the
hypotheses (C;) and (Cs).

In fact, we have the following result:

Theorem 3. Suppose g(z,t) satisfies (A1), (A2) of Theorem 2 and u is a weak
solution of (1.1). Then

(i) w is bounded on R, i.e., [|u| =@y < +00 and RE?IEOO ||| oo (2> R) = 0;

(ii) u(x) decays exponentially as |x| — +oo, ie., 3C > 0, e > 0, R > 0 such
that

(1.15) lu(z)| < Ce~*1#l when |z| > R.

One cannot obtain Theorem 1 by the results in [5, 16| or [11], since the p&g-
Laplace equations do not satisfy the assumptions in [5, 16| and [11]. Our results are
new to our knowledge; they are the generalization of the results of [5, 16| and [11].
Theorem 2 is an application of Theorem 1, which may be applied to more cases.

To prove Theorem 1, we mainly use the frame works of [5, 16, 11], respectively,
to different steps. Since the main purpose of |5, 16] and [11] is to consider the reg-
ularity of weak solutions for p-Laplacian type equations, the ellipticity and growth
conditions imposed on a; are homogeneous about Vu. For example, in [16], it is
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required that

N
da, _
> o, (@) &85 27 - (ko fnl)” 2I¢P,
ij=1 "
(1.16) N o
> J(ﬂf,u,n)' <D (5 )
=1 on;

for some v, I' > 0 and x € [0, 1]. It is obvious that p&g-Laplace equations do not
satisfy the above conditions. Since p&g-Laplace equations can not be included in
the frame works of [5, 16] or [11], much more careful analysis is needed in the proof.

We use the method of Proposition 1 in [16] to get a useful identity (see (2.5)
in §2 below). Although in [16] only a similar inequality is required to show the
boundedness of the gradiant Vu of any weak solution u to (1.3), we expect that this
identity can be used somewhere. After the local boundedness of |Vu| is proved, we
follow the usual way (see |7, 9]) to obtain the C* regularity of the weak solution.

To prove Theorem 2, we use Theorem 1. To apply Theorem 1, we need only to
prove the local boundedness of the weak solutions w, i.e., ||u||zoo(Bg(z0)) < C(0) for
any given 2o € RY and then apply Theorem 1 with f(x) = f(z,u(z)). Usually, one
uses the test function ¢ = nPu* (u} )PP~ with

+
Uz: ut, u<lL,
L u > L,

Y

to prove the local boundedness of u™ (see, e.g., [10, 12]). As one may see, this test
function does not work in our case. We follow [14] to define u = u* + k, and

_ u, ut < L,
urp =
L+k, uwu>0L,

and ¢(x) = np(ﬂﬂlz(ﬁ_l) — kPB=D+1) for some k > 0 as a test function. It turns out
that this test function does work.

To prove Theorem 3, we mainly use the method of [11]. The key step is to get a
decay estimate of the weak solution as in [10](see (5.25) below). However, as both
p and ¢-Laplacian are involved, the test functions used in [10, 11, 14| do not work.
We overcome this difficulty by using two test functions separately, to get a couple
of inequalities and then combine them to get (5.25). As soon as (5.25) is obtained,
the exponential decay of the solutions will be obtained as in [11].

The paper is organized as follows: In §2, we prove Theorem 1(i); in §3, we prove
Theorem 1(ii); in §4, we prove the boundedness of weak solutions and then apply
Theorem 1 to prove Theorem 2. In §5, we give the proof of Theorem 3.

Our symbols are standard. For example, B,(z¢) for zo € RY, r > 0 is the open
ball {z € RY| |z — zo| < r}; LP(Q) is the usual LP-space over the domain Q C R
with norm || - || zr(q); meas E' means the N-dimensional Lebesgue measure of the set
E c R", and so on.
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2. The proof of Theorem 1(i)

In this section, we give the proof of Theorem 1(i). To this end, we consider the
following equation

(2.1) {—Apu—Aqu:f(x), reRY,

u e WEP(RN), 1 <qg<p.

ocC

Notice that we have by the assumptions that
(2.2) feLX(RY), weLX(RM).

loc loc

We will show that
(2.3) IVull Lo (Ba @) < C,

where C'is a constant depending only on N, p, ¢, and ||u|| oo (Bx(x))- For simplicity,
we give the proof on B = B;(x), the unit ball in RY with centre x( for any given
zo € RY. Firstly, we prove an identity inspired by [16].

Proposition 2.1. If 1 is a nonnegative C?-function with compact support and
G: R! — R! is a piecewise C''-function with only finitely many breaks and

(2.4) 0<G <c
for some constant co, then any weak solution u of (2.1) satisfies

/B S UVl + [Val"2)5; + [(p — 2Vl + (g — 2)|Val*Juy,u, )

1,j=1

’ u$57xiux57zj G/ (uzs )Q/] dw

(2.5) N
:/BZ(|Vu|p_2 + [Vl " ?)uy, - ’ {G(us,)¢a,

dz,
- [ 1 (G )0
B d:ljs s ’
where 0;; are the Kronecker symbols.
Proof. The proof follows by multiplying equation (2.1) by d;;ls(G(uxS)Qp) and
integrating by parts. 0

Next we show the L*™-estimate of the gradient of solutions u of (2.1). Before
that we give the following result.

Lemma 2.2. ([16], Corollary 1) For any v € W'*(Bg), where Br = Br(xo)
for any fixed o € RY, suppose that

(2.6) / lv|dx < M - RN
Bgr
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and

(2.7) / (VolPde < MP - (¢ —7)7P . RN . (meas Ay /) ™
Ak;r

for some constant M, some a € (0,p/N), all k > 0 and all r and r' satisfying
R/2 <r <71 <R,

where Ay, = {& € B,(x)|v(z) > k}. Then there is a constant C' depending only
on N, p, and « such that

(28) (% S C-M in BR/Q(J,’O).

For the proof of Theorem 1(i), it is enough to prove the following result.
Proposition 2.3. Suppose that (2.2) holds for the weak solution u of (2.1).
Then for any xy € RY, there exists a constant C' depending only on N, p, g,
esssup |u| and esssup | f| such that
B B
(2.9) [Vu| < C in By p(o),
where B = Bj(xy).

Proof. Choose a nonnegative C*°-function p having the properties

0, fort > 1,
(2.10) p(t) ¢ € (0,1), forte (0,1),
1, for t <0.

For R € (0,1/8) and ¢ € Z* U {0}, we set
R; =2R+27"'R,
(2.11) B; = Bg, (),
pi() = p(27 R (|o — xo| — Ry)).

In the following, C stands for a generic constant depending only on N, p, g,
esssup |u| and esssup |f| and may differ in different spaces, where B = Bj(zy).
B B

In contrast to C, the generic constant C'(R) may also depend on R, and C(g) may
depend on €.
To prove (2.9), we will first show that there is an Ry > 0 depending only on N,
P, q, esssup |u| and esssup | f| such that
B B

(2.12) / VuPide < C(R)
B;

for i =0,1,...,[Np] provided that
(2.13) R < Ry,
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where [Np] is the integer part of Np. It can be seen that (2.12) is true for ¢ = 0.
Hence we may suppose that (2.12) holds for some i € {1,...,[Np|] — 1} and then
we prove that it is true for ¢ + 1.

We pick an M > 0 and define for ¢t € R! that

(t—1, ift>1,

g(t) =<0, if ¢t € [—1,1],
(t+1, ift< -1,

(M, if g(t) > M,
gu(t) = q g(t), if g(t) € [-M, M],
M, if g(t) < M,

and

G(t) = g(t)lgar ()™
It is obvious that G(t) satisfies the assumption of Proposition 2.1. Then for any
se€{l,2,...,N}, we define

(ug, — 1, if uy, > 1,

us = g(Ug,) = 1 0, if u,, € [—1,1],
Uz, + 1, if up, < —1,
(M, if uy > M,

Us v = g (Us,) = S Us, if us € [-M, M],
\—]\47 if ug < —M.

Inserting
G(ug,) = u8|us,M’217 Y= 90?+1

into the left hand of (2.5) and noting that G'(u,,) > u2,; > 0, we have

J N R R
ig=1
-]uxsgxiu%’xj G (ug, )y dx
= [ {(9up=2 4 Vul )V,
(2.14) ~B]Vu Vg, |*} G (uy, )¢ da
> [ {19urv, ;

+ [qu]q_2]Vums|2 + (¢ — 2)|Vu|"*Vu - Vuzsﬂ }uszg)?H dx

> min{l,p—l}/ Va2V,
B

4+ (0= 2)|VulP™ + (¢ — 2)[Vu|"*]

24+ (p— 2)|Vu|/~"|Vu - Vu,,

2 2% 2
Us MPir1 dz.
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On the other hand, by the definition of u s, we have that |Vu| > 1 on the support
of us pr. Hence

N
d
/B S (Tl 4 [Vl - Gt Yo, } i
j=1

S

N
= [ SVl 4 [Vl ), G e Y,
B j=1

/Z VU’ + V| )uy, - Glug, )e,q, do
(2.15)

<€ [ (Va2 4 [Vul" ) Vuluiy Vi Vil do
+ C(R) /B Z(|Vu\p_1 + | Vu|* Ny | Vu| do
j=1
<C [ 1Vl V-Vl de + OR) [ [Fuptda
< €/B\Vu\p_2\Vu52 % D2 e+ Cle /|vu\pu V|2 dz + C(R),
and by (2.2) and the fact that |[Vu| > 1 on the support of u, s, we have that

/B (-

/ e Vg, |2 d + C / [l oo [V | da

(ug, )Y} do

@16) <O [Vl Vb o+ C [ [VuPediyein Vel do
B B

I/\

/ Va2V, Pacding o2, d + C() / VulPuiy, 2, da
+C(R)/ |VulPt? da.
B

Thus by (2.5), (2.14), (2.15) and (2.16), we have that

2,21
Ug M@z-‘,—l dx

N
: / > (V7 + [Vl )y, -
B

min{l,p—l}/ (VulP~2|Vu,, |*u
B

d
TG o [

S




346 Chengjun He and Gongbao Li

<2z [ |Vul Vgt do 4 C) [ [Valiy| Vol ds
B B
+CE) [ [VuPuyeh, do+ C(R)
B
<9 / Va2V Pu2y o,y do + C(e, R) / VP d + C(R)
B B

< 25/ [VulP =2V, [uy 07, do + C(e, R).
B

Then € can be chosen such that

B
Now, we prove (2.12) for ¢ + 1. Notice that
N N N
EINIED SLTECENES ») UALEETEIED 3 M AsY
s=1 s=1 j=1 s=1 j=1

and the fact that

‘U’Ij |p+2usz S ’uxs

N
WPy <3 fu [P B | < |
s=1

as well as

[t [P 20ty < Jt, [P 05y < Z [ LTS VRS L (79 [ (P

Thus we have

(2.19) f:

s=1

N
[P Pty < N?Y g P20l

1 s=1

hE

.
Il

Hence with the help of (2.18) and (2.19), we have that

Z / Va2, d

< (JZ/ b 02 d by (2.18), (2.19)

< OZ/ [P sMSOzH Ug, dx—i—C’Z/ sM‘P2+1
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< CZ/ [us[Pus o, 0 gpzﬂudx + CZ/ | P 2 ugtg o u SMaleudx
+ C'Z/ |us|pu5u§f]\_/[2usyMus7M7xSgofﬂu dx
— JB
N
+ O3 [ mPuniginlVonbude + ) [ 19
(220) < OZ VTt i+ OZ [ vt e
T CZ/ ’vu|p+1 Usg M901+1|V901+1| dx + C(R>

< 282/ IVulP2uly 07, do 4 Cle, R / [VulPuZy,

9y / Va2V a2,y do + O(R).

Here, integration by parts and Young’s inequality are used. Then, by virtue of
(2.12) for i and (2.17), (2.20) implies that

N
(2.21) > [ Vul it de < O(R)
s=1
Set i =0 in (2.21). We get
N
(2.22) 3 / Va2 de < CO(R),
s=1 B
and letting M — 400 in (2.21), we get
N
(2.23) > [ vapict d < (),

So by (2.22) and (2.23) we get

/ |V P20 gy S/ [VulPP?[Vul*?, | dx
Bit+1

< CZ / VP, 22, de
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N N
< CZ/B |Vu|p+2|us|2i¢?+1 dr+C Z/B |vu|p+2%2+1 dr < C(R).
s=1 s=1

Thus (2.12) is proved.
Now, we use (2.12) to prove (2.9). From now on, we fix R by taking

(2.24) R =R,

for some given Ry € R!'. As the dependence on R of the generic constant C' does
not matter any more, we do not indicate it in the following. For £ > 0 and

R<r <7 <2R,
we set
p(x) = p((r' =)~ (|2 — 20 = 1)),
A, ={z € By (20) | us(z) > k}.
For t € R}, we define
to1, ift>1,
g(t) =140, ifte [_L]-]a
t1, ift< 1,
and
G(t) = max{g(t) — k,0}.

It is obvious that G(t) satisfies the assumption of Proposition 2.1. Then we define
us = g(u,,) and insert

G(u:cs) = max{us - k? 0}7 ’¢ = 902
into (2.5), and following in the same way which leads to (2.17), we get

(2.25) /A

Noticing that (2.12) gives that

V|V, 26 de < C - (' — 7”)2/ VP da.

Ak,r

k,r!

(2.26) / \Vu["?dx < C,
Bnp

and the fact that " < R; implies that
(227) BT/({L‘()) - Bz(l'g)
for any ¢ € {0,1,...,[Np]}, we have by (2.26) and (2.27) that

1/N 1/N
(2.28) (/ |Vu|NP dx) < (/ |Vu|NP dx) <C.
Ak;,’r‘/ BNp
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Then, (2.28) and Holder’s inequality show that

/ |VulP do < (/ |Vu|NP dz)VN . (meas A;M/)u
(2.29) Ay A
< C'- (meas Akﬂn/)¥.

Thus, by (2.25), (2.29), Young’s and Holder’s inequalities, we get that

(2.30) / |VulP~2|Vug|*¢* dz < C - (r' — r)"*(meas Akm,)l—}v,
Ak,r’
and then
@3) [ VAV e O 07— ) Hmens ).
Ak:,r

If p > 2, (2.31) implies that
(2.32) / [Vu|* de < / VP2 V> do < C - (¥ — r)"%(meas Ay, )" ~.
Ak,r Ak,r

If p < 2, we additionally use (2.29), Holder’s and Young’s inequalities to obtain that

/ |Vus|? dx
Ak,'r

/2 (2—-p)/2
< r—r)* P VulP | VP de | - / ' — 1) PIVulf dx
. ( / O PV ) ( Nt

_ p(r’ —r)P. / |VulP dx
Ak,r

g~

S M L A
2 Ak,r
< O(r' = r) P(meas A;w/)l_%.

If we choose Ry € (1/2,1) in (2.24) at first, we have

1/p (p—1)
/ [ty | dx < (/ |Vul? dx) - (meas Bog) 7
Bar Bor
(2.34) (p-1)

<(C- [HN . (2R>N] P
< CR",

where ky denotes the volume of the unit ball in RY.
So (2.32), (2.33), (2.34) and Lemma 2.2 show that

us < C in Bg(xg).

As —u satisfies all the same estimates above as u does, we have shown that Propo-
sition 2.3 is true. Hence Theorem 1(i) is proved. O
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3. The proof of Theorem 1(ii)

We will prove Theorem 1(ii) in this section. To this end, it is enough to prove
the following result:

Proposition 3.1. Suppose that u is a weak solution of (2.1) and u, f(z) and
|Vu| are locally bounded. Then there is an « > 0 and a constant C' depending only
on N, p, q, esssup |u| and esssup | f| such that

B B

(3.1) |Vu(z) — Vu(zy)| < C - |x—x0]®, Vo € Byj(xo),
where B = By (z) for any given zo € RV,

In the following, p is defined as in (2.10). By C, we denote a positive generic
constant depending only on N, p, ¢, ess sup |u| and ess sup |f|]. We pick an

Bi(zo) Bi(zo)
R € (0,1/2) and set
(3.2) M = maxess sup |u,,|.
s Br(zo)

Before we prove Proposition 3.1, we give the following results:

Lemma 3.2. ([[9], Lemma 3.9) There is a C' depending only on N, such that

(1 )+ (meas A, ) < 6 meas By (eo)\Ax, ) [ |Volds
Al k,p
for all | > k and v € WYY(B,(x)), where Ay, = {x € B,(zo)|v(z) > k} and
A, ={x € By(xo) |k < v(z) <1}

Lemma 3.3. (|9], Lemma 4.7) If a nonnegative sequence {yn}, h =0,1,2, ...,

satisfies

Yn+1 S Cbhyill+€7 h = 07]-7"'7

where ¢, € and b > 1 are positive constants, then

(+e)h—1 (41 p
thC - I b éH—s)h

Especially, if yo < 0 = ¢~Y/¢b=/<* then
yn < Ob71E
and

yn — 0, as h — oo.

Lemma 3.4. (]9], Lemma 4.8) Suppose u(x) is measurable and bounded on
B, (x0). Considering B,(x¢) and By,(zo), where b > 1 is a constant, if for all
p < b lpo, u(x) satisfies one of the following inequalities

osc{u; By (o)} < 0",
osc{u; B,(xg)} < 0 osc{u; By,y(xo)},
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where ¢, ¢ <1 and 0 < 1 are positive constants, then
osc{u; By(zo)} < cpg*p”
whenever p < pg, where

a =min{e, —log, 0}, ¢ = b"max{cpg,osc{u; B,,(xo)}}.

Lemma 3.5. ([5], Proposition 4.1) Suppose that u is a weak solution of (2.1)
and u, f(x) and |Vu| are locally bounded. Then for any given zy € RY, there is a

p > 0 depending only on N, p, q, M, ess sup |u| and ess sup |f|, such that if for
Bi(zo) Bi(zo)
somel <s< N

(3.3) meas{z € Bg(wo)|u,, (v) < M/2} < uRN,
then

Ug, () > M/8, Vx € Brjo(zo),
where M is defined in (3.2). Analogously, if
(3.4) meas{x € Bpr(wo) | u,, (z) > —M/2} < uR",
then

ug, () < —M/8, Va € Bpja(x).

Now, we begin to prove Proposition 3.1.

We have shown in §2 that the gradient of a weak solution u of (2.1) is locally
bounded under the condition of Proposition 3.1. Therefore, by Lemma 3.5 there are
two cases: Case I: Either (3.3) or (3.4) is satisfied; Case II: Neither (3.3) nor (3.4)
is satisfied. We follow [5] to consider these two cases to prove Proposition 3.1.

Case I: Either (3.3) or (3.4) is satisfied. Notice that if either (3.3) or (3.4) holds,
we have by Lemma 3.5 that
[ug, (x)| > M/8, V& € Brja(xo).
Moreover, by the definition of M (see (3.2)) we have
(3.5) M/8 < |Vu| <M in Bgs(xo).

For [ > k > 0 and r, ' € R satisfying 0 < r < r’ < R, we set for a solution u of
(2.1) that

ple) = pl( =) (o = o] = 1),
Ay ={x € By(x0) | ua, (x) > k}
and
Ay ={z € B (w0) | k < ug,(x) <1}
For t € R!, we define
t—1, ift>1,
gt) =<0, if ¢t € [-1,1],
t+1, ift<—1,
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and

G(t) = max{g(t) — k,0}.
It is obvious that G(t) satisfies the assumption of Proposition 2.1. Then we define
us = g(u,,) and insert

G(u,,) = max{us — k,0}, = ©*

into (2.5). Integrating the first term on the right of (2.5) by parts, then following
in the same way which leads to (2.17), we get

/ |V, |20? dr < C/
Apot A

<C-(r'- 7’)_2/ (g, — k)*dx + C - meas Ay, .
A

k,r!

(= KP[VpP o+ C [ da

k,r! Ak,r’

(3.6)

Notice that if u,, satisfies (3.6), so does —u,,. On the other hand, for W(x) =
+u, (x), at least one of the following inequalities

1

5 meas Br/s (7o),

meas {:c € Brya(xo) | ug, (x) > élléix) Uy, — %osc{uxs; BR(SL’O)}} <
R\T0

meas {x € Bpya(z0) | us, (z) < Bm(in) Uy, + 3 0sc{uy,; Br(zo)}} < 3 meas Bgya(zo)
RrR\Z0

must be true. That is, either W (z) = u,, (x) or W(z) = —u,, (x) satisfies
meas {z € Bps(zo) | W(z) > r%ax(xo)W — Losc{ug,; Br(wo)}}
R

(3.7)
< % meas Br/s (o).
If we set
(3.8) w = 3 osc{uy,; Br(zg)}, K = max W—w and k"= max W,
Br(zo) Br(zo)
then (3.7) implies that
(39) meas Ak”,R/Q S %meas BR/Q(CL’()).

In the following, we first assume that
(3.10) w>2"R,
where t; is determined below.

Lemma 3.6. For any 6 € (0, 1), there is a ty > 0, such that if W satisfies (3.6),
(3.10) (i.e., W satisfies all the estimates that u,, does in (3.6) and (3.10)), then for

(3.11) K’ = max W > max W — 2 %y,
Br(zo) Br

(3.12) K = max W — 270ty
Br

we have

(3.13) meas Ao gjo < ORYN,

where Ayo /s is defined for W as for u,, .



The regularity of weak solutions to nonlinear scalar field elliptic equations 353

In fact, from (3.7) we know that we can assume W = u,, in Lemma 3.6 without
loss of generality.

Proof. Set k;, = Bm(ax)W — 27, Dy = Ak, rjo\ Ak ry2, t = 0,1,...,t — 1.
R(T0

Putting r = R/2, ' = R, k =k, | = ki1, t =0,1,... .ty — 2, into (3.6), we have
(3.14) / IVW|?dz < C[1 + (R/2)"%(27'w)?] - meas Ay, .

Ak, R/2
By (3.10) and (3.14), we have

(3.15) / VW [?dz < Cry(27'w)?RN 2,
Akt,R/2

where ky is the volume of the unit ball in RY.
Now we use Lemma 3.2 to estimate the left hand side of (3.15). Putting k = ki,
l = kii1, p= R/2 into Lemma 3.2 and with the help of (3.9), we have

1—L 1—L
meas N Akto_l,R/Q <meas N Ay, ppo

BR/2)N / YW da
= (ki+1 — ki) meas(Bry2 (7o) \ Ar,,r/2) Ay 1 kR )2
2=+ meas(Brya(20)\ Ak, r/2) Jp,
2t+26
< VW |dz,
K/N W Dt
where D; = Ay, | k,.r/2- Then (3.15) and (3.16) give
(3.17) meas” N Ak 1 rj2 < CRky - RN "*meas D;.

Summing up ¢ from 0 to ¢, — 2 and noticing that ) meas D; < meas Brjs(z9) =
t

kn ()N, we have
1 O 2
(3.18) meas” ¥ Ay, 2 < to f 1 RO,
So, if we take ty = 2 + [6’529’2(%”] and k° = k;,_; in (3.18), we get (3.13), and
Lemma 3.6 is proved. U

Following Lemma 3.6, we show another result.

Lemma 3.7. For R/A<r <r' < R/2, k€ [k°, k" + Z] and H = max W —k°,
RrR\Z0

if W satisfies (3.6), (3.13) (where Ay, are defined for W), we have either

H
3.19 max Wi(z) < k®+ —
(3.19) e (z) < 5
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or
(3.20) H <R.
Proof. Considering B,, (z¢), where p;, = % + 2ﬁ2, h=0,1,..., and a sequence
of levels
H H
_ 1.0 _
]{Ih—k +E_W, h—O,l,...,

and denoting y, = R~ meas Ak, pp and Dy = Akh,th\Ath,th, it is obvious
that k° < k, < k% + 4 is true for all h = 0,1,.... By (3.6) with k = ky, | = kp1,
"= pn, T = ppy1, we have

(321) /D VW[ dx < C[1L+ (R/2(9)72. (I%%X Up, — kn)?] - RNy
. h+1

< C[1+ 229 R2[?) RNy,
If (3.20) were not true, that is
(3.22) 1< R*H?
then (3.21), (3.22) would imply that

/ VW |*dz < C [14 223 H2RN 2y,
(3.23) Dpyq

< 022(h+4)H2RN_2yh.
Noticing that
meas D1 < meas Ay, ,, ., < meas Ay, ,, = Ry,

we have by Holder’s inequality and (3.23) that

1/2
/ VIV |dx < </ |VW|2dx> - (meas Dy.1)"?
Dy Dy

< CPHHRWN=DRy 2 (RN, )1/
< 02h+4HRN71yh‘

(3.24)

On the other hand, for
(3.25) 6 <27 1gn,

if we take k = kp, | = kpy1, p = ppa1 in Lemma 3.2 and by (3.13), (3.25) and
Lemma 3.2, then we have that

/D |VW| dx > ﬁ_l(kh-i-l - kh)RN_lyilz—i_-i/Np}:-{-vl ’ meas(Bth (xo)\Akmth)
h+1

(3.26) > 57127(h+2)HRN*1 (g)_N . meaS(BR/z;(ﬂCo)\AkO,R/Q)

> 5—12—(h+N+3)KNHRN—lyill;i/N_
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So, (3.24) and (3.26) show that

_N_ &
(3 27) Yn41 < (052N+7"1N_1) : (4N+1)h . y}]lv_
2 coblyito, h=0,1,...,
where g9 = 515 >0, by = 45T ¢y = (CE2NH Ty 1) Rt
Then, if

_ /a2
Yo < ¢ 1/‘Eobo 1/zo )

that is, (3.13) is satisfied with 6 < 051/5060_1/602, (3.25) and Lemma 3.3 show that
yp — 0, as h— +o0
and
. o H
max W(z) = lim k, = k" + —.
Br4(zo) h—o0 2
So, Lemma 3.7 is proved. O
Thus by Lemma 3.6 and Lemma 3.8 under the assumption (3.10), we finally get
that

H
max W(x):hlim kn =k 4+ = =k"+3][ max)W—kO]

Brya(zo) 2 2 Br(zo
=1 max W+ k"] = max W — 27",
Br(z0) Br(z0)
that is,
(3.28) w < 2°{max W — max W}

Br(zo) Br/a(2o)
Thus we have
w < max{2"”(max W — max W);2"R}

Br(zo) Br/a(xo)

(3.29) t o e
< 2°max{ max W — max W;R}

Br(zo) Brya(z0)

even if (3.10) does not hold.
Remember that by definition

w = 3 0sc{ug,; Br(zo)} and W =u,, or W = —u,,.
Inequality (3.29) shows that either
(3.30) osc{uy,; Br(ro)} < 2R
or

osc{us,s Ba(wo)} < 2% [ max W — max 17
X R/4 x

< glotl [OSC{U%; Br(zo)} — osc{u,,; BR/4($0)}]7
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that is,
1
(3.31) 0sc{uy,; Brja(o)} < (1 - 2t0+1) osc{u,,; Br(zo)}-
Then (3.30), (3.31) and Lemma 3.4 imply that u € CV*(Bys(zg)) for some a €
(0,1), and Proposition 3.1 is proved in Case I. O

Case II: Neither (3.3) nor (3.4) is satisfied. In this section, we will prove Propo-
sition 3.1 under the assumption that neither (3.3) nor (3.4) is true, i.e.,

meas{z € Br(zo)|us, > %} < (ky — p)RY
and
meas{z € Br(zo)|us, < -2} < (ky — p)R",
where ky denotes the volume of the unit ball in RY. Obviously, the above two
inequalities show that

(3.32) meas{z € Bgr(xo)|u,, > (1 —1/2M} < (ky — p)RY,
(3.33) meas{r € Br(wo)|u,, < —(1—1/2M} < (ky — p)R",
where M = maxess sup |u,,|andt>1.
s Bar(z0)
For the proof of Proposition 3.1 in Case II, we first assume that
(3.34) M >2"R,

where t; will be determined in the following lemma.

Lemma 3.8. For any 6 € (0, 1), there exists t; > 2 such that
(3.35) meas{r € Bpr(wo)|u,, > (1 —1/2")M} < ORY,
(3.36) meas{z € Br(zo)|u,, < —(1—1/20)M} < ORN,

where M = maxess sup |ug,|.
¢ _
Bar(20)

Proof. We set p(x) = p(r' — )|z — x| — 1),
Al ={z € Byxo|us, > k} for (3.35), where k > (1—1/2")M >0
and
Ap, = A{z € Bywo|u,, <k} for (3.36), where k < —(1 —1/2")M < 0.
We will prove (3.35) only; (3.36) can be proved similarly. Notice that we have
% < ug,| <M on Af .
For t € R, we define
t—1, ift>1,

g(t) =140, ift e [_Ll]a
trl, ift< -1,
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and

G(t) = max{g(t) — k,0}.
It is obvious that G(t) satisfies the assumption of Proposition 2.1. Then we define
us = g(ug,) and insert

G(uy,) = max{u, — k,0}, 1 = ¢?
into (2.5), and following the steps to get (3.6) again, we have
(3.37) / |V, [Pdr < C - (r' — r)_z/ [uz, — k?dz + C meas A} .
Af ’

+
kor Ak,r’

Taking » = R and r' = 2R in (3.37), we have

(3.38) /A .

Noticing that (3.32) implies that
(3.39) meas(Br\Aq_s-tyr.r) = HRY,

we get by (3.34), (3.38), (3.39) and Lemma 3.2 with v = u,,, | = (1 — 27(FV) AL,
k= (1-2"")M, where 2 <t < ty, p= R (and, for convenience, we will still use k,
in the following calculations) that

Vu,,|*dr < CR™? / [tg, — k]* dz + C'meas A} .

+
Ak,QR

—(t+1) 77 1-1/N
o~ (t+ )M(meas Aa_l/FH)M’R)
1
<CRY . —~ |Vu,,| dw
pRN Al R

1/2

< Cut / Vu, |? dx - (meas A, ,)/?

(3.40) > 0p ( Affk,R| s ( l,k,R)

<Cu'[CR?. / (M — k)?dz 4+ C meas A 5] 1/2(meas Al r) 12

Al
=COp ' [R7%- 272 M2 + 1] 1/2(meas Afp) " (meas A, p)'?
< Cp 'RT'27'M [kn(2R)"] 12 [meas Alfk’R] 1/2
Squaring both sides of (3.40) and dividing both sides by 27¢+1), we get

(meas Aa_1/2t+1)M7R)2(N_1)/N < Cp 'k RY7?[ meas A;fk’R}

1/2

We sum up t = 2,3,...,% — 1 and notice that > meas Af, , < kyR" to obtain

(3.41) (t; — 2)(meas AT

2(N-1)/N —-1,2 p2(N-1
)Y < O R RO,

So to prove Lemma 3.8, it is enough to take
(3.42) t =3+ Cp~tr2 g 2N -U/N
in (3.41). O
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Lemma 3.9. If u,, satisfies (3.37), then there exists a 6 € (0,1) such that if
for some t;

(3.43) meas{r € Bpr(wo)|u,, > (1 —1/2" )M} < ORY,

then

(3.44) ess sup u,, < (1—1/2"THM.
Bpry2(zo)

Proof. From (3.37),
(3.45) / Vu,,|*dz < C(r' —r)~2 / [ug, — k‘f dz + C meas A} ,.
A?,—k,r A;,’./ ’
We set
B, R
Ph = 5

PSS H= sup [ug, —(1—1/2")M],

Bar(xo)
kn=1[1-1/2"] M+ (1-1/2")-H/2, h=0,1,...,
and denote

_ p-N +
yn = R " meas A

At +
Dh+1 - Akmph“\Ath,PhH'

It is obvious that
ko <kn<ko+H/2, h=0,1,....
So by (3.45) with
k=ky l=kpp v =pn, 7r=0pu1, h=0,1,...,
we get

(3.46) /D |V, | de < Clpn — pra1) > /+ [ta, — kp)? dz 4+ C'meas A
. h+1

Akh»ﬁh

< C[22" Y H2R™? + 1] meas A
If 22(+2) [2R=2 < 1, then by virtue of (3.34) we have
H<27MDUR < R/2<1/20FM.
Then by the definition of H, we have

sup u,, = H+ (1 —1/2")M
Bag(wo)

(3.47) < 1/29FIM 4 (1 —1/29)M
< (1—1/25%HM.
If 22+ H2R=2 > 1, then (3.46) shows that

/ Vg, |* doe < €272 H2R™? meas A}
Dpyq

(3.48)
< 022(h+2) HQRN_th.
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By (3.48), Holder’s inequality and the fact that

meas Dyy1 < Ry,

dr < < / |V,
Dy

S C2h+3HRN_1yh-

we have

Vu,,
s ),

1/2
2 d:c) - (meas Dy 1)"/?

Taking k = kp, | = kpy1, p = pry1 in Lemma 3.2 and noticing that in (3.43) we can
assume that 8 < 2~V +Dk . we have

(3.50)

/ |Vu,,
Dpy1

dr > ﬁil(kthl - kh>RN71yllz—li-i/Npl;—i]-V1 meas (Bph+1 (‘TO)\A;}“MLH)

> 5_12—(h+2)HRN—1y1_1/NR_N meas (BR/Q(J:(])\AZ_O,R)

h+t1
Z /6_12_(h+2)HRN_1y]1111/NR_N . 2_(N+1)/{NRN
_ 67127(h+N+3)HKNRqu}ll:/N.
So (3.49), (3.50) imply that
1-1/N h
h+1/ < C4 +3y ’
that is,
N
(3.51) Yror < CFT(AFT )y TT 2 cpplyleen,
where ¢; = ﬁ >0, by = 4%, = o~ If
Yo < 61_1/51b1—1/5127

that is, (3.43) is satisfied with 6 < ¢;/%b7/%" then (3.51) and Lemma 3.3 show
that
yp — 0, as h — 400,

and
H

sup U, (z) < lim ky = k% + —
3.5 Br/a(zo) h—o0 2
(3:52) <(1-2"M+iM-(1-2"")M]

= (1—1/2"*")M.
Inequalities (3.47) and (3.52) show that Lemma 3.9 is true. O
Conclusion of the proof of Case II. If (3.34) is not satisfied, then

(3.53) maxess sup |ug,|= M <2"R.

s Bar (o)
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Otherwise, if (3.34) is satisfied, we take # = min {27V !ky; cl_l/gobl_l/m?} by
Lemma 3.9, then take t; by Lemma 3.8 to obtain (3.44), that is,

ess sup g, (z) < (1 —1/29 Y maxess sup |u,,

Brya2(wo) Bar(20)
and
ess inf wu,, (z) > —(1—1/2""")maxess sup |ug,|.
Brya(wo) s Bar(x0)
Thus we get
(3.54) maxess sup |u,,| < dp-maxess sup |u,,|,
s Brya(xo) 8 Bar(z0)

where g = 1 — 1/20F1,
Similarly to Case I, (3.53), (3.54) and Lemma 3.4 with some modifications show
that

(3.55) maxess sup |u,, | < C - p* for any p € (0,2R),
5 Bp(fEO)
which obviously implies Proposition 3.1 in Case II. U

For completeness, we give the proof of (3.55) in the following. If we set R = Ry,
po=2R, pp =4%py, k=1,2,... and wy = max sup |u,,|, then (3.53) and (3.54)

BPk (10)
show that
wr = max{2% py, dowy_1}
and
wo < 20py = - 47,
where o = min{1, —log, dp}. Then for y;, = 4**wy, k = 1,2, ..., we have
Yk < HlaX{QSO : 4kapk’ (50 : 4ko‘wk,1}
= max{2% - 451 0 4960y
(3.56) { ) Po 0Yk—1)
< max{2%py, Yx_1}
= max{é A7y}
and
(3.57) yo=wy < C-47°
So (3.56), (3.57) show that for all £ =0,1,2,...
Yk S 5 : 470‘7
that is,

(3.58) wp < C 470 47h = O .47 (@) .
Po
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Now for any given p € (0, po], there exists a k > 1 such that py < p < px_1. Thus

max sup |u,, | <max sup |u,,
Bp(xo) s Bpk 1(3170)

(3.59) <G4 _a,pg_l
= Cl4po) ™
Thus, Theorem 1(ii) is proved. O

4. The proof of Theorem 2

In this section, we will give the proof of Theorem 2. Firstly, we prove the local
boundedness of weak solutions to (1.12). We consider any weak solution u to the
equation

(41) {—Apu—Aqu:f(x,u), r € RY,
u e WH(RN) N WH(RN),
where 1 < ¢ <p < N and N > 3. We will prove that if f(z,t) satisfies the following
(4.2) [z, )] < elt]™™" + Ce)|tf"
where p* = N—f;) if N >pand 0 < p* < x if N < p, then any weak solution u to

(4.1) is locally bounded. We only consider the usual case N > p; the other case
is even simpler. To prove this, we set Br = Br(zg) for some given 2, € RY for
simplicity and choose a nonnegative C*°-function n with the properties

2
V| < - for r € (0, R)

and
1, if z € Bp,
n=1(0,1), others,
0, if + ¢ Bri,.

Without loss of generality, we assume v > 0 and denote u = u + k for some k£ > 0.

Then
_ u, if u<lL,
ur = .
L+Fk, ifu>L.

Otherwise, we will consider u™, v~ and @ = u™ + k, u = v~ + k separately. For all
cases, we have Duy, = 0 in {z € R" |u(z) = 0 or u(z) > L}.

Set the test function ¢(x) = np(uup(ﬁ b — kPB-D+Y) - where 8 > 1 will be
determined later. From now on, we denote by C' a generic positive constant which
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may depend only on p, ¢, N. Inserting ¢ into (4.1) and integrating on RY, we get

/ Pn”‘l(aai(ﬁ_l)—k” ) Va4 Y |V VeV
RN

+p(B — 1)77puu N VulP Vuva
(4.3) N Ay T aa T v L A v s Gl A VA L v v
+p(B — l)r]puup(ﬁ V|12 VuVa

= f(fc’,U)god:cgc/ (@~ + 1]pad Y da.

RN RN
Now
/ pnp 1(——175 1 kp(ﬁ 1)+1)|vu|p QVandx
RN
(4.4) <p [ ud Y |vaP 2 val Oy dr
R

S&/ (nuL val)” dx+C’(€)/ (uugﬁ 1)|V77|)pdx
RN RN

and, similarly,

/ pnp_l(ﬂﬁi(ﬁ_l) — kp(ﬁ_1)+1)|Vu|q_2VuV77 dx
RN

<p / P a2 V| V| de
RN

_(B—1 p(q
I A

< / "V [enp|Valt + C (o) | Vf?] da
RN

u -n§_1ﬂ|vm] dx

= 5/ PPVl do + C’(s)/ =iV da,
RN RN
Thus € can be chosen such that by (4.4), (4.5) and (4.3) we have
C pr—1 49 pffp(ﬁ 1)
|

_ 1
> [ 98- Dpan 7 vay i IV — ¢ (] ()
RN

-l—p(ﬁ—l)npuu -b- 1|Vu |74+ np TG 1)|Vu|q C’np_qﬂqﬂi(ﬁ_l)|Vn|qu.
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Taking £ = 1 and noting that u > k, we have

1
[ o6 =0 (Vi + Vit + G Vil + (V) do
(4.6)
<C /R e a Y  (ag))” +ata” Vl) de

Set Wy, = nuuL " for 3 > 1. Observing that nuL L < m’mi_l and
/ Tl |vn|q dr _/ 19! )|V77|q p— qa(Lp—q)(ﬁ—l) dx
RN RN
< / (aa; '|Vnl)” dx—l—/ (nay ") da
RN RN

g/ (uuL Hvn))? dx—l—/ (nﬂﬂﬁ_l)pdx,
RN RN

(4.6) implies that

D P

</ (nuuL ) dx) :< W}fdx)p SC’/ VWP dx
RN RN RN

<c | @@ VP +opr / N eV vl + el |V ] do
R

RN

SC/ arah Vvl + o
(4.7) RY

/ [npap*aii(ﬁfl) + (uuL |V77|) +77p quq ‘VU‘ }
RN
goﬁ/NWWwW”+O%,WW + (nuiy )" dx
R
<CpP [/ (aa; ' |Vn|)” dm—l—/ TR TG dm] :
RN RN
We claim that there exists an Ry > 0 such that

(4.8) ue LPVP(Byg,).

In fact, since

p/p* (»*—p)/p*
/ PP p Ve < {/ (paai )P dm} : / a” dx ,
RN RN Bpryr

taking = p*/p in (4.7) and R = R, small enough such that

{/ X (p*—p)/p* 1
uP d:v} < —,
Bon 2C
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we get that

P

(4.9) (/ (naay )" dx)p < C/ (aay " |Vn))" do < C/ "’ |V de.
RN RN RV

Letting L — 400 in (4.9), we get

p

p*
/ a® /P dy < C’/ |Vn|Pa?” dz < 4o0.
BRO BRN

Then we will show that u € L>(Bg), 0 < R < Ry/2.
Set t = (p*)?/(p* — p)p > 1. Suppose u € LPP/¢D(Bp,,), 0 <r < R. By (4.8)
and Sobolev’s inequality, we have

- q1-1/t

/ npﬂp*ﬂ‘z(ﬂ_l) do < / (npapﬁ)t/(tfl) / (a(p**p)t dx)l/t
RY L Brr h Bryr

r qt—1/t
(4.10) < / (npapﬂ)t/(tfl) / (a(p*)Q/pdx)l/t

L BR+7‘ | BR+,,.

1-1/t
<C / (npﬂpﬁ)t/(tfl)
BR+T
and
1-1/t
(4.11) / |Vn|pﬂpalz(ﬁ—1) dx < Cr? / (ﬂpﬁ)t/(t—l) dr '
RN BR-H"

So by (4.10), (4.11) and (4.7), we get

{ /R i (naay ") dw} "

*

1-1/t
< CpPrP / (apﬂ)t/(t—l) dr ,
BR-H"

ie.,

(t—1)p*
tpB

1/8
(4.12) {/ P’ e dm} < Cl/ﬁﬁp*/ﬁr—p*/ﬁ / PPt (t=1) gy 7
Br BR+T

where C' is independent of r, (.
Set x =p*(t —1)/pt (x > 1), 8=X", Bi = Bpyo—ir, 1 =0,1,...,in (4.12) and

; 1/x¢
B;
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Then (4.12) implies that

p*/x

o — ||agpt/ (1)
I ||u P*X*(Biy1)

1=

X (Big1) = I

% r _% () /(t—1 w0 —(i41)
< OXFT (ﬁ) x ”u(p)/( )y PTX

X' (Bi)

(4.14)
1 . —p* (i
_ _ e w50, —(i41)
= O [27 DT P
it1l " ikl . « it1 g il o —(q
< OF5tox (2r )E§Zojx (P )E;Zox % b (J“)[O'

Note that Iy < C(fBQR |a|P” d:c)zai < +00; s0 let i — 400 in (4.13). We get
(4.15) u € L*(Bg(zo)),
and since zy € R" is arbitrary, we have

(4.16) u e L2 (RY)

loc

by the definition of . Thus, with the help of (4.16), Theorem 1 implies Theorem 2.
O

For equation (1.1), one can set
f(z,u) = g(x,u) — m|ulP~?u — n|u|??u.

It is obvious that g(x,u) and f(z,u) satisfy (4.2) if g(z,u) satisfies (C;)—(Cs) in
[8]. So one can see that the solutions of (1.1) are locally bounded. Then Theorem
1 implies that these solutions are locally in C'2,

5. The proof of Theorem 3

In this section, we will give the proof of Theorem 3 by virtue of (4.16). To
show (i) of Theorem 3, we mainly follow the steps of [10]. The difference is that, as
one can see, neither the test function v = nPu*(u})P?~Y used in [10] nor the test
function ¢ = nP (s’ — kPB-D+1) ysed in §4 works in our case.

To overcome this difficulty, our main idea is to use two test functions separately
to get a couple of inequalities and then combine them to get the decay estimate
of the weak solutions. As soon as this is done, we can follow the way of [11] to
prove Theorem 3(ii) with the help of Theorem 3(i). In the following, C' stands for
a generic constant depending only on N, p, ¢, and m, n.

We choose a nonnegative C'*°-function £ having the following properties:

2
V&l < = for some r € (0, R/2),
r

1, if z € Bg",
£=141(0,1), others,
O, if x € BR—’I’7
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where B, = B,(0) and B, = R¥\B, for p > 0. Without loss of generality, we

assume u > 0 and define the test function ¢(x) = §puu’£(ﬁ ) and W, = §uu€_1,
where uy, is defined as before and § > 1 is to be determined later.
Inserting ¢ into (1.1) and integrating on R as in §4, we get the estimate

1
/ p(3 — VPV (Vg ]? + [Var|?) + —nPudd D (|ValP + | Vul?) da
RN 2
(5.1)
g(;/‘ [Fo+ (w2 (TP + PtV Vn|) da
RN

where f(x,t) = g(z,t)—mlt|P~2t—n|t|972t. Note that |g(x,t)| < elt|P~1+C(e)|t|r"
for any € > 0 and t > 0. We have

(5.2) N fodz < (e —n)ePulb "™ — mepypP Y 4 Oe)u? w1
R

By (5.1), (5.2) with € = n/2 and the fact that uqu‘z(ﬁfl) < uquL( R upuL(ﬁ Y we
have

[ VWP iz e [ and(vep e veln da
RN RN
(5.3) +Cp” / wtf "I Ve da
RN
+ Cﬂp/ fpup*ui(ﬁ_l) dz.
RN

Define ¢(x) = £puuL D and v, = P/~ insert ¢ into (1.1) and estimate
as before. We get

/ wwwmscm/ WPV (Ve + 0| Vef) da
(5.4) “BY y

+ Cﬁp/ upui(ﬁfl)\Vﬂp dr + C’ﬁp/ ﬁpup*u%(ﬁfl) dx,
RN N

where we have used the fact that upu%(ﬁ b < uPul SR NN ( b, Taking r small
enough, (5.3), (5.4) and Sobolev’s inequalities 1mply that

. p/p* . a/q*
( w? dx) + ( / %5 da:)
RN RN

<C (/ ]VWL\pder/ yva\qd:c>
(5.5) RN "
< Oﬁp/RN (Y 4 V) (|VeP + 7| e[) da

+ CpP EPuP p dm—i—C’ﬁp §pup*u%(ﬁ_1) dx

RN RN
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< Cﬁp/ (upui(ﬂ_l) + uqqu(ﬁ_l))|V§]p dx
RN

+Cpr §pup*u§(ﬂ_1) dr + C3P §puq*u%(ﬁ_1) dz,
RN RN

where we have used the fact that up*u%(ﬁ_l) < up*ulz(ﬂ_l) + uq*qu(ﬁ_l).
We claim that

(5.6) we LWV L@?(|z) > R).

In fact, since

. p/p”*
(5.7) / P @ dr < {/ (nuuf )" dx} : {/ uP dx
RN RY [z[>R—r

. a/q*
(5.8) / npu‘J*ﬁqL(B_l) dx < {/ (np/quug_l)q dx} . {/ u? dx
RN RN |z|>R—r

and u € LP" N LT (RY), letting 3 = p*/p, we have, for R large enough, that

(p*—p)/p* 1 (¢*—a)/q* 1
5.9 / uP” dx] < —, [/ ud” d:v] < )
( ) |: |z|>R—r 2061’ |z|>R—r QCﬁp

So, (5.5), (5.7), (5.8) and (5.9) imply that

. p/p”*
(/ac|>R (uu] /p_l)p da:) <COr? /RN (u?" + u?"/?) dz

. Np _
< OT_p/ uP dx—i—Cr_p/ wN-r Iyl dx
RN RN

Y

] (p*—p)/p*

} (¢*—q)/q*

(5.10)

N—q

¥ N~
< CT_p/ uP dx 4+ Cr7P (/ u?” dx) (/ ud’ dx)
RN RN RN

< +00.

Similarly, letting 3 = ¢*/q and noticing that ¢* < pg*/q < p* implies w4 /7 <
u? +uP” | we get

. a/q"
(/ (uuf, /q_l)q dx) < CT—p/ (u? +uP?/?) dx
< Crp/ u? dr + Crp/ (W +u”) dzx < 4o0.
RN RN

If we let L — oo in (5.10) and (5.11), (5.6) follows.
Now we give the proof of u € L*(|z| > R). Notice that (5.5) implies that either

p/p
(5.12) ( Wi’* dg;) < Cﬂp/ (upui(ﬁfl)yvﬂp + gpup*uli(ﬂfl)) dx
RN RN
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or
a/q
(5.13) ( Ve dx) < C’ﬁp/ (uqu%(ﬁ71)|V§|p - fpu‘I*qu(ﬁfl)) dx
RN RV

is true. Let t; = (p*)?/(p* — p)p; then t; > 1. Suppose that u € L/ (=1 (|z| >
R —r) for some > 1. Then

1—1/t1
/ npup*ali(ﬁ—l) do < / (npupﬁ)tl/(tl—l) dI] . (u(P*—P)tl dl’) 1/t
RN BN

R |z|>R—r

r 1—1/t1
/ w1/ (=) dx] , / (P gy V1
L/ |z|>R—r |z|>R—r

l—l/tl
<C l/ (upﬁ)tl/(tlfl) dx}
|x|>R—r
and

/ IVnlPuru Y de < O [RY — (R — )] 1/t [/
RN |

z|>R—r

IA

l—l/tl
(upﬁ)tl/(“’l) dx} )

So by (5.12) we get

p/p*
|:/ (nuug—lya* dg(;:| < C’ﬁp(l + T_pRN/tl) |:/
RN |

z|>R—r

171/t1
(upﬂ)tl/(tl—l) dm] :

that is,
-1 ,3-1 _ 1\ (31
(614)  Jlulles < O (LB P (0] = R— 1),
where s; = pt1/(t; — 1) and C' is independent of r, §. Similarly, if we set to =
(¢*)*/(q* — q)q and sy = qta/(t2 — 1), (5.13) implies that
(5.15) lullges < 73197 (14 77 RN2) 9D o, (2 > R — 1),

that is, for any given £ defined as before, we have that (5.14) or (5.15) is true.

Weset R>0,0<r < R/2, Ri=R—2""r, B; = Bg,(0) fori =0,1,... and use
(5.14) and (5.15) to iterate as follows: For i = 0, we set Iy = ||ul|p=(pg); For i =1,
if (5.14) holds, we set 51 = p*(t; — 1)/(pt1) = p*/s1 and vy = p*B1. Then by (5.14)
with § = (3, we have

—1 —1 L 1
(5.16) I = Jullwsg = lullssn < C 37 (1+ (24/ryP RV L,
If (5.15) holds, we set 31 = p*/se and v; = ¢* 31, then by (5.15) with 5 = (3; to get
(5.17) L = |lullv, o) = l|ullgs. ) < Cﬁ;lﬁip/q)ﬂl_l(l n (21/T)pRN/t2)(Qﬂ1)*IIO.

Fori = 2, if (5.16) and (5.14) hold, we set 3, with Bs57 = p*51 = 11 (i.e., B2 = 11/51),
Vo = p* [y, then by (5.14) and (5.16) with § = (35 to get

1 —1 1
(5.18) Iy = [Julluys) < 5 252 (1+ (22/r)pRN/t1)(p,32) I
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If (5.16) and (5.15) hold, we set [y with fyse = p*f1 = 1y (i.e., B2 = 11/52),
Vo = q* (2, then by (5.15) and (5.16) with 8 = 3, to get
—1 —1 _

(5'19) I, = ||U||u2(Bg) < CP: ép/q)ﬁg (1 + (22/T)pRN/t2)(Qﬁ2) 111'
If (517) and (514) hOld, we set 62 with 5281 = q*ﬁl = (i.e., ﬁQ = Vl/Sl),

= p* [y, then by (5.14) and (5.17) with 5 = (5 to get
(5'2()) I, = ||U||u2(Bg) < Cﬁz_l Qﬁ;l(l n (QQ/T)pRN/n)(pﬁz)ﬁ]L
If (517) and (515) hOld, we set 62 with 6252 = q*ﬁl = 1 (i.e., 62 = V1/82>,
Vs = q* (32, then by (5.15) and (5.17) with 8 = 3, to get
(5.21) I = ||u]lua(ng) < of:' ép/q)BQ‘l(l n (22/r)pRN/t2>(<152)*111'
Note that all the v; and (;, i = 1,2 above have the forms

=p"(p*/s)"(q"/s2) ", i=1,2, k=0,1,....1,
Bi=vi/p" or Bi=vi/q, i=12.

Now 1 < (¢*/s2)" < B; < p*/q(p*/s1)" for all i > 1, and there are only two cases:

(5 22) Iz+1 HU Vi1 — ( H—l) < Cﬁ“rlﬂ 1+1 (1 + (2i+1/r)pRN/t1)(p/gi+1)—1[i
= [Op*/q(l + r_pRN/tl)} S (g7 /s2)” 1(zp*/sl)z;illj(q*/SQ)—jIO

or
1= ||ul|gp, (B ) < C’ﬁ+1ﬁp/q o 14 (211 /P RN/t2 (QQiH)’IIi

(5 23) + B\ Pit1

< [Cp* [q)P/a(1 + P RN/=Y| 07 (e g yplamithstar /s

If we let i — oo, then (5.22) and (5.23) imply that

(5.24) I = |Juf|so(mg) < (Clp,q, 7, R))™= 107 /52) 77 (9% [ g, PRI [52) 7
Since ¢* > s9, (5.24) implies that

(5.25) HUHL"" (Je|>R) < OHUHP *(|z|>R—r) “(lz|>R/2)-

Inequality (5.25) and the local boundedness of u 1mply ( ) of Theorem 3. With the
help of (5.25), one can follow the steps of ([11] Theorem 3.1) to prove the exponential
decay of u. We just sketch the proof of this fact here. In fact, (i) shows that there is
a constant C, such that ||u]. < C. We define a smooth function U(z) = CeBe <l
and the test function ¢ = (u— U)*. It is obvious that ¢ € W, (RN\Bg). Then we
have, if |x| > R is large enough and € > 0 is small enough, that

— AU~ AU + %|U|p‘2U + g|U|q‘2U

:Up—l @_ (N_l)
2 i

e —(p- 1)6”} + Ut [g - (le_| D

et — (g — 1)t

> 0.
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That is why,

(5.26) / (—ApU — AU+ Z|UP2U + ﬁ|U|q—2U) ¢ dr > 0.
2l >R 2 2

On the other hand, by (Cy) we have

) T, U S—Qupfzu—ﬁuqdu as u — 0T,

(5.27) ) < =t

Thus, (1.1) and (5.27) imply that

(5.28) / (= Ay — Ay +m/2ufP2u+ n/2Jul*>u)édz < 0.
lo[>R

So, (5.26), (5.28) and the definition of ¢ show that

=1

N
02 [ 3 (Va0 )b,
|z]>R
m

+3 (WP~ = UP Mo dx
jal=R
N

—l—/ Z (|Vu|'?u,, — |VUI?U,,) ¢y, da
|z|>R i=1

+ ﬁ/ (ut = U Y da
2 Jloi2r

(5.29)
N
-/ (Va2 ~ VU206,
{le[zR}{u>U} ;=1
m, p-1 -1
+ E(up —UP Y )odx
N
+ [ > (Il 2, — VU2, ),
{lz|>R}n{u>U} ;4
+ g(uq_l — U Hodr.
Since (|€["72& — |n|"™2n)(& —m;) > 0 when ¢t > 1, € # 1, (5.29) implies that
(5.30) u<U ae in{recR": |z| >R}

Notice that U € C*°(R"Y) and Theorem 2 implies that u € C'(RY). Therefore
u < 66€R6—€\x| _ Ce—am
when |z| > R. This completes the proof of Theorem 3. O
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