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Abstract. Two pointwise growth estimates are established for the solutions of

f (k) + Ak−1(z)f (k−1) + · · ·+ A1(z)f ′ + A0(z)f = Ak(z),

where the coefficients A0(z), . . . , Ak(z) are analytic in the disc {z : |z| < R}, 0 < R ≤ ∞. These
pointwise estimates yield several growth estimates for the p-characteristic (generalized Nevanlinna
proximity function) of the solutions. The sharpness of the results as well as some further conse-
quences are discussed.

1. Introduction and main results

Two parallel studies [1, 8] on the growth of solutions of the linear differential
equation

(1.1) f (k) + Ak−1(z)f (k−1) + · · ·+ A1(z)f ′ + A0(z)f = Ak(z)

appeared in 2004. The main results in both papers are stated in the disc DR =
{z ∈ C : |z| < R}, where 0 < R ≤ ∞. The advantage of the pointwise growth
estimate due to Chiang and Hayman [1] is that it is valid (outside of an exceptional
set) for solutions of equation (1.1) with meromorphic coefficients A0(z), . . . , Ak(z).
The results in [8], however, appear to give sharper growth estimates for the solutions
of (1.1) in the special case Ak(z) ≡ 0, R < ∞, and the coefficients A0(z), . . . , Ak−1(z)
are analytic functions of finite order of growth. Moreover, the estimates in [8] are
valid at any point in DR.

The purpose of this paper is to generalize the pointwise growth estimates in [8]
for the non-homogeneous equation (1.1), where the coefficients are analytic in DR,
0 < R ≤ ∞. The main results are Theorems 1 and 2 below, which essentially reduce
to the corresponding results in [8] if Ak(z) ≡ 0.

Theorem 1. Let the coefficients A0(z), . . . , Ak(z) of (1.1) be analytic in DR,
where 0 < R ≤ ∞, and let f be a solution of (1.1).
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(a) If R < ∞, then there exist a constant C1 > 0 with C1 ≤ C
∑k−1

j=0 |f (j)(0)|,
and a constant C2 > 0, such that

|f(reiθ)| ≤
(

C1 max{1, Rk−1}+
1

(k − 1)!

∫ r

0

|Ak(se
iθ)|(R− s)k−1 ds

)

· exp

(
C2

k−1∑
j=0

j∑
n=0

∫ r

0

|A(n)
j (seiθ)|(R− s)k−j+n−1 ds

)

for all θ ∈ [0, 2π) and r ∈ [0, R).
(b) If R = ∞, then there exist a constant C1 > 0 with C1 ≤ C

∑k−1
j=0 max

|ζ|=1
|f (j)(ζ)|,

and a constant C2 > 0, such that

|f(reiθ)| ≤ rk−1

(
C1 +

1

(k − 1)!

∫ r

0

|Ak(se
iθ)| ds

)

· exp

(
C2

k−1∑
j=0

j∑
n=0

∫ r

0

|A(n)
j (seiθ)|sk−j+n−1 ds

)

for all θ ∈ [0, 2π) and r ∈ [1,∞).

The proof of Theorem 1 is based on a representation theorem for the solutions
of (1.1), see Theorem 9 below.

Example. The sharpness of Theorem 1(a) is illustrated as follows. The functions

f(z) =
C1

(R− z)2
exp

(
1

R− z

)
+

C2

(R− z)2
+

1

R− z
, C1, C2 ∈ C,

form the general solution of the equation

(1.2) f ′′ + A1(z)f ′ + A0(z)f = A2(z),

where the coefficients

(1.3) A0(z) =
6(R− z) + 2

(R− z)3
, A1(z) =

6(z −R)− 1

(R− z)2
and A2(z) =

2(R− z) + 1

(R− z)4

are analytic in the disc DR, 0 < R < ∞. The growth rate of the maximum modulus
M(r, f) of any solution f of (1.2) is at most

(1.4) M(r, f) = O

(
1

(R− r)2
exp

(
1

R− r

))
, r → R−,

which is of the same magnitude as the upper bound given by Theorem 1.

Theorem 2. Let the coefficients A0(z), . . . , Ak(z) of (1.1) be analytic in DR,
where 0 < R ≤ ∞, and let f be a solution of (1.1). Let nc ∈ {1, . . . , k} be the
number of nonzero coefficients A0(z), . . . , Ak(z), and let θ ∈ [0, 2π) and ε > 0. If
zθ = νeiθ ∈ DR is such that Aj(zθ) 6= 0 for some j = 0, . . . , k − 1, then, for all
r ∈ (ν, R),

(1.5) |f(reiθ)| ≤ C

(
max
0≤x≤r

|Ak(xeiθ)|+ 1

)
exp

(
δr + nc

∫ r

0

max
0≤j≤k−1

|Aj(se
iθ)| 1

k−j ds

)
,
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where

(1.6) C ≤ (1 + ε) max





nc, max
0≤j≤k−1





|f (j)(zθ)|
nj

c max
0≤n≤k−1

|An(zθ)|
j

k−n









and

(1.7) δ =

{
0, if Ak(z) ≡ 0,

1, otherwise.

The proof of Theorem 2 is based on Herold’s comparison theorem, the application
of which in its full generality yields an estimate for the growth of the derivatives of
the solutions, see Theorem 5 below.

Example. The sharpness of Theorem 2 in the case 0 < R < ∞ is illustrated as
follows. The functions

f(z) =
C1

(R− z)2
exp

(
1

R− z

)
+

C2

(R− z)2
+ R− z, C1, C2 ∈ C,

form the general solution of equation (1.2), where the coefficients A0(z) and A1(z)
are as in (1.3), but now

A2(z) =
12(R− z) + 3

(R− z)2
.

The maximal growth rate of any solution f of (1.2) is again at most as in (1.4), which
is of the same magnitude as the upper bound given by Theorem 2.

It is worth noting that Theorem 2 yields well known sharp growth estimates for
entire solutions of (1.1) with polynomial coefficients. These estimates are originally
due to Gundersen, Steinbart and Wang, see Theorem A below.

The remainder of this paper is organized in the following way. Consequences of
Theorems 1 and 2 are discussed in Sections 2 and 3, respectively. In particular, a new
unit disc analogue of Theorem A is given in Theorem 8 below. Finally, Theorems 1
and 2 are proved in Sections 4 and 5, respectively.

2. Consequences of Theorem 1

Let f be analytic in DR, where 0 < R ≤ ∞. For 1 ≤ p < ∞, we define a
p-characteristic of f as

mp(r, f) :=

(
1

2π

∫ 2π

0

(
log+ |f(reiθ)|)p

dθ

)1/p

, 0 ≤ r < R,

generalizing the Nevanlinna proximity function m(r, f) = m1(r, f). Moreover, the
element of the Lebesgue area measure on DR is denoted by dσz.

Corollaries 3 and 4 below are generalizations of [8, Corollary 4.2] to the non-
homogeneous case Ak(z) 6≡ 0. See also [9, Lemma E].

Corollary 3. Let the coefficients A0(z), . . . , Ak(z) of (1.1) be analytic in DR,
where 0 < R ≤ ∞, and let f be a solution of (1.1). Let 1 ≤ p < ∞, and denote
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Φp(r) =





k−1∑
j=0

j∑
n=0

∫

Dr

|A(n)
j (z)|p(R− |z|)p(k−j+n−1) dσz, if R < ∞,

k−1∑
j=0

j∑
n=0

∫

Dr

|A(n)
j (z)|p|z|p(k−j+n−1) dσz, if R = ∞.

(a) If R < ∞, then there exist a constant C1 > 0, depending on p, f and R, and
a constant C2 > 0, depending on p, such that

mp(r, f)p ≤ C1 + C2

(∫ 2π

0

(
log+

∫ r

0

|Ak(se
iθ)|(R− s)k−1 ds

)p

dθ + Φp(r)

)

for all r ∈ [0, R).
(b) If R = ∞, then there exist a constant C1 > 0, depending on p and f , and a

constant C2 > 0, depending on p, such that

mp(r, f)p ≤ C1 + C2

(∫ 2π

0

(
log+

∫ r

0

|Ak(se
iθ)|sk−1 ds

)p

dθ + Φp(r)

)

for all r ∈ [1,∞).

Proof. Theorem 1(a) yields

log+ |f(reiθ)| ≤ D1 + log+

∫ r

0

|Ak(se
iθ)|(R− s)k−1 ds

+ D2

k−1∑
j=0

j∑
n=0

∫ r

0

|A(n)
j (seiθ)|(R− s)k−j+n−1 ds,

where D1 > 0 depends on f and R, and D2 > 0. Raising both sides to the power p,
using the Hölder inequality (if p > 1), and integrating with respect to θ, it follows
that

mp(r, f)p ≤ C1 + D3

( ∫ 2π

0

(
log+

∫ r

0

|Ak(se
iθ)|(R− s)k−1 ds

)p

dθ

+
k−1∑
j=0

j∑
n=0

∫ 2π

0

∫ r

0

|A(n)
j (seiθ)|p(R− s)p(k−j+n−1) ds dθ

)
,

(2.1)

where C1 > 0 is as in the assertion, and D3 > 0 depends on p. The assertion (a) now
follows by applying the proof of [7, Lemma 4.6] to (2.1). The proof of the assertion
(b) follows similarly using Theorem 1(b). ¤

Next, the expressions involving the function Ak(z) in Corollary 3 are estimated
upwards by using classical maximal theorems due to Hayman [6] (the case p = 1)
and Hardy–Littlewood [5] (the case p > 1).

Corollary 4. Suppose the assumptions in Corollary 3 hold, and let 0 < ρ < R.
(a) If p = 1, then there exist a constant C1 > 0, depending on f and R, and a

constant C2 > 0, such that

m(r, f) ≤ C1 + C2

(
log+ r +

(
1 + log

ρ + r

ρ− r

)
m(ρ,Ak) + Φ1(r)

)
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for all r ∈ [0, ρ).
(b) If p > 1, then there exist a constant C1 > 0, depending on p, f and R, and a

constant C2 > 0, depending on p, such that

mp(r, f)p ≤ C1 + C2

(
(log+ r)p + mp(r, Ak)

p + Φp(r)
)

for all r ∈ [0, R).

Proof. (a) Since the function Ak(z) is of bounded characteristic in Dρ, [6, Theo-
rem 1] yields

1

2π

∫ 2π

0

(
log+

∫ r

0

|Ak(se
iθ)| ds

)
dθ ≤ 1

2π

∫ 2π

0

(
log+ max

0≤s≤r
|Ak(se

iθ)|
)

dθ + log+ r

≤
(

1 +
1

π
log

ρ + r

ρ− r

)
m(ρ,Ak) + log+ r

for all r ∈ [0, ρ). The desired estimate for m(r, f) now follows by Corollary 3.
(b) By [5, Theorem 17],

∫ 2π

0

(
log+

∫ r

0

|Ak(se
iθ)| ds

)p

dθ

≤ 2p−1

∫ 2π

0

(
log+ max

0≤s≤r
|Ak(se

iθ)|
)p

dθ + 2pπ(log+ r)p

= 2p−1

∫ 2π

0

(
log+ max

0≤t≤1
|Ak(tre

iθ)|
)p

dθ + 2pπ(log+ r)p

≤ C(p)mp(r, Ak)
p + 2pπ(log+ r)p

for all r ∈ [0, R). The estimate for mp(r, f)p now follows by Corollary 3. ¤

3. Consequences of Theorem 2

An application of Herold’s comparison theorem in its full generality at the end
of the proof of Theorem 2 yields the following pointwise growth estimate for the
derivatives of solutions of (1.1).

Theorem 5. Suppose the assumptions in Theorem 2 hold. Then, for all r ∈
(ν,R) and j = 0, . . . , k − 1,

|f (j)(reiθ)| ≤ CHθ(r)Gθ(r)
j exp

(
δr + nc

∫ r

0

max
0≤j≤k−1

|Aj(se
iθ)| 1

k−j ds

)
,

where

Hθ(r) = max
0≤x≤r

|Ak(xeiθ)|+ 1

Gθ(r) = max
ν≤t≤r

{
1 + nc max

0≤n≤k−1
|An(teiθ)| 1

k−n +
H∗

θ (t)

Hθ(t)

}
,

H∗
θ (t) = lim

s→t−
H ′

θ(s),

and all the other expressions are as in Theorem 2.

By definition, H∗
θ (t) = H ′

θ(t) when the derivative H ′
θ exists, and H∗

θ (t) = 0
otherwise. If the derivative of Hθ exists at every point on the interval (ν, R), then the
assertion in Theorem 5 follows directly by the proof of Theorem 2, and by Theorem B
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below. Noting that there can be at most finitely many points on [ν, r] at which
the derivative of Hθ does not exist, the general assertion in Theorem 5 follows by
continuity.

It is worth noting that if the coefficient functions A0(z), . . . , Ak(z) in (1.1) grow
“slowly” in a finite disc, then Theorem 5 gives better growth estimates for the deriva-
tives of solutions of (1.1) than what Cauchy’s integral formula applied to the estimate
in Theorem 2 would give.

Next, some further consequences of Theorem 2 will be obtained. Corollaries 6
and 7 below are generalizations of [8, Corollary 5.3] to the non-homogeneous case
Ak(z) 6≡ 0. See also [9, Lemma F].

Corollary 6. Let the coefficients A0(z), . . . , Ak(z) of (1.1) be analytic in DR,
where 0 < R ≤ ∞, and let f be a solution of (1.1). Let 1 ≤ p < ∞, and denote

Ψp(r) =
k−1∑
j=0

∫

Dr

|Aj(z)| p
k−j dσz.

Then there exist a constant C1 > 0, depending on p and f , and a constant C2 > 0,
depending on p, such that, for all r ∈ [0, R),

mp(r, f)p ≤ C1 + C2

(
δrp +

∫ 2π

0

(
log+ max

0≤x≤r
|Ak(xeiθ)|

)p

dθ + Ψp(r)

)
,

where δ is the constant in (1.7).

Proof. Theorem 2 yields, for all r ∈ [0, R),

(3.1) log+ |f(reiθ)| ≤ D1 + δr + log+ max
0≤x≤r

|Ak(xeiθ)|+ nc

k−1∑
j=0

∫ r

0

|Aj(se
iθ)| 1

k−j ds,

where D1 > 0 depends on f . Raising both sides to the power p, using the Hölder
inequality (if p > 1), and integrating with respect to θ, it follows, for all r ∈ [0, R),
that

mp(r, f)p ≤ C1 + D2

(
δrp +

∫ 2π

0

(
log+ max

0≤x≤r
|Ak(xeiθ)|

)p

dθ

+
k−1∑
j=0

∫ 2π

0

∫ r

0

|Aj(se
iθ)| p

k−j ds dθ

)
,

(3.2)

where C1 > 0 is as in the assertion, and D2 > 0 depends on p. The assertion now
follows by applying the proof of [7, Lemma 4.6] to (3.2). ¤

It is worth noting that the corresponding area integrals in Φp(r) and Ψp(r) of
Corollaries 3 and 6 are not of the same growth in general. This has been discussed
in detail in the case of the unit disc in [9, Section 4].

Corollary 7. Suppose the assumptions in Corollary 6 hold, and let 0 < ρ < R.
Then there exist a constant C1 > 0, depending on p and f , and a constant C2 > 0,
depending on p, such that for all r ∈ [0, ρ),

m(r, f) ≤ C1 + C2

(
δr +

(
1 + log

ρ + r

ρ− r

)
m(ρ, Ak) + Ψ1(r)

)
,
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and for all r ∈ [0, R),

mp(r, f)p ≤ C1 + C2

(
δrp + mp(r, Ak)

p + Ψp(r)
)
, p > 1,

where δ is the constant in (1.7).

The proof of Corollary 7 is similar to that of Corollary 4 using the maximal
theorems due to Hardy–Littlewood [5] and Hayman [6].

The next result is due to Gundersen, Steinbart and Wang, see [3, Lemma 6] and
[4, Lemma 1].

Theorem A. Let the coefficients A0(z), . . . , Ak−1(z) of (1.1) be polynomials,
and let Ak(z) be an entire function. Then all solutions f 6≡ 0 of (1.1) satisfy

(3.3) ρ(Ak) ≤ ρ(f) ≤ max

{
ρ(Ak), max

0≤j≤k−1

{
deg(Aj)

k − j

}
+ 1

}
,

where

ρ(g) = lim sup
r→∞

log m(r, g)

log r

is the order of growth of an entire function g. Moreover, there exists a solution f0 of
(1.1) satisfying

(3.4) ρ(f0) = max

{
ρ(Ak), max

0≤j≤k−1

{
deg(Aj)

k − j

}
+ 1

}
.

As noted in [3], the first inequality in (3.3) follows from an elementary order
consideration on both sides of equation (1.1). An alternative proof for the second
inequality in (3.3) can be obtained by applying either Corollary 6 or Corollary 7.
The validity of (3.4) illustrates the sharpness of Corollaries 6 and 7 in the case when
R = ∞.

The expression deg(Aj)

k−j
+ 1 in Theorem A can be written as

αj =
deg(Aj)

k − j
+ 1 = lim sup

r→∞

log

(
r

∫ 2π

0

|Aj(re
iθ)| 1

k−j dθ

)

log r
.

The statement (3.3), for example, then reads as

ρ(Ak) ≤ ρ(f) ≤ max

{
ρ(Ak), max

0≤j≤k−1
{αj}

}
.

This gives rise to the following unit disc analogue of Theorem A.

Theorem 8. Let the coefficients A0(z), . . . , Ak(z) of (1.1) be analytic in D. For
each j = 0, . . . , k − 1, define

αj = lim sup
r→1−

log

(
(1− r)

∫ 2π

0

|Aj(re
iθ)| 1

k−j dθ

)

− log(1− r)
,

and suppose that

(3.5) max
0≤j≤k−1

{αj} < ∞.
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Then all solutions f 6≡ 0 of (1.1) satisfy

(3.6) ρ(Ak) ≤ ρ(f) ≤ max

{
ρ(Ak), max

0≤j≤k−1
{αj}

}
,

where

ρ(g) = lim sup
r→1−

log+ m(r, g)

− log(1− r)

is the order of growth of a function g analytic in D. Moreover, there exists a solution
f0 of (1.1) satisfying

(3.7) ρ(f0) = max

{
ρ(Ak), max

0≤j≤k−1
{αj}

}
.

Proof. The coefficients A0(z), . . . , Ak−1(z) are of order of growth zero by (3.5).
Hence the first inequality in (3.6) follows from an elementary order consideration
on both sides of equation (1.1). The second inequality in (3.6) follows by applying
Corollary 7. Thus it remains to show that the statement (3.7) holds.

For convenience, set α = max0≤j≤k−1{αj}. If ρ(Ak) ≥ α, then ρ(f) = ρ(Ak)
holds for any solution f of (1.1) by (3.6). Assume then that ρ(Ak) < α. Let f be
a solution of (1.1). If ρ(f) = α, then the statement (3.7) holds. Noting that α > 0,
suppose now that f satisfies ρ(f) < α. By [2, Theorem 1], the homogeneous equation
corresponding to (1.1) possesses at least one solution g such that ρ(g) = α. Then
f + g is a solution of (1.1), and ρ(f + g) = α. Hence the statement (3.7) holds in
this case also. ¤

Assumption (3.5) is natural since its plane analogue in Theorem A is that the
polynomial coefficients are of finite degree. The validity of (3.7) illustrates the sharp-
ness of Corollary 7 in the case when R = 1.

If the assumptions in Theorem A hold, then there always exists at least one
solution f0 of (1.1) such that

ρ(f0) ≥ max
0≤j≤k−1

{
deg(Aj)

k − j

}
+ 1 ≥ 1.

The lower bound 1 can be reached if all of the coefficients A0(z), . . . , Ak−1(z) are con-
stant functions. If at least one of the coefficients A0(z), . . . , Ak−1(z) is transcendental
entire, then it can be deduced via the classical theorem of Frei [11, Theorem 4.2] that
there exists at least one solution f0 of (1.1) of infinite order of growth. Therefore,
the terms involving “ log r” in Corollary 4 can be considered as small error terms. An
analogous observation holds true for the terms involving “r” in Corollaries 6 and 7.

4. Proof of Theorem 1

The proof of Theorem 1 is based on the following representation theorem for the
solutions of (1.1).

Theorem 9. Let the coefficients A0(z), . . . , Ak(z) of (1.1) be analytic in DR,
where 0 < R ≤ ∞, and let f be a solution of (1.1). Then, for any z, z0 ∈ DR,

f(z) =
k−1∑
n=0

cn(z − z0)
n +

1

(k − 1)!

∫ z

z0

Ak(ξ)(z − ξ)k−1 dξ
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+
k−1∑
j=0

j∑
n=0

dj,n

∫ z

z0

A
(n)
j (ξ)f(ξ)(z − ξ)k−j+n−1 dξ,

where the constants cn ∈ C depend on the initial values f(z0), f
′(z0), . . . , f

(k−1)(z0),
the constants dj,n ∈ Q, and the path of integration is a piecewise smooth curve in
DR joining z and z0.

Theorem 9 can be proved by following the proof of [8, Theorem 3.1], and therefore
the details are omitted.

The assertions in Theorem 1 are now proved separately.
(a) Theorem 9, in the case when z0 = 0 and the path of integration is the line

segment [0, z], yields

|f(reiθ)| ≤ C1 max{1, Rk−1}+
1

(k − 1)!

∫ r

0

|Ak(se
iθ)|(R− s)k−1 ds

+

∫ r

0

(
C2

k−1∑
j=0

j∑
n=0

|A(n)
j (seiθ)|(R− s)k−j+n−1

)
|f(seiθ)| ds,

(4.1)

where C1 > 0 satisfies

C1 ≤ C

k−1∑
j=0

|f (j)(0)|,

and C2 = max{|dj,n|} > 0. The assertion (a) now follows by applying the Bellman
inequality [12, Theorem 1.3.1] to (4.1).

(b) Similarly as above, with z = reiθ, r > 1, z0 = eiθ and the path of integration
being the line segment [eiθ, z], we obtain

|f(reiθ)| ≤ C1r
k−1 +

1

(k − 1)!

∫ r

1

|Ak(se
iθ)|(r − s)k−1 ds

+

∫ r

1

(
C2

k−1∑
j=0

j∑
n=0

|A(n)
j (seiθ)|(r − s)k−j+n−1

)
|f(seiθ)| ds,

(4.2)

where C1 > 0 satisfies

C1 ≤ C

k−1∑
j=0

|f (j)(eiθ)| ≤ C

k−1∑
j=0

max
|ζ|=1

|f (j)(ζ)|,

and C2 = max{|dj,n|} > 0. The estimate in (4.2) holds when r = 1 as well. Note
that, for all 1 ≤ s ≤ r, j ∈ {0, . . . , k − 1} and n ∈ {0, . . . , j},

(4.3)
(r − s)k−j+n−1

rk−1
≤ 1

rj−n
≤ sk−j+n−1

sk−1
.

Dividing (4.2) by rk−1 and using (4.3), it follows that

|f(reiθ)|
rk−1

≤ C1 +
1

(k − 1)!

∫ r

1

|Ak(se
iθ)| ds

+

∫ r

1

(
C2

k−1∑
j=0

j∑
n=0

|A(n)
j (seiθ)|sk−j+n−1

)
|f(seiθ)|

sk−1
ds.

(4.4)
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The assertion (b) now follows by applying the Bellman inequality [12, Theorem 1.3.1]
to (4.4).

5. Proof of Theorem 2

The proof of Theorem 2 is based on the following version of Herold’s comparison
theorem [10, Satz 1] which can be verified by a careful examination of the original
proof.

Theorem B. Let p0(x), . . . , pk(x) be complex valued functions defined on [a, b),
let E ⊂ [a, b) be a finite set of points, and let P0(x), . . . , Pk(x) be real valued non-
negative functions such that |pj(x)| ≤ Pj(x) for all x ∈ [a, b)\E. Moreover, let Pj(x)
be continuous for all x ∈ [a, b)\E. If v(x) is a solution of the differential equation

v(k) −
k∑

j=1

pk−j(x)v(k−j) = pk(x),

and V (x) satisfies

V (k) −
k∑

j=1

Pk−j(x)V (k−j) = Pk(x)

on [a, b)\E, where
|v(j)(a)| ≤ V (j)(a), j = 0, . . . , k − 1,

then
|v(j)(x)| ≤ V (j)(x), j = 0, . . . , k − 1,

for all x ∈ [a, b)\E.

It is now proceeded to prove Theorem 2. By [8, Theorem 3.1] it can be assumed
that Ak(z) 6≡ 0. Denote

Hθ(x) = max
0≤r≤x

|Ak(re
iθ)|+ 1, 0 ≤ x < R.

Since Ak(z) is analytic in DR, it follows that Hθ is a non-decreasing continuous
function which is differentiable with respect to x outside of the countable set E
which satisfies #{E ∩ [0, r]} < ∞ for any 0 < r < R.

Let first r ∈ (ν, R) \ E, and denote

(5.1) hθ(x) =
1

nc

+ max
0≤j≤k−1

|Aj(xeiθ)| 1
k−j , 0 ≤ x < R.

Take ρ such that r < ρ < R, and let ε0 > 0. Define H∗
θ (x) = H ′

θ(x) when x 6∈ E,
and H∗

θ (x) = 0 otherwise. Then the function nchθ(x) + H∗
θ (x)/Hθ(x) is Riemann

integrable on [ν, ρ]. Thus there exists a partition P = {ν = x0, x1, . . . , xn−1, xn = ρ}
of [ν, ρ] such that E ⊂ P , xj 6= r for all j = 0, . . . , n, and

(5.2) U

(
P, nchθ +

H∗
θ

Hθ

)
−

∫ ρ

ν

(
nchθ(s) +

H∗
θ (s)

Hθ(s)

)
ds < ε0,

where U(P, nchθ +H∗
θ /Hθ) is the upper Riemann sum of the function nchθ +H∗

θ /Hθ,
corresponding to the partition P . Define the auxiliary function gθ : [ν, ρ] → R+ by

gθ(t) = sup
xj<x<xj+1

{
nchθ(x) +

H∗
θ (x)

Hθ(x)

}
, xj ≤ t < xj+1, j = 0, . . . , n− 1.
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Then gθ(t) is a step function which satisfies

(5.3) gθ(t) ≥ nchθ(t) +
H∗

θ (t)

Hθ(t)
≥ 1, ν ≤ t ≤ ρ.

Moreover,

U

(
P, nchθ +

H∗
θ

Hθ

)
=

∫ ρ

ν

gθ(s) ds,

and so, by (5.2),

(5.4)
∫ r

ν

gθ(s) ds <

∫ r

ν

(
nchθ(s) +

H∗
θ (s)

Hθ(s)

)
ds + ε0.

By (5.3), the constant

(5.5) C0 = max

{
nc, max

0≤j≤k−1

{ |f (j)(zθ)|
gθ(ν)j

}}

is well-defined, and it satisfies

(5.6) C0 ≤ max





nc, max
0≤j≤k−1





|f (j)(zθ)|
nj

c max
0≤n≤k−1

|An(zθ)|
j

k−n









.

Define the auxiliary function

V (t) = C0Hθ(ν) exp

(∫ t

ν

gθ(s) ds

)
, ν ≤ t < ρ,

and the constants

δj =

{
0, if Aj(z) ≡ 0,

1, otherwise,

where j = 0, . . . , k − 1. Then, since g
(l)
θ (t) ≡ 0 for all t ∈ [ν, ρ)\P when l ≥ 1, V (t)

satisfies the differential equation

V (k) −
k∑

j=1

gθ(t)
jδk−j

nc

V (k−j) =
C0Hθ(ν)gθ(t)

k

nc

exp

(∫ t

ν

gθ(s) ds

)

on [ν, ρ) \ P . Since

|f (j)(νeiθ)| = |f (j)(zθ)| ≤ C0gθ(ν)j, j = 0, . . . , k − 1,

by (5.5), and since Hθ(ν) ≥ 1, it follows that

|f (j)(νeiθ)| ≤ V (j)(ν) = C0Hθ(ν)gθ(ν)j, j = 0, . . . , k − 1.

Clearly, v(t) = f(teiθ) solves the equation

v(k) + pk−1(t)v
(k−1) + · · ·+ p0(t)v = pk(t),

where

pj(t) =

{
ei(k−j)θAj(te

iθ), j = 0, . . . , k − 1

eikθAk(te
iθ), j = k.

Using (5.1), (5.3) and (5.5), the coefficients pj(t) satisfy

|pj(t)| = |Aj(te
iθ)| ≤ gθ(t)

k−jδj

nc

, j = 0, . . . , k − 1,
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and

|pk(t)| = |Ak(te
iθ)| ≤ Hθ(t) = Hθ(ν) exp

(∫ t

ν

H∗
θ (s)

Hθ(s)
ds

)

≤ C0Hθ(ν)gθ(t)
k

nc

exp

(∫ t

ν

gθ(s) ds

)
.

Moreover,
|v(j)(ν)| ≤ V (j)(ν), j = 0, . . . , k − 1.

It now follows, by Theorem B and (5.4), that

|f(reiθ)| = |v(r)| ≤ V (r) = C0Hθ(ν) exp

(∫ r

ν

gθ(s) ds

)

≤ C0Hθ(ν) exp

(∫ r

ν

(
nchθ(s) +

H∗
θ (s)

Hθ(s)

)
ds + ε0

)

≤ CHθ(ν) exp

(∫ r

ν

H∗
θ (s)

Hθ(s)
ds

)
exp

(
nc

∫ r

ν

hθ(s) ds

)

= CHθ(r) exp

(
nc

∫ r

ν

hθ(s) ds

)
, r ∈ (ν, R) \ E,

where, by (5.6) and choosing ε0 to be sufficiently small, C satisfies (1.6). If r ∈ E
the assertion follows by continuity.
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