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A CONTINUOUS FUNCTION THAT NO
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Abstract. We give an example of a function G with the property described in the title. We had
previously given an example of a continuous function Φ that no holomorphic function can avoid.
The function G is a modification of the function Φ, but the proof to show that a meromorphic
function cannot avoid G involves a modification of the argument principle.

1. Introduction

Let D = {z : |z| < 1}, the unit circle in the complex plane. Each function in
this note will have D as its domain, except for the function given in Theorem 2, and
functions may assume complex values as well as the value ∞. Two functions f and
g with common domain Ω will be said to avoid each other if f(z) 6= g(z) for each
z ∈ Ω. When we say that a function f is continuous in a domain Ω, we mean that it
is continuous with respect to the spherical metric χ(−,−), where

χ(w, τ) =
|w − τ |√

1 + |w|2
√

1 + |τ |2 for w 6= ∞ 6= τ

and
χ(w,∞) =

1√
1 + |w|2 for w 6= ∞.

Thus, f is continuous at the point z ∈ Ω means that for each ε > 0 there exists a
δ > 0 such χ(f(z), f(ζ)) < ε whenever ζ ∈ Ω and |z − ζ| < δ.

In [3, Theorem 3, p. 140], we gave an example of a continuous function Φ that no
holomorphic function can avoid. Rubel and Yang [4, Theorem 3, p. 294] proved that
given any two meromorphic functions g1 and g2, there exists a meromorphic function
f such that f avoids both g1 and g2. Note that g1 and g2 are not required to avoid
each other. The proof of Rubel and Yang is given for meromorphic functions in which
the domain is the full complex plane, but the the result is also true for meromorphic
functions whose domain is any open subset of the complex plane, as was shown by
Hayman and Rubel [1]. It is an easy corollary, by setting g1 = g and g2 ≡ 1, that if
g is a meromorphic function then there is a meromorphic function f that avoids g.

We will prove the following two results.

Theorem 1. There exists a function G continuous in D such that no meromor-
phic function avoids G.

Theorem 2. There exists a function H continuous in the complex plane such
that no function meromorphic in the plane avoids H.
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The construction of the function G in the proof of Theorem 1 is similar to the
construction of Φ in [3, Theorem 3, p. 140], but the proof involves a modification of
the argument principle for meromorphic functions.

2. Proofs of the Theorems

To prove Theorem 1, let A = {αn} be a countable dense subset of the complex
plane, let {βn} be a sequence containing the elements of A such that each element of
A occurs infinitely often in the sequence {βn}, and let {rn} be a strictly increasing
sequence of positive real numbers such that rn ≥ r0 = 1/2 and rn → 1. For each
positive integer n, let Cn = {z : rn ≤ |z| ≤ rn + (rn+1 − rn)/10}, and let Dn be the
closed disc with center at (rn + rn+1)/2 and radius (rn+1− rn)/4. Then Dn ∩Cj = ∅
for each pair of positive integers n and j. Now let

E =
∞⋃

n=1

(Cn ∪Dn).

Define a function G0 such that G0(z) = 1/z for |z| ≤ 1/4, and, for each positive
integer n, both G0(z) = βn for z ∈ Cn, and G0(z) is a bounded continuous function
from Dn onto the disc {w : |w| ≤ n}—for example, we could take

G0(z) =
4n

rn+1 − rn

(
z − rn + rn+1

2

)
, z ∈ Dn.

As in the proof of [3, Theorem 3], there exists a function G continuous on D such
that

G(z) = G0(z) for z ∈ {z : |z| ≤ 1/2} ∪ E ,

where G(z) = ∞ only when z = 0. We claim that there is no meromorphic function
that avoids G.

Suppose that f is a function meromorphic in D that avoids G. If f is a constant
function, say f(z) ≡ a, where a is a complex number, there is an integer n such
that n > |a|, and then G(z) = a for some z ∈ Dn with n > |a|. If a = ∞, then
G(0) = ∞. Therefore, no constant function can avoid G, so we may assume that f
is a non-constant meromorphic function. We may further assume that f has no pole
at z = 0, for, if so, f(0) = G(0) = ∞ and f would not avoid G in this case.

Since f is non-constant, it must assume a value in A, so we may assume that f
assumes the value αn0 . Thus, there exists a point z0 ∈ D with f(z0) = αn0 . Let rn1

be such that both rn1 > |z0| and G(z) = αn0 for z ∈ Cn1 . Let h(z) = f(z)− αn0 and
let p(z) = G(z) − αn0 . Then h(z) − p(z) = f(z) − G(z), and p(z) = 0 for z ∈ Cn1 .
There exists a number s such that {z : |z| = s} ⊂ Cn1 and f (and thus h) has no
poles on the circle {z : |z| = s}. Further, f(z) does not assume the value αn0 on this
circle since f is assumed to avoid the function G in D. Since there is a line through
the origin that contains no poles of f in D, we may assume, by a rotation of the
domain, if necessary, that this line is the real axis. Let s1 < s2 < · · · < sk be the
moduli of the poles of f in {z : |z| < s}. (Note that s1 > 0, and so we can denote
s0 = 0.) Let

K0 = {z = reiθ : 0 < r < s1, 0 < θ < 2π},
Kj = {z = reiθ : sj < r < sj+1, 0 < θ < 2π}, 1 ≤ j ≤ k − 1,
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and
Kk = {z = reiθ : sk < r < s, 0 < θ < 2π} .

Choose a value for arg (f(−1/4)−G(−1/4)) and denote that value by T (−1/4), and
from this value, obtain a function T (x) defined on the interval [−s, 0) of the real
axis such that each T (x) is a value of arg ((f(x)−G(x)) and T (x) is continuous for
−s ≤ x < 0.

Since we are assuming that the function f(z) − G(z) has no zeros in the set
{z : |z| ≤ s}, the function T (x) can be extended continuously from the values on the
interval [−s, 0) on the negative real axis to each of the sets Kj, 0 < j ≤ k, such that
for each z ∈ Kj, T (z) is a value of arg (f(z)−G(z)). Also, since f(x)−G(x) is well
defined on the positive real axis, we have that for 0 < r < s, r 6∈ S = {sj : 1 ≤ j ≤ k},
the value

∆(r) = lim
θ→2π

1

2π
T (reiθ)− lim

θ→0

1

2π
T (reiθ)

is an integer. Further, by the continuity of T (z) on Kj, for a fixed j, ∆(r) is constant
on the interval (sj, sj+1). This is true for the intervals (0, s1) and (sk, s), also.

We can easily compute ∆(r) for 0 < r < s1 and for sk < r ≤ s. First, for
r = s, we have that p(reiθ) = 0 so f(reiθ) − G(reiθ) = f(reiθ) − αn0 and ∆(r) is
simply the winding number of f(z) − αn0 on |z| = s. Let Z(s) be the number of
zeros of f(z) − αn0 in the set {z : |z| ≤ s} and let P (s) be the number of poles of
f(z) − αn0 in the set {z : |z| ≤ s}. (Note that Z(s) ≥ 1 by the assumption that
f(z0) = αn0 .) Then, by the argument principle, ∆(s) = Z(s) − P (s). Thus, by
continuity, for sk < r ≤ s, ∆(r) = Z(s)− P (s). Also, for 0 < r < ε1 = min {s1, 1/4},
f − G is meromorphic and has exactly one pole (at z = 0) and no zeros in the set
{z : |z| < ε1}, and so ∆(r) = −1 for 0 < r < s1.

Next, for j ≥ 0 if sj < r < sj+1 < t < sj+2, we show that ∆(r)−∆(t) is exactly
the number of poles of f(z) on the circle |z| = sj+1. Let m = inf{|f(z)−G(z)| : |z| ≤
s}. This value is greater than zero by the assumption that f and G avoid each other,
and in all that follows, we may replace m by any smaller number, so we will assume
throughout that m ≤ 1/P (s). Further, for each j, 1 ≤ j ≤ k, let {pj,q : 1 ≤ q ≤ qj} be
the poles of f on the circle {z : |z| = sj}, listed in counterclockwise order, beginning
from the positive real ray. Here each pole is listed only once, regardless of its order.
Let M = sup {|G(z)| : s1/2 ≤ |z| ≤ s}, and let δ1 > 0 be such that |f(z)| > 100M
whenever

z ∈ J =
k⋃

j=1

qj⋃
q=1

{ζ : |ζ − pj,q| < δ1}.

Further, f − G is uniformly continuous in the usual complex metric on the closure
of the set {z : ε ≤ |z| ≤ s} \ J for each positive ε less than s. Thus, there exists a
δ2 > 0 such that |(f(z)−G(z))− (f(ζ)−G(ζ))| < m/100 whenever z, ζ 6∈ J, s1/2 ≤
|z|, |ζ| ≤ s, and |z − ζ| < δ2. Let δ3 = (1/2) min {δ1, δ2, s1/2, s− sk}. Then, we have

|(f(z)−G(z))− (f(ζ)−G(ζ))| < m/100

whenever |z−ζ| < δ3 and z and ζ are in the closure of the set {w : s1/2 ≤ |w| ≤ s}\J.
We will use the following notation:

C(r) = {w : |w| = r},
D(j, q) = {w : |w − pj,q| ≤ δ1}
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and
C(j, q) = ∂D(j, q) = {w : |w − pj,q| = δ1}.

We may assume that δ1 is so small that the discs D(j, q) are all mutually disjoint
and that none of them contains the point z = 0. Fix j, 1 ≤ j ≤ k. Let λ1 be
the arc of C(sj + δ3) between D(j, q) and D(j, q + 1) (or between the positive axis
and D(j, 1), or between D(j, qj) and the positive real axis), and let λ2 be the arc
of C(sj − δ3) between D(j, q) and D(j, q + 1) (or between the positive real axis and
D(j, 1), or between D(j, qj) and the positive real axis). For z ∈ λ1 and ζ ∈ λ2 with
arg z = arg ζ, we have that |z−ζ| < δ2 and so |(f(z)−G(z))−(f(ζ)−G(ζ))| < m/100,
which means that

T (z)− T (ζ) = 2πN(j, q) + o(1),

where N(j, q) is an integer that depends only on j and q, and o(1) is of the order of
m/100. (For z ∈ λ1, ζ ∈ λ2, and arg z = arg ζ, the difference between f(z) − G(z)
and f(ζ)−G(ζ) is very small compared to either of these values, so the basic angles
of the values of f − G at z and at ζ are very close together, so that the values of
A(z) and A(ζ) are very close to an integer multiple of 2π apart.)

Now fix j and q, where pj,q is a pole of f, 1 ≤ j ≤ k, and let Γ1 = C(sj + δ3) ∩
D(j, q) and let Γ3 = C(sj−δ3)∩D(j, q). Also, let Γ2 and Γ4 be the two arcs of C(j, q)
bounded by C(sj +δ3) and C(sj−δ3) so that Γj,q = Γ1∪Γ2∪Γ3∪Γ4 is a Jordan curve
containing pj,q in its interior, where we give this curve a counterclockwise orientation.
For z ∈ Γj,q, we have that z ∈ D(j, q), which means that |f(z)−G(z)| ≥ 100M and
|(f(z)−G(z))− f(z)| = |G(z)| ≤ M , and so we have

|f(z)| ≥ |f(z)−G(z)| − |G(z)| ≥ 99M

and thus
|(f(z)−G(z))− f(z)| ≤ 1

99
|f(z)|,

which means that the basic angle made by f(z) − G(z) from the real axis is very
close to the basic angle made by f(z), and so the change of argument of f −G taken
around Γj,q is the same as the change of argument of f around Γj,q, which we know
to be −2πmj,q if we take this in the counterclockwise direction, where mj,q is the
order of the pole of f at pj,q. But the change of angle along both Γ2 and Γ4 is very
small by the argument above, since, for example, if z and ζ are both in Γ2 or both
in Γ4, then |z − ζ| < δ2. Thus, the change of argment of f − G along Γ3, taken
in the counter-clockwise direction around Γj,q is of the order of 2πmj,q more than
the change of argument of f − G along Γ1, taken in the counterclockwise direction,
where the error is very small. Thus, if we travel along the circles C(sj + δ3) and
C(sj − δ3), as we pass by a pole of f on |z| = sj, the the change of argment on
the circle C(sj − δ3) is approximately 2π times the order of the pole more than the
change of argment on the circle C(sj + δ3). However, between poles, the change of
argument is approximately the same on both circles. As a result, we have

∆(sj − δ3)−∆(sj + δ3) =

qj∑
q=1

m(j, q).

It follows from this that

∆(r)−∆(s) = P (s) = number of poles of f in {ζ : |ζ| ≤ s}
for r near zero.



A continuous function that no meromorphic function can avoid 177

From our original calculations we have that ∆(s) = Z(s)− P (s) and ∆(r) = −1
for r near to zero, and from this last calculation we have that ∆(r) −∆(s) = P (s)
for r near to zero, it follows that Z(s) = −1. But we know that Z(s) ≥ 1, and we
have arrived at a contradiction. This contradiction arose because we assumed that
f(z)−G(z) was never zero, so we must have that f(z)−G(z) does assume the value
zero somewhere in {ζ : |ζ| ≤ s}, and there is no meromorphic function f that avoids
G. This completes the proof of Theorem 1.

For the proof of Theorem 2, we only need to repeat the details verbatim of the
proof of Theorem 1, except that now we let rn →∞ (rather than rn → 1) and denote
the function constructed by H rather than G.

3. Some final remarks

Theorems 1 and 2 taken together say that the construction is possible on each
simply connected domain of the plane. It is not at all clear if this construction can
be modified to deal with a multiply connected domain. It would appear that, if the
result is true for multiply connected domains, some new approach is needed, as the
basic idea in the proof above will not work for a multiply connected domain.

In the construction of the function G in Theorem 1 above, there was no attempt
to make G a particularly “nice” function, except to give it the property that no
meromorphic function can avoid G. However, it is possible, by taking a bit more care
in the construction, to make G a fairly “nice” function. We say that a continuous
function h is a normal function if the family {h(φ(z)) : φ ∈ M } has the property
that each sequence contains a subsequence that converges spherically uniformly on
each compact subset of D to a function continuous on D, where M denotes the
collection of Möbius transformations of D. Most often, the term “normal” function is
used when the function is meromorphic, but there are some cases where it is useful
to use this term for functions that are continuous in D but not meromorphic (see,
for example, [2], [3]). By doing a more careful construction—that is by controlling
the sequence {rn} more carefully and by a careful use of the linearization used in the
proof of the Tietze Extension Theorem—the function G can be constructed so that
G is a normal (continuous) function. The details of this are left to the reader. With
respect to normal functions, we note that in a previous work it was proved that there
exists a meromorphic function f1 such that no normal meromorphic function avoids
f1 [2, Theorem 5, p. 228]. However, the funtion f1 is not itself a normal function.
And as noted in the introduction, the Rubel–Yang result in [4] guarantees that there
are meromorphic (non-normal) functions that avoid f1.
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