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Abstract. We show that every operator that acts between two nonseparable Hilbert spaces
can be “block diagonalized”, where each diagonal block acts between two separable Hilbert spaces.
Analogous results hold for operator-valued H ∞ functions and others.

Using these results, several theorems about representation, invertibility, factorization etc.,
which have previously been known only for separable Hilbert spaces, can now be generalized to
arbitrary Hilbert spaces. We generalize several results often needed in systems and control theory,
including the Lax–Halmos Theorem, Tolokonnikov’s Lemma and the inner-outer factorization. We
present our results both for the unit disc and for the half-plane.

1. Introduction

Let X and Y be arbitrary (possibly nonseparable) complex Hilbert spaces. If
T is bounded and linear X → Y (i.e., T ∈ B(X , Y )), then

(1) T =




∗ 0 0 · · ·
0 ∗ 0 · · ·
0 0 ∗ · · ·
...

...
... . . .


 ,

where each ∗ stands for a bounded linear operator of the form T ∈ B(X, Y ), where
X (resp., Y ) is a closed separable subspace of X (resp., Y ), and all such subspaces
X (resp., Y ) are orthogonal to each other and their (possibly uncountable) sum
equals X (resp., Y ). The same holds if above B is replaced by, e.g., H p, H p

strong

or Lp
strong, which shall be defined below. Analogous claims also hold when B(X ,Y )

is replaced by B(L2(X ), L2(Y )) or similar. This “diagonalization method” is the
main contribution of this article. Excluding holomorphicity, these results hold for
real Hilbert spaces too, as explained in [Mik07], which is a supplement and extension
to this article.

Standard interpolation results, such as the Nehari Theorem or the AAK The-
orem, have been known for functions T : T → B(X ,Y ), where X and Y are
separable. Such results can be extended to general X and Y by applying the
known results to each T to obtain an interpolant U and then combining all U ’s
to a “block diagonal” function U that interpolates T in the same way. Similarly,
if T ∈ H ∞(X ,Y ) (a bounded holomorphic function D → B(X ,Y )) is left-
invertible in H ∞, then so is each T , hence then each T can be extended to an

2000 Mathematics Subject Classification: Primary 47B35, 46C99, 46E40.
Key words: Orthogonal subspaces, strong Hardy spaces of operator-valued functions, strongly

essentially bounded functions, shift-invariant subspaces, translation-invariant operators, inner func-
tions, left invertibility.



110 Kalle M. Mikkola

invertible function
[
T T̃

] ∈ H ∞(X × Z, Y ), by Tolokonnikov’s Lemma. By com-
bining all such pairs we get an invertible extension

[
T T̃

] ∈ H ∞(X × Z ,Y )
(Theorem 4.3). Similar claims also hold for other interpolation representation, fac-
torization and [left] invertibility theorems. Practically the only limitation is that the
interpolant, the representative, the factors or the [left] inverse must satisfy some norm
estimate that does not depend on the particular subspaces involved. This condition
is usually inherent in representation and interpolation results, hence nontrivial only
in certain factorization and invertibility results.

In Section 2 we present our notation and introduce the space L∞strong(X ,Y ) of
functions F : T → B(X ,Y ) such that Fx ∈ L∞(Y ) for every x ∈ X . It equals
the set of “`2 Fourier multipliers”, i.e., of functions for which the map f 7→ Ff is
bounded L2(X ) → L2(Y ).

In Section 3 we present the diagonalization results mentioned above. These are
then illustrated by the extended representation, characterization and invertibility
theorems of Section 4, for functions on the unit disc and for their Hankel and Toeplitz
operators. In the separable case these results are essentially known [Nik02], [Pel03],
[RR85], [FF90], [Nik86].

For reference purposes, we present analogous results for the half-plane in Sec-
tion 5. There we also show that one can use translations instead of the shift.
The results on translation-invariant subspaces have previously been known in the
scalar/finite-dimensional case [Lax59], the others in the separable case. Correspond-
ing proofs and further details on the relations between the disc and the half-plane
are presented in Section 6.

Naturally, our methods could be applied also to generalize similar existing separ-
able-case results on several other sets in place of the unit disc or of the half-plane.

Section 7 contains historical notes. Auxiliary results and some technical proofs
are presented in the appendices.

The main contribution of this article is the diagonalization method of Section 3.
The examples in Sections 4 and 5 are chosen to cover the results most often used in
the theory of well-posed linear systems, for reference purposes.

The third contribution of this article is the illustration of some pathological
phenomena of L∞strong, both within the main text and in Appendix C. Part of these
appear in the separable case too. However, to bypass most technical difficulties, here
we have restricted most of our results to H ∞ and left, e.g., all interpolation results
to [Mik07], so a busy reader can ignore L∞strong.

Many more representation, interpolation and other results are extended in the
much more technical [Mik07], where, in addition, the methods of Section 3 are ex-
tended to further functions classes etc. Moreover, there also real Hilbert spaces are
treated, some results of this article are extended (e.g., H ∞ is replaced by L∞strong or
by H 2

strong, H 2 is replaced by L2, or further equivalent conditions and additional
results are given), and additional details are presented.

2. Notation and L∞strong

In this section we present our (standard) notation. In the “continuous-time”
sections 5 and 6 the notation is slightly different with, e.g., R in place of T. We also
present some properties of H p, Lp, H p

strong and Lp
strong.
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First we recall that a Hilbert space is isomorphic to `2(W ), where W is its
orthonormal basis. The space is nonseparable iff W is uncountable. An example of
a nonseparable Hilbert space is the Besicovich space (the completion of the space of
almost-periodic functions; it is equivalent to `2(R)).

Measurable means Bochner-measurable. We set ‖f‖B = ∞ when B is a Banach
space and f 6∈ B. By f [A] we denote the image {f(a)

∣∣ a ∈ A} of A. We set Z :=

{0,±1,±2, . . .}, N := {0, 1, 2, . . .}, T := {z ∈ C
∣∣ |z| = 1}, D := {z ∈ C

∣∣ |z| < 1}.
By [F ] (or by F when there is no risk of ambiguity) we denote the equivalence class of
a function F (in, e.g., Lp or in Lp

strong). By MF we denote the multiplication operator
f 7→ Ff (i.e., (MF f)(z) := F (z)f(z) (z ∈ D)), for functions on D.

The symbols of the form V (A; B) usually stand for spaces of functions A → B.
When A = T or A = D, we often omit “A;”; when also B = B(X ,Y ), we often
write V (X ,Y ) instead of V (A; B(X ,Y )). E.g., by L∞(B) we denote the space of
(equivalence classes of) essentially bounded measurable functions T → B, when B
is a Banach space. When 1 ≤ p < ∞, we define Lp(B) by setting

(2) ‖f‖p
p := ‖f‖p

Lp(B) :=
1

2π

∫ 2π

0

‖f(eit)‖p
B dt

Let 1 ≤ p ≤ ∞. We denote by Lp
strong(X , Y ) the space of (equivalence classes

of) functions F : T → B(X ,Y ) for which Fx ∈ Lp(Y ) for each x ∈ X , with the
norm

(3) ‖F‖Lp
strong

:= sup{‖Fx‖Lp(Y )

∣∣ ‖x‖X ≤ 1}.
By H p(B) we denote the holomorphic functions D → B, where D := {z ∈ C

∣∣ |z| <
1} is the unit disc, with the norm

(4) ‖f‖H p := sup
r<1

‖f(r·)‖Lp < ∞.

By H p
strong(X ,Y ) we denote the functions F : D → B(X , Y ) for which Fx ∈

H p(Y ) for each x ∈ X . It follows that F is holomorphic [HP57, Theorem 3.10.1]
and

(5) ‖F‖H p
strong

:= sup{‖Fx‖H p(Y )

∣∣ ‖x‖X ≤ 1} < ∞.

The spaces Lp(B), H p(B), L∞strong(X ,Y ) and H p
strong(X ,Y ) are Banach spaces,

and H ∞
strong = H ∞ (by the Uniform Boundedness Theorem). However, Lp

strong is an
incomplete subspace of B(X , Lp(Y )) whenever X and Y are infinite-dimensional
and p < ∞ [Mik08, below Theorem 2.5], [Mik06, Example 4.3].

We mention below some basic properties of L∞strong.

Remarks 2.1. If dim X < ∞, then L∞strong(X ,Y ) = L∞(B(X ,Y )) isometri-
cally. Even in the infinite-dimensional case, the two norms coincide on L∞ [Mik07],
i.e., L∞(B(X , Y )) is a closed subspace of L∞strong(X ,Y ). Nevertheless, in the non-
separable case we may have a (non-Bochner-measurable) function F : T → B(X ,Y )
with ‖F‖L∞strong

= 0 (i.e., [F ] = [0]) even though ‖F (z)‖B(X ,Y ) = 1 for each z ∈ T,
as shown in Example C.1 below.

If X and Y are separable, then L∞strong coincides with the space of essentially
bounded weakly measurable functions T → B(X ,Y ) [Mik07]. The latter descrip-
tion is often [Pel03, p. 66], [RR85, pp. 81–82] used as the definition of “L∞”, (actually,
of L∞strong = L∞weak ) L∞) in the separable case.
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By [Mik08] (and Lemma 6.1 or [Mik07, Theorem 4.3]), the space L∞strong is ex-
actly the space of “Fourier multipliers” `2(Z; X ) → `2(Z; Y ), where `2(Z; X ) de-
notes the space of square-summable functions Z → X . Analogously, the space
L∞strong(R; B(X ,Y )) is the space of Fourier multipliers L2(R; X ) → L2(R; Y ) (The-
orem 5.2).

Now we recall [Mik08, Theorem 2.5] (through Lemma 6.1), which shows that any
bounded linear operator X → L∞(Y ) is determined by a L∞strong(X , Y ) function
(class) and that any L∞strong(X ,Y ) function can be redefined so as not to exceed its
norm:

Proposition 2.2. We have L∞strong(X , Y ) = B(X , L∞(Y )), isometrically. More-
over, for each T ∈ B(X , L∞(Y )), there exists a function F : T → B(X ,Y ) such
that TF : x 7→ [Fx] equals T and supT ‖F‖B(X ,Y ) = ‖T‖.

Note that if [F ], [F̃ ] ∈ L∞strong(X ,Y ), then TF̃ = TF iff ‖F − F̃‖L∞strong
= 0,

although we may have ess sup ‖F̃‖B(X ,Y ) = ∞ when X is nonseparable, by Exam-
ple C.1(c).

The Poisson integral of f is defined as

(6) f(reiθ) =
1

2π

∫ 2π

0

1− r2

1− 2r cos(θ − t) + r2
f(eit) dt (r ≥ 0, θ ∈ [0, 2π)).

Any H p(X ) function is the Poisson integral of an Lp(X ) function:

Proposition 2.3. (H p ⊂ Lp) Let f ∈ H p(X ), 1 ≤ p ≤ ∞. Then f has a
boundary function f0 ∈ Lp(X ) such that f(rz) → f0(z) for a.e. z ∈ T, as r → 1−.
Moreover, ‖f0‖p = ‖f‖H p = limr→1− ‖f(r·)‖p, and f is the Poisson integral of f0. If
p < ∞, then ‖f(r·)− f0‖p → 0 as r → 1−.

Proof. Since D is separable, so is f [D]. Therefore, we may assume that X is
separable. Consequently, the proposition follows from [RR85, pp. 84 & 88–89]. ¤

By H ∞(X ,Y ) we denote the Banach space of bounded holomorphic functions
D → B(X , Y ) with the supremum norm. It is a closed subspace of L∞strong:

Proposition 2.4. (H ∞ ⊂ L∞strong) Let F ∈ H ∞(X ,Y ). Then there exists a
unique boundary function [F0] ∈ L∞strong(X ,Y ) such that for each x ∈ X there is a
null set Nx ⊂ T for which F (rz)x → F0(z)x in Y , as r → 1−, for each z ∈ T \Nx.

If f ∈ H p(X ) and G ∈ H ∞(Y ,Z ) (1 ≤ p ≤ ∞), where also Z is a Hilbert
space, with boundary functions f0 and G0, respectively, then the boundary functions
of Ff and GF equal F0f0 and G0F0, respectively.

(This follows from [Mik08, Theorem 1.5] through Lemma 6.1.)
We have ‖F (rz) − F (z)‖B(X ,Y ) → 0 for a.e. z ∈ T iff F0 ∈ L∞(B(X ,Y )),

or equivalently, iff F0 is Bochner-measurable (use the Poisson integral formula or
see [Mik07, Lemma A.8]). Nevertheless, Fx is the Poisson integral of F0x for each
x ∈ X .

We identify a function F ∈ H ∞(X ,Y ) (or F ∈ H p(X )) by its boundary
function (equivalence class) F0, thus extending it to the boundary T, even though
the extension is unique only as a class. Therefore, H p(X ) (resp., H ∞(X ,Y )) is
considered as a subspace of Lp(X ) (resp., of L∞strong(X , Y )). Note that L2(X ) and
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H 2(X ) are Hilbert spaces. We consider B as the subspace of constant functions
(in Lp, Lp

strong, H p, H p
strong or similar).

In Section 3 we define PX , P̃X , FX,Y and V , in Section 4 we define F ∗F , H2
−, P+,

P−, S and S∗, and in Section 5 we define C+, τ t, TI and TIC (and redefine H p, Lp,
H p

strong, Lp
strong, P+, P−, ΓE , f̂ , F etc. for Sections 5–6).

3. Diagonalization

In Theorem 3.2 we shall present in detail the diagonalization process explained
around equation (1). Before that, in Theorem 3.1, we show how to combine such
“diagonal blocks” “T ” to an operator “T ”.

Recall first that if the vectors xα ∈ X are orthogonal for each α ∈ A , then x :=∑
α∈A xα converges in X iff R :=

∑
α∈A ‖xα‖2 < ∞ (in particular, at most countably

many xα may be nonzero). If R < ∞, then ‖x‖2 = R. [Rud74, Theorem 12.6]
If X (resp., Y ) is a closed subspace of X (resp., Y ), then we denote the orthog-

onal projection X → X by PX (resp., Y → Y by PY ). Thus, P ∗
Y ∈ B(Y, Y ) is the

canonical isometric embedding Y → Y . By P̃X = P̃ ∗
X ∈ B(X ) we denote the zero

extension of PX (similarly for PY ).
We go on with some fairly obvious facts on “diagonal” operators (cf. (1)):

Theorem 3.1. ({FX,Y } 7→ F ) Let V a collection of pairs (X,Y ), where the
spaces X (resp., Y ) are pairwise orthogonal closed subspaces of X (resp., Y ).

If FX,Y ∈ B(X,Y ) for all (X, Y ) ∈ V and M := sup(X,Y )∈V ‖FX,Y ‖B(X,Y ) < ∞,
then F :=

∑
(X,Y )∈V P ∗

Y FX,Y PX satisfies1

F ∈ B(X ,Y ), ‖F‖B(X ,Y ) = M,(7)

P ∗
Y FX,Y PX = P̃ ∗

Y FP̃X = P̃ ∗
Y F = FP̃X(8)

〈y, Fx〉Y =
∑

(X,Y )∈V

〈P̃Y y, F P̃Xx〉Y(9)

for all x ∈ X , y ∈ Y . Moreover, the map (FX,Y )(X,Y )∈V 7→ F is linear.
(a1) If

∑
(X,Y )∈V X = X , and g ∈ X or g ∈ H 2(X ), then g =

∑
P̃Xg,

‖g‖2 =
∑ ‖PXg‖2, and Fg =

∑
P ∗

Y FX,Y PXg. In particular, then PXg = 0 for all
but (at most) countably many (X, Y ) ∈ V . Conversely, if gX ∈ H 2(X) for each
(X, Y ) ∈ V and R :=

∑ ‖gX‖2
2 < ∞, then g :=

∑
P ∗

XgX ∈ H 2(X ) and ‖g‖2
2 = R.

(a2) Let Z be a Hilbert space, let ZY be pairwise orthogonal closed subspaces
of Z , and let GY,ZY

∈ B(Y, Z) for each (X, Y ) ∈ V , and sup(X,Y )∈V ‖GY,ZY
‖ < ∞,

then G :=
∑

P ∗
ZY

GY,ZY
PY ∈ B(Y ,Z ) and GF =

∑
P ∗

ZY
GY,ZY

FX,Y PX .
(b1) All of the above in this theorem also holds with H ∞ in place of B.
Here the sum F (z)x :=

∑
P ∗

Y FX,Y (z)PXx converges for each z ∈ D and each
x ∈ X . Similarly, (9) holds pointwise everywhere on D.

Above and below all sums run over V . By X =
∑

X in (a1) above we mean
that x =

∑
PXx for each x ∈ X (so

∑ ‖PXx‖2 = ‖x‖2 < ∞), equivalently, that
∩(X,Y )∈V X⊥ = {0}.

Proof of Theorem 3.1. We start by proving all but (a1) and (a2) (i.e., just the
initial claims for both B and H ∞). Note first that the linearity claim is obvious in

1The definition means that Fx :=
∑

P ∗Y FX,Y PXx for each x ∈ X .
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all settings. Without loss of generality, we assume that
∑

(X,Y )∈V X = X (otherwise
we may replace X by the sum).

1◦ Let x ∈ X be arbitrary. From [Rud74, Theorem 12.6] we conclude that
‖x‖2

X =
∑

(X,Y )∈V ‖PXx‖2
X , and that PXx = 0 for all but countably many (X, Y ) ∈

V . Since ‖P ∗
Y FX,Y PXx‖ ≤ M‖PXx‖, the sum

∑
(X,Y )∈V P ∗

Y FX,Y PXx converges (so
F is well defined) and

(10) ‖Fx‖2
Y =

∑

(X,Y )∈V

‖PY Fx‖2
Y ≤

∑

(X,Y )∈V

M2‖PXx‖2
X = M2‖x‖2

X .

Clearly F is also linear. Thus, F ∈ B and ‖F‖B ≤ M ; obviously, also ‖F‖B ≥ M .
Equation (8) is obvious. It follows that 〈y, Fx〉Y =

∑
V 〈y, P ∗

Y FX,Y PXx〉 =∑
V 〈y, P̃ ∗

Y FP̃Xx〉, so also (9) holds.
2◦ Case H ∞ in place of B: From 1◦ it follows that now F is a function D →

B(X ,Y ), bounded by M . If (X, Y ) ∈ V and x ∈ X, then 〈y, Fx〉Y = 〈PY y, FX,Y x〉Y
is holomorphic for each y ∈ Y , hence F is holomorphic [HP57, Theorem 3.10.1]
(because the span of such x is dense in X ). Equations (8) and (9) obviously follow
from 1◦ (applied to F (z) for each z ∈ D).

(a1) We prove the case H ∞ below; the other cases are analogous or easier.
For the case g ∈ X , the claims were established in 1◦ (except the third one,

which follows by definition). Assume then g ∈ H 2(X ). Since (use Proposition 2.4)

(11) ‖g‖2
2 =

1

2π

∫

T

‖g‖2
X dm =

1

2π

∫

T

∑

V

‖PXg‖2
X dm =

∑

V

‖PXg‖2
2,

we have PXg = 0 for all but countably many (X, Y ) ∈ V .
From this, [Rud74, Theorem 12.6] and 1◦–2◦ we now get g =

∑
P̃Xg and Fg =∑

P ∗
Y FX,Y PXg both in H 2 and pointwise. The same holds for the converse claims.
(a2) The first claim was given in (7). If x ∈ X , then

¤(12) GFx = G
∑

P ∗
Y FX,Y PXx =

∑
P ∗

ZY
GY,ZY

FX,Y PXx.

Now we establish the diagonalization (1), i.e., the converse to Theorem 3.1:

Theorem 3.2. (F 7→ {FX,Y }) Let F : D → B(X ,Y ) be continuous. Then
there exists a collection V of pairs (X, Y ), where the spaces X (resp., Y ) are pairwise
orthogonal closed separable subspaces of X (resp., Y ) such that P̃Y FP̃X = P̃Y F =
FP̃X for each (X, Y ) ∈ V , and X =

∑
(X,Y )∈V X, Y =

∑
(X,Y )∈V Y . If X = Y ,

then we can, in addition, have X = Y for every (X,Y ) ∈ V .
Set FX,Y := PY FP ∗

X for each (X, Y ) ∈ V . Then F =
∑

(X,Y )∈V P ∗
Y FX,Y PX .

(The proof is given in Appendix B.)
Thus, if F is a constant or if F ∈ H ∞, then Theorem 3.1 can be applied.

The classes L∞strong, H 2
strong, L1

strong, H , B(L2(X ), L2(Y )) and others are treated in
[Mik07].

4. Results for the unit disc

In this section we extend to the nonseparable case some standard facts on the
Hankel and Toeplitz operators of operator-valued H ∞ functions. We work on the
unit disc (or circle); corresponding results for the half-plane (or real line) are given
in Section 5.
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As above, X and Y denote arbitrary (possibly nonseparable) Hilbert spaces.
We start with a useful concept.

We call F ∈ H ∞(X ,Y ) inner and write F ∗F = I if (i) below holds (recall
Proposition 2.4). (One could show that F ∗ ∈ L∞strong etc. [Mik07], but we omit this.)
There are several equivalent conditions for a function being inner:

Theorem 4.1. (Inner) Let F ∈ H ∞(X ,Y ). Then the claims (i)–(iii’) below
are equivalent:

(i) ‖Fx‖Y = ‖x‖X a.e. on T for every x ∈ X ;
(ii) 〈Fx′, Fx〉 = 〈x′, x〉 a.e. on T for every x, x′ ∈ X ;
(iii) ‖Ff‖2 = ‖f‖2 for every f ∈ H 2(X );
(iii’) ‖Ff‖2 = ‖f‖2 for every f ∈ L2(X ).
Moreover, the following holds:
(a) If F and V are as in Theorem 3.1(b1), then F ∗F = I iff F ∗

X,Y FX,Y = I for
every (X, Y ) ∈ V .

Proof. 1◦ Pick V as in Theorem 3.2. If (X,Y ) ∈ V and x ∈ X, then ‖Fx‖ =
‖FX,Y x‖, so we get “only if”. But if ‖FX,Y x‖ = ‖x‖ a.e. (i.e., ‖Fx‖ = ‖x‖ a.e.)
for every x ∈ X for every (X,Y ) ∈ V , then ‖Fx‖ = ‖x‖ for every x ∈ X , by
orthogonality. Indeed, with x =

∑
k αkxk, xk ∈ Xk, (Xk, Yk) ∈ V for every k, we

have

‖Fx‖2
Y = ‖F

∑

k

αkxk‖2 = ‖
∑

k

αkFxk‖2(13)

=
∑

k

|αk|2‖Fxk‖2 =
∑

k

|αk|2‖xk‖2 = ‖x‖2
X(14)

a.e. (see Theorem 3.1(a1)) when the sum is finite, hence always, by continuity. Thus,
(a) holds.

2◦ Obviously, we have (ii)⇒(i)⇒(iii’)⇒(iii). Assume then ¬(ii), i.e., that F ∗Fx 6=
x on E ⊂ T, where m(E) > 0. We may assume that x ∈ X, (X, Y ) ∈ V as in (a),
so ¬(iii) follows from the (well-known) separable case. ¤

In Example C.2 we construct an inner F ∈ H ∞(`2(T), `2(T)) for which there
exists a unique “natural” boundary function F0 ∈ L∞strong of F , namely the strong
limit of F everywhere on T, and that function has F0(z)∗F0(z) 6= I for every z ∈ T.
That cannot happen in the separable case.

It is well known that square-integrable functions on the unit circle T are exactly
those with `2 Laurent series coefficients:

(15) L2(X ) = {f =
∞∑

k=−∞
zkxk

∣∣ ‖f‖2
2 :=

∑

k

‖xk‖2
X < ∞}.

Moreover, H 2 (resp., H 2
− ) consists of those series where xk = 0 for all k < 0 (resp.,

k ≥ 0); cf. Proposition 2.3.

Definition 4.2. (P+, P−) By P+ :
∑∞

k=−∞ zkxk 7→
∑∞

k=0 zkxk we denote the
orthogonal projection L2 → H 2, and we set P− := I − P+.

The Corona Theorem says that if(f) F ∈ H ∞(X ,Y ) and F (z)∗F (z) ≥ εI for all
z ∈ D, then F is left-invertible in H ∞. Unfortunately, the “if” part holds only when
X is finite-dimensional [Tre89] (or trivially when dim Y < dim X ). However, the
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coercivity of the anti-Toeplitz operator is always a sufficient and necessary condition
for left-invertibility. Moreover, a related result, Tolokonnikov’s Lemma, says that a
left-invertible H ∞ function (as in (ii) below) can be complemented to an invertible
one (as in (iii)):

Theorem 4.3. (Tolokonnikov) Let F ∈ H ∞(X ,Y ). Then the following are
equivalent:

(i) The anti-Toeplitz operator P−FP− is coercive, i.e., there exists ε > 0 such
that for every g ∈ H 2

− (X ) we have

(16) ‖P−FP−g‖2 ≥ ε‖g‖2.

(i’) The multiplication operator MFd by F d := F (̄·)∗ maps H 2(Y) onto H 2(X).
(ii) GF = I for some G ∈ H ∞(Y ,X ).
(iii) There exist a closed subspace Z ⊂ Y and a function F̃ ∈ H ∞(Z ,X ) such

that
[
F F̃

] ∈ H ∞(X ×Z ,Y ) is invertible in H ∞.
Assume (i). Then the best possible norm of a left-inverse G in (ii) is 1/ε for the

maximal ε in (16). Set M := ‖F‖. In (iii), (if X 6= {0}) we can have ‖F̃‖ = 1,
‖ [

F F̃
] ‖ ≤ √

M2 + 1, and

(17) ‖ [
F F̃

]−1 ‖H ∞ ≤ M

ε

√
1 + ε−2.

By GF = I in (ii) we mean that G(z)F (z) = I for each z ∈ D, or equivalently,
that GFx = x a.e. on T for each x ∈ X (Proposition 2.4).

Proof. Observe first that (i’) is equivalent to (i).
1◦ For the separable case, the equivalence of (i)–(iii) and the fact that we can

have ‖G‖ = 1/ε were established in Theorems 1.2 and 2.1 of [Tre04] (if we drop
“⊂ Y ”). We explain below the norm estimates for (iii) in the separable case.

By the proof of Lemma 6.1 of [Tre04], we have ‖P‖ ≤ M/ε. Therefore, ‖I −
P‖ ≤ M/ε, by Lemma A.4 (if X 6= 0). Since (in the middle of that proof) Θ is
inner, we have ‖Θ‖ = 1 and ‖R‖ = ‖Q‖ = ‖I −P‖ ≤ M/ε and ‖F̃‖ ≤ 1 (near the
end of the proof), hence ‖ [

F F̃
] ‖ ≤ √

M2 + 1. As mentioned above, we can have
‖G‖ = 1/ε, which leads to

(18) ‖G̃‖ = ‖
[
GP
R

]
‖ ≤

√
(ε−1 · ε−1M)2 + (ε−1M)2 = ε−1M

√
1 + ε−2.

2◦ Since the implications (iii)⇒(ii)⇒(i) are obvious (take ε := 1/‖P−GP−‖ and
note that P−G = P−GP−, because P−GP+ = 0), we assume (i). Apply Theorem 3.2
to F , and then find (by 1◦ above), for each (X, Y ) ∈ V , a Hilbert space ZX and
functions F̃X,Y ∈ H ∞(ZX , Y ), KX,Y ∈ H ∞(Y, X × ZX) such that

(19) KX,Y

[
FX,Y F̃X,Y

]
= I,

[
FX,Y F̃X,Y

]
KX,Y = I,

‖KX,Y ‖ ≤ ε−1M
√

1 + ε−2, and ‖F̃X,Y ‖ ≤ 1. Let Z ⊂ ∏
(X,Y )∈V ZX be as in

Lemma A.3, F̃ :=
∑

P ∗
Y F̃X,Y PZX

(Theorem 3.1(b1)), K :=
∑

P ∗
X×ZX

KX,Y PY to
have

(20) ‖K‖ ≤ ε−1M
√

1 + ε−2, ‖F̃‖ ≤ 1, K
[
F F̃

]
= I, and

[
F F̃

]
K = I,

by Theorem 3.1(a2).
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Now we have established (iii) except for Z being a subspace of Y . But dim(X ×
Z ) = dim Y , by Lemma A.2, so Z is isometrically isometric to a subspace, say Ỹ ,
of Y . Let T ∈ B(Z , Ỹ ) be such an isometry and replace F̃ by F̃ T and Z by Ỹ to
complete (iii).

3◦ The estimate in (ii): By Theorem 1.2 of [Tre04], we can have ‖GX,Y ‖ ≤ 1/ε
for a left inverse GX,Y ∈ H ∞(Y, X) of FX,Y (see 2◦), for each (X,Y ) ∈ V . Apply
Theorem 3.1(b1)&(a2) to obtain G ∈ H ∞(Y ,X ) such that GF = I and ‖G‖ ≤ 1/ε.
Obviously, ε ≥ 1/‖P−GP−‖ ≥ 1/‖G‖, hence ‖G‖ = 1/ε is the minimal norm of a
left inverse. ¤

When F ∗F = I, one more equivalent condition in Theorem 4.3 is that the Hankel
norm of F is less than one:

Theorem 4.4. Let F ∈ H ∞(X ,Y ) be inner. Then the following are equiva-
lent:

(i) The anti-Toeplitz operator P−FP− is coercive (see (16)).
(ii) ‖P+FP−‖ < 1.
If (ii) holds, then the best possible norm for a left inverse G ∈ H ∞(Y , X ) of F

is given by ‖G‖−2 = 1− ‖P+FP−‖2.

(The Nehari Theorem [Mik07] says that (i) holds iff d(F, H ∞
− ) < 1. Note that

P+FP− is called the Hankel operator of F . The equivalence of (i) and (ii) actually
holds for any F ∈ L∞strong such that F ∗F = I.)

Proof. 1◦ Since F ∗F = I, we have

(21) ‖g‖2 = ‖Fg‖2 = ‖P−FP−g‖2 + ‖P+FP−g‖2

for each g ∈ H 2
− (X ), hence (i) is equivalent to (ii).

2◦ Assume (ii). By (21), we have ε2 = 1− ‖P+FP−‖2 for the maximal ε in (16),
so the last claim follows from Theorem 4.3. ¤

We record an important special case of the last claim in Theorem 4.4:

Corollary 4.5. (Coprime) Let X , Y1, and Y2 be Hilbert spaces. If [ F
G ] ∈

H ∞(X ,Y1 × Y2) is inner, then F and G are right coprime iff ‖P+ [ F
G ] P−‖ < 1.

Functions F and G being right coprime means that F̃F + G̃G = I on D for some[
F̃ G̃

] ∈ H ∞(Y1 × Y2, X ). In systems theory, a “right fraction” FG−1 is called
“normalized” iff [ F

G ] is inner [CO06]. Recall that ‖P+ [ F
G ] P−‖ is the Hankel norm of

[ F
G ].

The shift S is defined by (Sf)(z) = zf(z). Recall that for F ∈ H ∞(X ,Y ),
f ∈ H 2(X ) we have set (MF f)(z) := F (z)f(z) for z ∈ D, hence for a.e. z ∈ T too,
by Proposition 2.4.

The first, third and fourth of the following “well-known” results are often phrased
as “H ∞ consists of the causal maps on H 2”, “causal and anti-causal operators are
(multiplications by) constants”, and “inner-outer means constant”:

Proposition 4.6. (Causal, anti-causal and inner-outer) Let T ∈ B(H 2(X ),
H 2(Y )). Then T = MF for some F ∈ H ∞(X , Y ) iff ST = TS. Let F ∈
H ∞(X ,Y ). Then F−1 ∈ H ∞(Y ,X ) iff MF is invertible H 2(X ) → H 2(Y ). If
F ∗ ∈ H ∞, then F ∈ B(X ,Y ). If F is inner and MF [H 2(X )] = H 2(Y ), then
F = F−∗ ∈ B(X , Y ).
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The condition “F ∗ ∈ H ∞” can be interpreted as that the map D 3 z 7→ F (z)∗

is in H ∞(Y ,X ), or equivalently, that M∗
F = MG for some G ∈ H ∞. Recall that

B is identified with the subspace of constant functions.

Proof of Proposition 4.6. 1◦ The first claim is from Theorem 1.15B, p. 15 of
[RR85]. There X = Y is assumed, but one can consider T (with zero extension) as
an operator H 2(X ×Y ) → H 2(X ×Y ) and then remove the zero extension of F .

2◦ If F is invertible in H ∞, then, obviously, MF−1 = M−1
F , so assume that M−1

F

exists. Now M−1
F Sf = M−1

F SMF M−1
F f = M−1

F MF SM−1
F f = SM−1

F f ∀f ∈ H 2(Y ),
hence M−1

F = MG for some G ∈ H ∞(Y ,X ), by 1◦. Obviously, G(z) = F (z)−1 (z ∈
D).

3◦ The third claim follows from Theorem 1.15B, p. 15 of [RR85].
4◦ Assume now that F is inner (so M∗

F MF = I). Then MF [H 2(X )] is closed,
hence then MF [H 2(X )] = H 2(Y ) implies that MF is invertible (hence unitary),
so F−1 ∈ H ∞, by 2◦. But MF−1 = M∗

F MF MF−1 = M∗
F , so F ∈ B, by 3◦, hence

F ∗ = F−1. ¤
“Has smaller range than” means “is divisible by”:

Theorem 4.7. (Divisor) Assume that F ∈ H ∞(X ,Y ), G ∈ H ∞(Z ,Y ) for
some Hilbert space Z , and G is inner. Then MF [H 2(X )] ⊂ MG[H 2(Z )] iff G is a
left divisor of F .

The latter means that F = GK for some K ∈ H ∞(X ,Z ). If also F is inner,
then so is K.

Proof. “If” is obvious, so assume that MF [H 2(X )] ⊂ MG[H 2(Z )]. Then, for
each f ∈ H 2(X ) there exists a unique gf ∈ H 2(Z ) such that MGgf = MF f ; left
T denote the map f 7→ gf . Then MF = MGT , ‖T‖ ≤ ‖F‖, T : H 2(X ) → H 2(Z )
is linear, and MF Sf = SMF f = SMGTf = MGSTf , hence gSf = STf , i.e., TSf =
STf , for every f ∈ H 2(X ). By Proposition 4.6, T ∈ H ∞(X ,Y ). ¤

We call M ⊂ H 2(X ) shift-invariant if SM = M , where (Sf)(z) := zf(z).
Such subspaces are ranges of “unique” inner functions:

Theorem 4.8. (Lax–Halmos) A closed subspace M of H 2(X ) is shift-invariant
iff we have M = MF [H 2(X0)] for some closed subspace X0 ⊂ X and some inner
F ∈ H ∞(X0,X ).

If also M = MG[H 2(X1)] for some Hilbert space X1 and some inner G ∈
H ∞(X1,X ), then G = FT for some T = T−∗ ∈ B(X1,X0).

Proof. 1◦ Existence: “If” is obvious (SMF g = MF Sg ∈ MF [H 2(X0)] for each
g ∈ H 2(X0)), so we only prove “only if”. Let V be as in Theorem 3.2 (with 0: D →
B(X ,X ) in place of F , because we just need a complete collection of separable
orthogonal subspaces). For each (X, X) ∈ V , the subspace MX := M ∩H 2(X) is
closed and shift-invariant, hence MX = FX [H 2(XX)] for some closed XX ⊂ X and
some inner FX ∈ H ∞(XX , X), by the separable case of this theorem (e.g., p. 17 of
[Nik86]).

Define Z ⊂ ∏
(X,X)∈V XX as in Lemma A.3. Then F :=

∑
P ∗

XFXPXX
∈

H ∞(Z ,X ) is inner, by Theorem 3.1(a2) (we have a priori ‖F‖H ∞ ≤ 1 < ∞
because ‖FX‖H ∞ ≤ 1, for each X, because FX is inner, hence (a2) is applicable).
Given g ∈ M and (X, X) ∈ V , we have PXg ∈ MX , hence PXg = FXfX for some
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fX ∈ H 2(XX). But ‖fX‖2 = ‖PXg‖2, because FX is inner. By Theorem 3.1(a1),
f :=

∑
P ∗

XfX ∈ H 2(X ), ‖f‖2 = ‖g‖2, and

(22) Ff =
∑

P ∗
XFXf =

∑
P ∗

XPXg =
∑

P̃Xg = g.

Thus, M ⊂ F [H 2(Z )]. Conversely, given f ∈ H 2(Z ), from Theorem 3.1(a1)
we see that Ff =

∑
P ∗

XFXPXf ∈ M , hence M = F [H 2(Z )].
By Lemma A.2, Z is unitarily equivalent to a closed subspace X0 of X , so we

can replace F by FT−1, where T = T−∗ ∈ B(Z ,X0), because FT−1[H 2(X0)] =
F [H 2(Z )] = M .

2◦ Uniqueness: By Theorem 4.7, G = FT , where T ∈ H ∞(X1,X0). But T is
inner and MT is onto, hence T = T−∗ ∈ B(X1,X0), by Proposition 4.6. ¤

A map F ∈ H 2
strong(X ,Y ) is called outer if the set {Fp

∣∣ p ∈ P(X )} is dense
in H 2(Y ); here P(X ) stands for the polynomials, i.e., for functions of the form∑n

k=0 zkxk. If F ∈ H ∞(X ,Y ), then, obviously, F is outer iff MF [H 2(X )] is dense
in H 2(Y ).

Theorem 4.9. (Inner-Outer Factorization) Every F ∈ H 2
strong(X ,Y ) can be

expressed as F = FiFo, where Fo ∈ H 2
strong(X ,Y0) is outer and Fi ∈ H ∞(Y0,Y )

is inner, Y0 being a closed subspace of Y . Moreover, ‖Fo‖H 2
strong

= ‖F‖H 2
strong

and
‖Fo‖H ∞ = ‖F‖H ∞ ≤ ∞.

If also F = F ′
iF

′
o, where F ′

o ∈ H 2
strong(X ,Z ′) is outer and F ′

i ∈ H ∞(Z ′,Y ) is
inner, Z ′ being a Hilbert space, then there exists T = T−∗ ∈ B(Z ′,Y0) such that
F ′

i = FiT and F ′
o = T ∗Fo.

(Because Fi is inner, we have ‖Fo‖ = ‖F‖ for almost any reasonable norm.)

Proof. Also this could be deduced from the separable case. However, we shall
deduce this from Theorem 4.8.

Since MF [P(X )] is a shift-invariant subspace of H 2(Y ), so is its closure,
which equals MFi

[H 2(Y0)] for some closed subspace Y0 ⊂ Y and some inner Fi ∈
H ∞(Y0, X ), by Theorem 4.8. For each x ∈ X , there exists a unique fx ∈ H 2(Y0)
such that Fx = MFi

fx. The map T : x 7→ fx is linear, hence so is Fo(z) : x 7→ fx(z),
for each z ∈ D. By [HP57, Theorem 3.10.1], Fo : D → B(X , Y0) is holomorphic.
Obviously, ‖fx‖2 = ‖Fx‖2 for every x, hence ‖Fo‖H 2

strong
= ‖F‖H 2

strong
. By the conti-

nuity of MFi
, we have

(23) MFi
MFo [P(X )], = MFi

MFo [P(X )] = MF [P(X )] = MFi
[H 2(Y0)]

hence the function Fo must be outer.
By Theorem 4.8, F ′

i = FiT for any other inner-outer factorization F = F ′
iF

′
o of F .

But then, for z ∈ D, we have T ∗Fo(z) = T ∗Fi(z)∗F (z) = (F ′
i (z))∗F (z) = F ′

o(z). ¤
Assume that F, Fo and Fi are as above and F ∈ H ∞. Then F ∗F = F ∗

o Fo in
L∞strong in the sense that ‖Ff‖Y = ‖Fof‖Y0 a.e. on T for every f ∈ H 2(X ) (hence
for every f ∈ X ). Moreover, M∗

F MF ≥ εI for some ε > 0 (i.e., F is left-invertible
in L∞strong) iff Fo is invertible in H ∞. If it is, then Fo is called a (invertible) spectral
factor of F ∗F . (All this is well known and the claims follow easily from the above.)
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5. Results for the half-plane

In this section we present results analogous to those in the previous sections but
with the real line R (resp., half-plane C+ := {z ∈ C

∣∣ Im z > 0}) in place of the unit
circle T (resp., disc D). The main difference is that we want to use the translations
τ t : f 7→ f(t + ·) instead of the right-shift S. The half-plane notation used in this
section differs from the disc notation of the previous sections.

We first state that the results in the previous sections hold with this notation too
(Lemma 5.1). Then we rewrite those corresponding to Section 4 to their “time-
domain” forms, using the “Fourier multiplier” result that the elements of L∞strong

(resp., H ∞) correspond isometrically to the time-invariant (resp., causal) opera-
tors L2(X ) → L2(Y ). One easily verifies that such “time-domain” forms could be
used in discrete time too, on operators `2(X ) → `2(Y ) (cf. Remarks 2.1). Most
comments and explaining text in Section 4 applies here too. The proofs are given in
Section 6.

We start by presenting some of this half-plane notation. Let B be a Banach
space and let 1 ≤ p ≤ ∞. By Lp(B) we denote the Lp space of functions R → B. By
H p(B) we denote the Banach space of holomorphic functions f : C+ → B for which

(24) ‖f‖H p := sup
r>0

‖f(·+ ir)‖Lp < ∞.

By P+ we denote the orthogonal projection L2 → H 2 for any Hilbert space H. Again
P− := I − P+, H 2

− := P−[L2]. The Lp
strong and H p

strong spaces are defined as before
(now on R and on C+, respectively).

We now record the fact that all above results hold with this half-plane notation
too (the remaining definitions will follow).

Lemma 5.1. Propositions 2.2–2.4 hold with this notation too except that we
must replace 1− (resp., r·, rz) by 0+ (resp., · + ir, z + ir), and that the Poisson
integral is different [RR85], [Mik08]. Also the results in Section 3 hold with this
notation.

The results in Section 4 hold with this notation too except that we reformulate
Proposition 4.6 and Theorems 4.8–4.9 as given below in Proposition 5.8 and in Theo-
rems 5.10–5.11, and that P must be replaced by P̃ := ♦−1P, which will be defined
below Remark 6.2.

In all above results, we assume that T (resp., D) has been replaced by R (resp.,
C+).

(The proof is given in Lemma 6.3. Alternative explicit versions of the results in
Section 4 are given below.)

Next we present the time-domain concepts corresponding to those above. Anal-
ogous concepts also exist in discrete time (corresponding to the “disc notation”), but
they are more useful in continuous time, since the translations τ t do not have nice
“frequency-domain” (Fourier/Laplace side) equivalents like the multiplication by z
corresponding to the discrete-time shift S.

By TI(X ,Y ) we denote the operators E : L2(X ) → L2(Y ) that are translation-
invariant: E τ t = τ tE for every t ∈ R.

We set π+f :=

{
f(t), t ≥ 0;

0, t < 0
, π− := I−π+. We identify any function f defined on

R+ := [0,∞) with its zero extension to R. By L2
+(X ) we denote the Hilbert space
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of L2(X ) functions supported on R+, and by L2
−(X ) the orthogonal complement of

L2(X ).
By TIC(X , Y ) we denote the operators D ∈ TI(X ,Y ) that are causal: π−Dπ+

= 0. Both TI(X ,Y ) and TIC(X ,Y ) are obviously closed subspaces of B(L2(X ),
L2(Y )); whose norm we use.

By Ff := f̂(s) :=
∫∞
−∞ e−istf(t) dt we denote the Fourier–Laplace transform of a

function for those s ∈ C for which f̂(s) converges absolutely. If f ∈ L1, then f̂ ∈ L∞.
This extends to a unitary map L2(X ) → L2(X ) satisfying Fπ+ = P+F . Thus, if
f ∈ L2

+(X ), then f̂ ∈ H 2(X ), and f̂ |R coincides with the boundary function of
f̂ |C+ .

Now we recall the extension to general Hilbert spaces of the standard L2 Fourier
multiplier result [Mik08, Theorem 1.2].

Theorem 5.2. (T̂I = L∞strong) For each E ∈ TI(X ,Y ) there exists a unique
function (equivalence class) Ê ∈ L∞strong(X , Y ) such that Ê f̂ = Ê f a.e. on R for every
f ∈ L2(X ). Moreover, ‖Ê ‖L∞strong

= ‖E ‖B(L2(X ),L2(Y )), and every Ê ∈ L∞strong(X ,Y )
is of this form.

The following is well known [Wei91]:

Proposition 5.3. (T̂IC = H ∞) For any D ∈ TIC(X ,Y ) there exists a unique
function D̂ ∈ H ∞(X , Y ) such that (D̂f)(z) = D̂(z)f̂(z) for all z ∈ C+ and all
f ∈ L2

+(X ).
Moreover, this identification is an isometric isomorphism of TIC onto H ∞.

Naturally, the strong boundary function limr→0+ D̂(· + ir) equals that given by
Theorem 5.2, analogously to Proposition 2.4. We identify D̂ |C+ with D̂ |R.

We call D ∈ TIC(X ,Y ) inner if D∗D = I (on L2, or equivalently, on L2
+).

Theorem 5.4. (Inner) Let D ∈ TIC(X ,Y ). Then the claims (i)–(iii’) below
are equivalent:

(i) ‖D̂x‖Y = ‖x‖X a.e. on R for every x ∈ X ;
(ii) 〈D̂x′, D̂x〉 = 〈x′, x〉 a.e. on R for every x, x′ ∈ X ;
(iii) ‖Df‖2 = ‖f‖2 for every f ∈ L2

+(X );
(iii’) D∗D = I (on L2(X )).

(Recall that further equivalent conditions are given in Theorem 4.1, by Lemma
5.1, with F := D̂ and with R in place of T.)

The reflection R is defined by (Rf)(t) := f(−t). On (i’) below note that E d ∈ TI,
Dd ∈ TIC, (E d)d = E and F (E d) = Ê (̄·)∗ for every E ∈ TI, D ∈ TIC.

Theorem 5.5. (Tolokonnikov) Let D ∈ TIC(X ,Y ). Then the following are
equivalent:

(i) The anti-Toeplitz operator π−Dπ− is coercive, i.e., there exists ε > 0 such
that for each g ∈ L2

−(X ) we have

(25) ‖π−Dπ−g‖2 ≥ ε‖g‖2.

(i’) The “dual” map Dd := RD∗R maps L2
+(Y) onto L2

+(X).
(ii) G D = I for some G ∈ TIC(Y ,X ).
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(iii) There exist a closed subspace Z ⊂ Y and a map D̃ ∈ TIC(Z , X ) such that[
D D̃

] ∈ TIC(X ×Z , Y ) is invertible.

Assume (i). Then the best possible norm of a left-inverse G in (ii) is 1/ε for the
maximal ε in (25). Set M := ‖D‖. In (iii), we can have ‖D̃‖ = 1, ‖ [

D D̃
] ‖ ≤√

M2 + 1, and (if X 6= {0})

(26) ‖ [
D D̃

]−1 ‖H ∞ ≤ M

ε

√
1 + ε−2.

If, in Theorem 5.5, we have D∗D = I, then one more equivalent condition is that
the Hankel norm of D is less than one.

Theorem 5.6. Let E ∈ TI(X ,Y ) and E ∗E = I. Then the following are
equivalent:

(i) The anti-Toeplitz operator π−E π− is coercive (see (25)).
(ii) ‖π+E π−‖ < 1.

If E ∈ TIC(X ,Y ), E ∗E = I, and (ii) holds, then the best possible norm for a
left inverse G ∈ TIC(Y , X ) of E is given by ‖G ‖−2 = 1− ‖π+E π−‖2.

Right coprime means below that PM + QN = I for some P, Q ∈ TIC, i.e.,
that P̂M̂ + Q̂ ˆN ≡ I on C+ for some P̂, Q̂ ∈ H ∞.

Corollary 5.7. (Coprime) Let X ,Y1,Y2 be Hilbert spaces. If a map [ N
M ] ∈

TIC(X ,Y1 × Y2) is inner, then N and M are right coprime iff ‖π+ [ N
M ] π−‖ < 1.

An operator D ∈ TI is uniquely determined by its Toeplitz operator π+Dπ+ (or
by P+D̂P+). Moreover, the following hold.

Proposition 5.8. (Causal, anti-causal and inner-outer) Let D ∈ B(L2(X ),
L2(Y )). Then D ∈ TIC(X ,Y ) iff π+τ tDπ+ = π+Dτ tπ+ for every t < 0. Let D ∈
TIC(X ,Y ). Then D−1 ∈ TIC(Y , X ) iff π+Dπ+ is invertible L2

+(X ) → L2
+(Y ).

Moreover, if D ,D∗ ∈ TIC, then D ∈ B(X ,Y ). If D ∈ TIC(X ,Y ), D∗D = I and
D [L2

+(X )] = L2
+(Y ), then D = D−∗ ∈ B(X ,Y ).

Theorem 5.9. (Divisor) Assume that D ∈ TIC(X , Y ), G ∈ TIC(Z ,Y ) for
some Hilbert space Z , and G ∗G = I. Then D [L2

+(X )] ⊂ G [L2
+(Z )] iff G is a left

divisor of D .

The latter means that D = G K for some K ∈ TIC(X ,Z ). If D∗D = I, then
K ∗K = I.

We call M ⊂ L2
+(X ) translation-invariant if τ tM = M (t < 0).

Theorem 5.10. (Lax–Halmos) A closed subspace M of L2
+(X ) is translation-

invariant iff M = D [L2
+(X0)] for some closed subspace X0 ⊂ X and some inner

D ∈ TIC(X0, X ).
If also M = G [L2

+(X1)] for some Hilbert space X1 and some inner G ∈ TIC(X1,
X ), then G = DT for some T = T−∗ ∈ B(X1,X0).

A map D ∈ TIC(X ,Y ) is called outer if D [L2
+(X )] is dense in L2

+(Y ).

Theorem 5.11. (Inner-Outer Factorization) Every D ∈ TIC(X , Y ) can be
expressed as D = DiDo, where Do ∈ TIC(X ,Y0) is outer and Di ∈ TIC(Y0,Y ) is
inner, Y0 being a closed subspace of Y . Moreover, ‖Do‖TIC = ‖D‖TIC.
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If also D = D ′
iD

′
o, where D ′

o ∈ TIC(X ,Z ′) is outer and D ′
i ∈ TIC(Z ′, Y ) is

inner, Z ′ being a Hilbert space, then there exists T = T−∗ ∈ B(Z ′,Y0) such that
D ′

i = DiT and D ′
o = T ∗Do.

If D , Do and Di are as above, then D∗D ≥ εI for some ε > 0 (i.e., D is left-
invertible in TI) iff Do is invertible in TIC. If it is, then Do is called a (invertible)
spectral factor of D∗D , because D∗

o Do = D∗D .

6. Proofs for the half-plane

In this technical section we prove the results of Section 5.
The proofs in Section 4 could be rewritten for Section 5 except that on some

results there are no separable versions in the literature for the half-plane, so the use
of the Cayley Transform is the easiest way to prove these results.

In that setting, the shift S is mapped to the Laguerre shift SLag that maps f to
z 7→ f(z)i(1− z)/(1 + z) and H 2(Z ) onto the H 2 space C+ → Z , for any Hilbert
space Z [RR85, p. 59], [Sta05, Theorem 12.3.1].

Since in applications on R one usually wants to use and translations instead of
the shift, we have also established the results given in Section 5, sometimes with non-
straight-forward proofs, given in Lemma 6.3 below. The symbols B and B2 stand for
arbitrary Banach spaces.

All results on the unit disc can easily be converted for the half-plane (to their SLag

form, some to the standard form too) by using the (extensions of the) well-known
properties of the Cayley Transform

(27) φ : z 7→ i
1− z

1 + z
and its inverse φ−1 : s 7→ 1− is

1 + is

that are listed in Lemma 6.1 below. Here we sometimes write the domains and target
spaces explicitly; e.g., Lp(T; B) stands for Lp functions T → B; otherwise we refer
to the “disc notation” of Sections 1–4.

Lemma 6.1. (Cayley Transform) The Cayley Transform φ maps D → C+ and
T → R ∪ {∞} one-to-one and onto. Measurable (resp., null) sets (and only they)
are mapped to measurable (resp., null) sets.

The corresponding composite map · ◦ φ maps H ∞(C+; B) → H ∞(B),

(28) L∞(R; B) → L∞(B), and L∞strong(R; B(B, B2)) → L∞strong(B,B2)

isometrically onto. Measurable functions (and only they) are mapped to measurable
functions.

The map ♦f 7→ γ · (f ◦φ) is an isometric isomorphism of L2(R; B) onto L2(T; B)
and of H 2(C+; B) onto H 2(D; B), where γ(z) := 2

√
π/(1 + z).

Therefore, ♥ : T 7→ ♦T♦−1 maps

(29) B(Lp(R; B), Lp(R; B2)) onto B(Lp(T; B), Lp(T; B2))

isometrically. Moreover, for every F ∈ L∞strong(R; B(B,B2)), we have ♥pMF = MF◦φ.
Finally, ♥p commutes with P+ and P− as well as with adjoints and valid compositions
of operators.

Proof. The scalar version of this lemma is essentially given in [Hof88, pp. 128–
131], and essentially the same proofs apply in the general case too. The details
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can also be found in [Mik02, Section 13.2]. (Note that in this article we have the
additional constant (2π)1/p due to our normalized measure on T.) ¤

Thus, the inverse of ♥ maps H ∞ on D onto bounded holomorphic functions on
C+, and L∞strong(B,B2) onto L∞strong(R; B(B,B2)), isometrically.

By simply Cayley Transforming all sets and operators in Section 4 we observe
the following:

Remark 6.2. All results in Section 4 hold also in their SLag forms.

Note that here, e.g., the conditions (ii) and (iii) of Theorem 4.3 remain unchanged
(except that H ∞ on D is mapped to H ∞ on C+) but, in (i’), H 2 becomes its Cayley
transform, a weighted H 2 space on C+, and P− in (i) undergoes an analogous change.

Note also that P(X ) is thus replaced by P̃(X ) := ♦−1P(X ) ⊂ H 2(C+; X ),
which consists of certain rational functions.

This is not satisfactory for the results explicitly involving H 2 or S, so we establish
the results of Section 5 here.

Lemma 6.3. The results in Section 5 hold. Moreover, Lemmata A.1 and A.2
hold with the half-plane notation of Section 5 too.

Proof. The results in Sections 2 and 3 (cf. Lemma 5.1) and in the appendices
follow from the same proofs, mutatis mutandis.

For the rest, the claims follow from Lemma 6.1 except for the results concerning
the shift; we shall treat them below.

1◦ Proposition 5.8: The first and the third claim are well known; see, e.g., [Wei91]
and Lemma 2.1.7 of [Mik02]. For the others, the original proof will do, mutatis
mutandis.

2◦ Theorem 5.9: The original proof (of Theorem 4.7) will do.
3◦ Theorem 5.10: We only prove “only if”, since the rest follows as in the original

proof. As in the proof of the latter lemma on p. 106 of [Hof88], we observe that M is
invariant under the multiplication by any H ∞(C) function, hence so is ♦[M ], hence
S[♦M ] ⊂ ♦M , hence ♦M = MF̃ [H 2(Y0)] for some closed subspace Y0 ⊂ Y and
some inner F̃ ∈ H ∞(Y0,X ), by Theorem 4.8.

But we have ♦−1MF̃♦ = ♥−1MF̃ = MF , where F := F̃ ◦ φ−1. Therefore, the
function F ∈ H ∞(C+; B(Y0,X )) is inner, and

¤(30) M = ♦−1MF̃ [H 2(Y0)] = MF♦−1[H 2(Y0)] = MF [H 2(C+; Y0)].

7. Notes

The contents of Section 2 are mostly from [Mik08] and [Mik02, Appendix F] (or
older in the separable case). Section 3 seems to be new.

The results in Section 4 seem to be new in the nonseparable case except Proposi-
tion 4.6, as explained in its proof. However, probably none of those results is new in
the separable case. Most of them can be found in [Nik02], [Pel03], [Nik86], [RR85] or
in other similar monographs, as explained in Section 4 and below. These monographs
also record the history of the results.

The operator-valued version of Theorem 4.3 was established in [Tre04] but the
equivalence of (i) and (ii) was given already in [Arv75] and [SF76]. The estimates
for F̃ and

[
F F̃

]−1 in Theorem 4.3 are due to Sergei Treil.
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Theorem 4.4 is essentially given on p. 203 of [Nik86] in the scalar case. Corol-
lary 4.5 has been established at least in [CO06] (in the separable case), with a con-
structive proof.

Our proof of Theorem 4.7 is from p. 240 of [FF90]. The history of the Beurling–
Lax–Halmos Theorem 4.8 (resp., inner-outer factorization 4.9) is explained on p. 21
(resp., 107–108) of [RR85]. The shift-invariant subspaces of L2(µ) can be found in
[Nik86, pp. 14–17] (the separable case). For the Nevanlinna class N the inner-outer
factorization was given on p. 100 of [RR85] (note that their “inner” allows also partial
isometries and that N 6⊂ H 2

strong and H 2
strong 6⊂ N), but our version is from [Nik86]

and [FF90].
A finite-dimensional version of Theorem 5.10 and a scalar version of Theorem

5.11 are given in [Lax59].
Lemma A.3 is known. The statement of Lemma A.4 is due to Sergei Treil.
As explained in the introduction, further details, extensions, generalizations and

further similar results are given in [Mik07]. Further related results for (possibly)
nonseparable Hilbert spaces can be found in Chapters 1–3 of [RR85], in [Mik08], and
in [Mik02], particularly in Sections 13.1, 6.4, 6.5, Chapters 2–5, and in Appendix F.

Appendix A. Auxiliary results

In this appendix we list some results on Hilbert spaces.
By dim X we denote the cardinality of an arbitrary orthonormal basis of X (it

is independent of the basis [Mik02, Lemma A.3.1(a1)]). Thus, “dim X ≤ dim Y ”
means that there exists a one-to-one map of an orthonormal basis of X into an
orthonormal basis of Y . We need the following facts.

Lemma A.1. (dim) (a) If T ∈ B(X ,Y ) and T ∗T ≥ εI, then we have dim X =
dim T [X ] ≤ dim Y .

(b) If X is infinite-dimensional, then dim L2(X ) = dim H 2(X ) = dim X .

(The elementary proof is given in [Mik07].)
In the case of an inner function, the output space cannot have a smaller dimension

than the input space (here MF : H 2(X ) → H 2(Y ) refers to the operator f 7→ Ff):

Lemma A.2. (dim) Assume that F ∈ L∞strong(X , Y ) is satisfies M∗
F MF ≥ εI

for some ε > 0. Then dim X ≤ dim Y and hence X is isometrically isomorphic to
a closed subspace, say Ỹ , of Y , i.e., TX = Ỹ for some T = T−∗ ∈ B(X , Ỹ ).

Proof. 1◦ It is well-known that if X is separable, then F (z)∗F (z) ≥ εI for a.e.
z ∈ T, so then dim X ≤ dim Y , by Lemma A.1(a).

2◦ Assume that X is nonseparable. By Lemma A.1(b)&(a), we have dim X =
dim H 2(X ) ≤ dim H 2(Y ). Therefore, H 2(Y ) is nonseparable, hence so is Y .
Consequently, dim Y = dim H 2(Y ) ≥ dim X . ¤

Sometimes we need to build a Hilbert space as the direct sum of a collection of
(not necessarily disjoint) Hilbert spaces. The following is obvious:

Lemma A.3. (Direct sum) If ZX is a Hilbert space for each X ∈ Q, and we
set ‖z‖2

Z :=
∑

X∈Q ‖z(X)‖2
ZX

, then Z := {z ∈ ∏
X∈Q ZX

∣∣ ‖z‖Z < ∞} becomes a
Hilbert space with the inner product 〈z, w〉Z :=

∑
X∈Q 〈z(X), w(X)〉ZX

.

In a Hilbert space, a projection has the same norm as its complementary projec-
tion:
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Lemma A.4. If P = P 2 ∈ B(X ) and 0 6= P 6= I, then ‖P‖ = ‖I − P‖ ≥ 1.

Proof. Set Q := I − P , UP := {Px
∣∣ ‖Px‖ = 1}, UQ := {Qx

∣∣ ‖Qx‖ = 1}. Let Q′

denote the orthogonal projection X → Q[X ], Q⊥ := 1−Q′. for each x ∈ X . Since
‖P‖ = supx6=0 ‖Px‖/‖x‖ = sup‖Px‖=1 ‖x‖−1, we have

‖P‖−2 = inf
‖Px‖=1

‖x‖2 = inf
‖Px‖=1

‖Px + Qx‖2(31)

= inf
p∈UP , q∈Q[X ]

‖p + q‖2 = inf
p∈UP , q∈Q[X ]

‖Q⊥p + Q′p + q‖2(32)

= inf
p∈UP

‖Q⊥p‖2 = inf
p∈UP

(1− ‖Q′p‖2)(33)

= inf
p∈UP

(1− sup
q∈UQ

|〈p, q〉|2) = 1− inf
p∈UP , q∈UQ

|〈p, q〉|2(34)

= ‖Q‖−2 (exchange the roles of P and Q for this last equality). ¤

Appendix B. Proof of Theorem 3.2

In this section we prove Theorem 3.2. We start with an auxiliary result. It
says that if we study the effects of F : D → B(X ,Y ) and G : D → B(Y , X ) on
separable sets X0 ⊂ X and Y0 ⊂ Y , we can without loss of generality assume that
X and Y are separable.

Lemma B.1. Let X0 ⊂ X and Y0 ⊂ Y be separable subsets, and let F : D →
B(X ,Y ) and G : D → B(Y ,X ) be continuous functions.

Then there are closed, separable subspaces X̃ ⊂ X and Ỹ ⊂ Y that satisfy
X0 ⊂ X̃, Y0 ⊂ Ỹ , F (z)x ∈ Ỹ and G(z)y ∈ X̃ for every x ∈ X̃, y ∈ Ỹ and z ∈ D.

Proof. Let J (resp., K ) denote the collection of closed, separable subspaces of
X (resp., Y ). Set X1 := span X0. Let D′ ⊂ D be dense and countable.

1◦ Finding Yk: Given any k ∈ {1, 2, . . .} and any Xk ∈ J with X0 ⊂ Xk, choose
a countable dense subset Sk ⊂ Xk. For each x ∈ Sk, choose Yx ∈ K such that
{F (z)x

∣∣ z ∈ D′}∪Y0 ⊂ Yx. Then Y ′
k := Y0 ∪ (∪x∈Sk

Yx) is separable, hence contained
in some Yk ∈ K . Obviously, F (z)x ∈ Yk for every z ∈ D and every x ∈ Xk.

2◦ Finding Xk+1: Similarly, given any k ∈ {1, 2, . . .} and Yk ∈ K with Y0 ⊂ Yk,
we find, as in 1◦, a space Xk+1 ∈ J such that X0 ⊂ Xk+1 and G(z)y ∈ Xk+1 for
every z ∈ D and every y ∈ Yk.

3◦ Given any sequences of subspaces X1, X2, . . . and Y1, Y2, . . ., chosen as above,
set X̃ := span(∪kXk) ∈ J , Ỹ := span(∪kYk) ∈ K . ¤

Proof of Theorem 3.2. (a) In 3◦ below we shall obtain V by Hausdorff’s Maximal-
ity Theorem using the fact that any nonmaximal collection Ṽ of the form specified
in 1◦ can be extended, as will be shown in 2◦.

1◦ Requirements on Ṽ : We require that Ṽ satisfies the theorem in place of V
except that X̃ :=

∑
(X,Y )∈V X and Ỹ :=

∑
(X,Y )∈V X need not equal X and Y ,

respectively. We also require that

(35) FP̃X̃ = P̃Ỹ FP̃X̃ = P̃Ỹ F.

2◦ Assume that Ṽ is as in 1◦ (e.g., V = {({0}, {0})}). Assume also that Ỹ 6= Y
or X̃ 6= X (otherwise V := Ṽ will do). In 2.1◦–2.3◦ we shall construct closed
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separable subspaces X ⊂ X̃ ⊥ and Y ⊂ Ỹ ⊥, so that Ṽ ′ := Ṽ ∪ {(X, Y )} is as in 1◦

and X 6= {0} or Y 6= {0}.
2.1◦ Case X̃ = X : Pick some y ∈ Ỹ ⊥ and set Y := Cy, X := {0} (by (35), F =

FP̃X = FP̃X̃ = P̃Ỹ F , hence (I − P̃Ỹ )F = 0, hence P̃Y F = 0 = FP̃X = P̃Y FP̃X).
2.2◦ Case Ỹ = Y : Analogously, pick some x ∈ X̃ ⊥ and set X := Cx, Y := {0}.
2.3◦ Case X̃ 6= X and Ỹ 6= Y : Pick some nonempty separable X0 ⊂ X̃ ⊥ and

Y0 ⊂ Ỹ ⊥. Choose X and Y as in Lemma B.1 but with X̃ ⊥, Ỹ ⊥ and F ∗ in place of
X , Y and G, respectively. Then FPX = P ∗

Y FPX and F ∗PY = P ∗
XF ∗PY , so

(36) FP̃X = P̃ ∗
Y FP̃X = P̃ ∗

Y F.

Therefore, the requirements in 1◦ are satisfied for Ṽ ′ := Ṽ ∪ {(X,Y )} in place of Ṽ :

(37) FP̃X̃ ′ = FP̃X̃ + FP̃X = P̃Ỹ F + P̃Y F = P̃Ỹ ′F,

hence P̃Ỹ ′FP̃X̃ ′ = P̃Ỹ ′P̃Ỹ ′F = P̃Ỹ ′F .
3◦ Now we obtain V by a standard application of Hausdorff’s Maximality The-

orem. Indeed, let A the collection of all sets Ṽ that satisfy 1◦. Let A ′ ⊂ A be a
maximal subchain and set Ṽ := ∪A ′. Then we must have X̃ = X and Ỹ = Y , by
maximality (and 2◦). Clearly V := Ṽ satisfies (a).

(b) Let z ∈ D. Obviously,
∑

V P ∗
Y FX,Y (z)PXx = F (z)x when x ∈ X for some

(X, Y ) ∈ V , hence for any x ∈ X (because
∑

V P ∗
Y FX,Y (z)PX ∈ B(X , Y ), by

Theorem 3.1). ¤

Appendix C. L∞strong and inner functions

In this section we illustrate some pathologies of L∞strong over nonseparable Hilbert
spaces in two examples.

Firstly, we may have [F ] = 0 ∈ L∞strong even if F (z) 6= 0 ∈ B(X ,Y ) for each
z ∈ T:

Example C.1. (a) Assume that X = `2(T;C) and Y 6= {0}. Pick y0 ∈ Y
such that ‖y0‖ = 1. For each z ∈ T, define Λz ∈ X ∗ by Λzx := x(z) (x ∈ X ) and
F (z) ∈ B(X ,Y ) by

(38) F (z)x := zy0Λzx = zx(z)y0.

(Note that ‖F (z)‖ = |z| = 1 for each z ∈ T.) Given x ∈ X , we have F (z)x = 0 a.e.,
hence ‖F‖L∞strong

= 0 even though F (z) 6= 0 for each z ∈ T.
(b) Note also that F (z)∗y0 = z̄ez, where 〈x, ez〉 = x(z). Therefore, F (z)∗y0 is not

measurable (not being almost separably-valued), so F ∗ is not strongly measurable
(hence not L∞strong).

(c) If we replace y0 by (Re z)−1y0 in (38), then ‖F (z)‖B(X ,Y ) = |Re z|−1, hence
then we have ess sup ‖F‖B = ∞ even though still [F ] = [0] ∈ L∞strong.

Even worse, we may have F ∈ H ∞ inner with boundary function F0 ∈ L∞strong

such that Fx → F0x nontangentially at every point of T, for every x ∈ X and yet
F0(z)∗F0(z) 6= I for each z ∈ T. Indeed the boundary function of the function h ∈
H ∞ given by h(z) := e(z+1)/(z−1) satisfies h(1) = 0 and |h(z)| = 1 for z ∈ T\{1} (by
Lemma 6.1). By rotating h by all possible angles and combining these uncountably
many rotated copies to a function F ∈ H ∞(X ), this function has the properties
explained above:
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Example C.2. Define h : D → C by h(z) := e(z+1)/(z−1). Then h ∈ H ∞ is
inner,

(39) h(z) = exp(−2i Im z/|z − 1|2) ∈ T for z ∈ T \ {1},
and h(1) = 0 (and all these limits are nontangential).

Set X := `2(T;C), and define F : D → B(X ) by (Fes)(z) := h(s̄z)es for each
s ∈ D, where es := χ{s} (the functions es form the natural orthonormal basis of X ).
Then F is inner, by Theorem 4.1(a) (set V := {(Xs, Xs)

∣∣ s ∈ T}, where Xs := Ces,
so that FX,Xx = hx (x ∈ X) for each (X, X) ∈ V ).

Moreover, F0 := F |T is the unique function T → B(X ) for which F0x is the
(nontangential) limit of F |Dx for each x ∈ X . Nevertheless, F (z)∗F (z) = I−Pz 6= I

for each z ∈ T, where Pz is the orthogonal projection X → Cez.

Even in the above example, we could redefine F0 (within the same class in L∞strong)
so that F0(z)∗F0(z) = I for each z ∈ T (e.g., by setting above h(1) := 1). However,
then F0(z)ez = ez would no longer be equal to the nontangential limit 0 of Fez at
z, for any z ∈ T. Thus, the fact that F0(z)∗F0(z) 6= I everywhere is inherent in the
inner function F , not a consequence of an artificial choice of F0 within [F0].
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