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Abstract. This paper studies the relative Sobolev p-capacity in proper metric measure spaces
when 1 < p < ∞. We prove that this relative Sobolev p-capacity is Choquet. In addition, if the space
X is doubling, unbounded, admits a weak (1, p)-Poincaré inequality and has an “upper dimension”
Q for some p ≤ Q < ∞, then we obtain lower estimates of the relative Sobolev p-capacities in terms
of the Hausdorff content associated with continuous and doubling gauge functions h satisfying the
decay condition

(1)
∫ 1

0

(
h(t)
tQ−p

)1/p
dt

t
< ∞.

This condition generalizes a well-known condition in Rn.

1. Introduction

In this paper (X, d, µ) is a proper metric space. (That is, closed bounded subsets
of X are compact.) We assume that µ is a nontrivial regular Borel measure which is
finite on bounded sets and positive on nonempty open sets. We shall impose further
restrictions on the space X and the measure µ later.

The Sobolev p-capacity was studied by Maz’ya and Heinonen–Kilpeläinen–Martio
in Rn and by Kinnunen–Martio in metric spaces. The relative Sobolev p-capacity in
metric spaces was introduced by Björn in [3] when studying the boundary continuity
properties of quasiminimizers.

We develop a theory of the relative Sobolev p-capacity in a proper metric measure
space (X, d, µ) when 1 < p < ∞. We prove that this capacity is a Choquet set
function. In Rn it is known that sets of p-capacity zero have Hausdorff h-measure zero
provided that h : [0,∞) → [0,∞) is a homeomorphism satisfying the integrability

condition
∫ 1

0

(
h(t)
tn−p

)1/p
dt
t

< ∞. (See Theorem 4.1 in Reshetnyak [23], Theorem 3.1 in
Martio [20] and Maz’ya [22].) A similar result was proved in Rn by Havin–Maz’ya and
Adams–Hedberg. Theorem 7.1 in Havin–Maz’ya [12] or Theorem 5.1.13 in Adams–
Hedberg [1] states that every set in Rn with zero p-capacity, 1 < p ≤ n, has Hausdorff

h-measure zero provided that
∫ 1

0

(
h(t)
tn−p

)1/(p−1)
dt
t

< ∞.

In this paper, under the assumption that the metric measure space X is proper,
doubling, unbounded, and admits a weak (1, p)-Poincaré inequality, we extend Theo-
rem 4.1 from Reshetnyak [23] to metric spaces that in addition have an “upper dimen-
sion” Q with 1 < p ≤ Q < ∞, provided that the homeomorphisms h : [0,∞) → [0,∞)
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are doubling and satisfy the integrability condition
∫ 1

0

(
h(t)
tQ−p

)1/p
dt
t

< ∞. Thus we
generalize the results obtained by Martio, Maz’ya and Reshetnyak in Rn. Some of the
ideas used here when proving the Choquet property of the relative Sobolev p-capacity
follow Kinnunen–Martio [17] and [18].

2. Preliminaries

In this section we recall the standard notation and definitions to be used through-
out this paper. Here and throughout this paper B(x, r) = {y ∈ X : d(x, y) < r} is the
open ball with center x ∈ X and radius r > 0, while B(x, r) = {y ∈ X : d(x, y) ≤ r}
is the closed ball with center x ∈ X and radius r > 0. For a positive number λ,
λB(a, r) = B(a, λr) and λB(a, r) = B(a, λr).

Throughout this paper, C will denote a positive constant whose value is not
necessarily the same at each occurrence; it may vary even within a line. C(a, b, . . .) is a
constant that depends only on the parameters a, b, . . . . Here Ω will denote a nonempty
open subset of X. For E ⊂ X, the boundary, the closure, and the complement of E
with respect to X will be denoted by ∂E, E, and X \E, respectively; diamE is the
diameter of E with respect to the metric d and E ⊂⊂ F means that E is a compact
subset of F.

Let Ω ⊂ X be open. For a measurable function u : Ω → R, supp u is the smallest
closed set such that u vanishes on the complement of supp u. We also define

Lip(Ω) = {ϕ : Ω → R : ϕ is Lipschitz},
Lip0(Ω) = {ϕ : Ω → R : ϕ is Lipschitz and with compact support in Ω}.

A measure µ is said to be doubling if there exists a constant C ≥ 1 such that

µ(2B) ≤ Cµ(B)

for every ball B = B(x, r) in X. A metric measure space (X, d, µ) is called doubling
if the measure µ is doubling. Under the assumption that the measure µ is doubling,
it is known that (X, d, µ) is proper if and only if it is complete.

A path in X is a continuous map γ from an interval I of R to X. Whenever γ
is rectifiable, we use the arc length parametrization γ : [0, lγ] → X, where lγ is the
length of the curve γ.

A nonnegative Borel function ρ on X is an upper gradient of a real-valued function
u on X if for all rectifiable paths γ : [0, lγ] → X,

|u(γ(0))− u(γ(lγ))| ≤
∫

γ

ρ ds.

Let 1 < p < ∞ be fixed from now on throughout the paper. If the above inequality
fails only for a curve family with zero p-modulus, (see for example Section 2.3 in
Heinonen–Koskela [15]), then ρ is called a p-weak upper gradient of u. It was proved
by Koskela–MacManus in [19] that the Lp-closure of the set of all upper gradients of
u that are in Lp is precisely the set of all p-weak upper gradients of u that are in Lp.

Definition 2.1. We say that X supports a weak (1, p)-Poincaré inequality if
there exists C > 0 and λ ≥ 1 such that for all balls B with radius r, all measurable
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functions u on X and all upper gradients g of u we have

(2)
1

µ(B)

∫

B

|u− uB| dµ ≤ Cr

(
1

µ(λB)

∫

λB

gp dµ

)1/p

.

In the above definition of the Poincaré inequality, we can equivalently assume
that g is a p-weak upper gradient of u. (See the discussion before Definition 2.1.) If
(2) holds with λ = 1, then we say that X satisfies a (1, p)-Poincaré inequality.

In this paper we use a version of Sobolev-type spaces on a metric measure space
X defined by Shanmugalingam in [25]. There are several other definitions of Sobolev-
type spaces in the metric setting; see Hajłasz [10], Heinonen–Koskela [15], Cheeger
[6], and Franchi–Hajłasz–Koskela [9]. It has been shown that under reasonable hy-
potheses, the majority of these definitions yields the same space; see Franchi–Hajłasz–
Koskela [9] and Shanmugalingam [25].

We define the space Ñ1,p(X) to be the collection of all p-integrable functions u
on X that have a p-integrable p-weak upper gradient g on X. This space is equipped
with the norm

||u||Ñ1,p(X) =

(∫

X

|u|pdµ + inf

∫

X

gpdµ

)1/p

,

where the infimum is taken over all p-weak upper gradients of u. The Newtonian
space on X is the quotient space

N1,p(X) = Ñ1,p(X)/ ∼
with the norm ||u||N1,p(X) = ||u||Ñ1,p(X), where u ∼ v if and only if ||u−v||Ñ1,p(X) = 0.

The space N1,p(X) equipped with the norm || · ||N1,p is a lattice; see Shanmu-
galingam [25]. Corollary 3.7 in Shanmugalingam [26] shows that every u ∈ N1,p has
a minimal p-weak upper gradient gu in the sense that gu ≤ g holds µ-a.e. for all p-
weak upper gradients of u. Theorem 1.1 in Björn–Björn–Shanmugalingam [2] shows
that if (X, d, µ) is a proper and doubling metric measure space that admits a weak
(1, p)-Poincaré inequality, then all the functions in N1,p(X) are quasicontinuous in
X. We also note that if u ∈ N1,p(X) and v is a bounded Lipschitz function, then
uv ∈ N1,p(X) and the function |u|gv + |v|gu is a p-weak upper gradient of uv.

3. Relative Sobolev capacity

In this section, we establish a general theory of the relative Sobolev p-capacity
in proper metric measure spaces. We recall that if (X, d, µ) is a proper metric
measure space, then the Sobolev p-capacity of a set E ⊂ X is (see Björn–Björn–
Shanmugalingam [2])

Capp(E) = inf{||u||pN1,p(X) : u ∈ A (E)},
where

A (E) = {u ∈ N1,p(X) : u = 1 on E}.
A property is said to hold p-quasieverywhere (or p-q.e.) if it holds everywhere ex-

cept on a set of Sobolev p-capacity zero. We recall (see Björn–Björn–Shanmugalingam
[2]) that if the space (X, d, µ) is proper, doubling and admits a weak (1, p)-Poincaré
inequality, then Capp is an outer capacity, that is

Capp(E) = inf{Capp(U) : E ⊂ U, U open}.
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In order to introduce the relative Sobolev p-capacity, we need Newtonian spaces
with zero boundary values.

Definition 3.1. Suppose Ω ⊂ X is an open set. We let (see Björn [3] and
Shanmugalingam [26])

N1,p
0 (Ω) = {u ∈ N1,p(X) : u = 0 p-q.e. on X \ Ω}.

We note that if Capp(X \ Ω) = 0, then N1,p
0 (Ω) = N1,p(X). It is also known

that if (X, d, µ) is a proper and doubling metric measure space that satisfies a weak
(1, p)-Poincaré inequality, then Lip0(Ω) is dense in N1,p

0 (Ω) with respect to the N1,p

norm whenever Ω is an open subset of X.
For E ⊂ Ω we define

A(E, Ω) = {u ∈ N1,p
0 (Ω) : u ≥ 1 on a neighborhood of E}.

We call A(E, Ω) the set of admissible functions for the condenser (E, Ω). The relative
Sobolev p-capacity of the pair (E, Ω) is denoted by

capp(E, Ω) = inf

{∫

Ω

gp
u dµ : u ∈ A(E, Ω)

}
.

(See Björn [3].) If A(E, Ω) = ∅, we set capBp
(E, Ω) = ∞. Since A(E, Ω) is closed

under truncations from below by 0 and from above by 1 and since the minimal p-weak
upper gradients do not increase under these truncations, we may restrict ourselves
to those admissible functions u for which 0 ≤ u ≤ 1.

3.1. Basic properties of the relative Sobolev capacity. A capacity is a
monotone, subadditive set function. The following theorem expresses, among other
things, that this is true for the relative Sobolev p-capacity.

Theorem 3.2. Suppose that (X, d, µ) is a proper metric measure space. Let
Ω ⊂ X be a bounded open set. The set function E 7→ capp(E, Ω), E ⊂ Ω, enjoys the
following properties:

(i) If E1 ⊂ E2, then capp(E1, Ω) ≤ capp(E2, Ω).
(ii) If Ω1 ⊂ Ω2 are open, bounded and E ⊂ Ω1, then

capp(E, Ω2) ≤ capp(E, Ω1).

(iii) capp(E, Ω) = inf{capp(U, Ω) : E ⊂ U ⊂ Ω, U open}.
(iv) If Ki is a decreasing sequence of compact subsets of Ω with K =

⋂∞
i=1 Ki,

then
capp(K, Ω) = lim

i→∞
capp(Ki, Ω).

(v) If E1 ⊂ E2 ⊂ . . . ⊂ E =
⋃∞

i=1 Ei ⊂ Ω, then

capp(E, Ω) = lim
i→∞

capp(Ei, Ω).

(vi) If E =
⋃∞

i=1 Ei ⊂ Ω, then

capp(E, Ω) ≤
∞∑
i=1

capp(Ei, Ω).

Proof. We follow Kinnunen–Martio [17] and [18]. Properties (i)–(iv) are imme-
diate consequences of the definition.
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(v) Monotonicity yields

lim
i→∞

capp(Ei, Ω) ≤ capp(E, Ω).

To prove the opposite inequality, we may assume without loss of generality that
limi→∞ capp(Ei, Ω) < ∞. Let ε > 0 be fixed. For every i = 1, 2, . . . we choose
ui ∈ A(Ei, Ω), 0 ≤ ui ≤ 1 and a corresponding minimal upper gradient gui

such that

(3) ||gui
||pLp(Ω) < capp(Ei, Ω) + ε ≤ lim

j→∞
capp(Ej, Ω) + ε.

Since Ω is bounded and 0 ≤ ui ≤ 1 for every i = 1, 2, . . . , it follows via (3) that
ui is a bounded sequence in N1,p

0 (Ω). Hence there exists a subsequence, which we
denote again by ui and functions u, g ∈ Lp(Ω) such that ui → u weakly in Lp(Ω)
and gui

→ g weakly in Lp(Ω) as i →∞. Using Mazur’s lemma simultaneously for ui

and gui
, we obtain sequences vi and gi such that vi ∈ A(Ei, Ω), vi → u in Lp(Ω) and

µ-a.e. and gi → g in Lp(Ω), where g is a p-weak upper gradient of u and gi is a p-
weak upper gradient of vi, i = 1, 2, . . . . (See Lemma 3.1 in Kallunki–Shanmugalingam
[16].) These sequences can be found in the following way. Let i0 be fixed. Since every
subsequence of ui converges to u weakly in Lp(Ω), we may use the Mazur lemma for
the subsequence ui, i ≥ i0. Similarly and simultaneously, we use the Mazur lemma for
the subsequence gui

, i ≥ i0. We obtain finite convex combinations vi0 and gi0 of the
functions ui and gui

, i ≥ i0 as close as we want in Lp(Ω) to u and g respectively. For
every i = i0, i0 +1, . . . there is an open neighborhood Oi of Ei0 such that ui = 1 in Oi.
The intersection of finitely many open neighborhoods of Ei0 is an open neighborhood
of Ei0 . Therefore, vi0 equals 1 in an open neighborhood Ui0 of Ei0 . It is easy to see
that gi0 is a p-weak upper gradient for vi0 . Moreover, since for every i = 1, 2, . . . we
have

||gui
||pLp(Ω) < capp(Ei, Ω) + ε ≤ lim

j→∞
capp(Ej, Ω) + ε,

we obtain from the convexity of the p-seminorm and (3) that

(4) ||gvi
||pLp(Ω) ≤ ||gi||pLp(Ω) ≤ lim

j→∞
capp(Ej, Ω) + ε

for every i = 1, 2, . . . . Passing to subsequences if necessary, we may assume that for
every i = 1, 2, . . . we have

(5) ||vi+1 − vi||Lp(Ω) + ||gi+1 − gi||Lp(Ω) ≤ 2−i.

For j = 1, 2, . . . we set
wj = sup

i≥j
vi.

It is easy to see that wj = limk→∞ wj,k pointwise in X, where wj,k is defined for
every k > j by

wj,k = sup
k≥i≥j

vi.

We notice that wj,k ∈ A(Ej, Ω) with p-weak upper gradient gj,k whenever j < k < ∞,
where gj,k is defined by

gj,k = sup
k≥i≥j

gi.



184 Şerban Costea

Moreover,

(6) wj,k ≤ vj +
k−1∑
i=j

|vi+1 − vi| and gj,k ≤ gj +
k−1∑
i=j

|gi+1 − gi|

whenever j < k < ∞. We define g̃j by

g̃j = gj +
∞∑
i=j

|gi+1 − gi|.

Then, since wj = limk→∞ wj,k pointwise in X, it follows easily from (6) that g̃j is a
p-weak upper gradient of wj. We obviously have gwj

≤ g̃j µ-a.e. in X.
The convexity and reflexivity of Lp(Ω)×Lp(Ω) together with Mazur’s lemma and

formula (6) imply that wj ∈ N1,p
0 (Ω) with

wj ≤ vj +
∞∑
i=j

|vi+1 − vi|

pointwise in X. It is easy to see that wj = 1 in a neighborhood of E and this shows,
since wj ∈ N1,p

0 (Ω), that in fact wj ∈ A(E, Ω) and hence capp(E, Ω) ≤ ||gwj
||pLp(Ω).

We notice that

(7) ||g̃j||Lp(Ω) ≤ ||gj||Lp(Ω) +
∞∑
i=j

||gi+1 − gi||Lp(Ω) ≤ ||gj||Lp(Ω) + 2−j+1

for every j ≥ 1. Therefore, for all sufficiently large j we have via (4) and (7) that

capp(E, Ω) ≤ ||gwj
||pLp(Ω) ≤ ||g̃j||pLp(Ω) ≤ lim

i→∞
capp(Ei, Ω) + 2ε.

By letting ε → 0, we get the converse inequality so (v) is proved.

(vi) To prove the countable subadditivity, we need to prove the finite subaddi-
tivity first. It is enough to prove this for two sets because then the general finite
case follows by induction. So let E1 and E2 be two subsets of Ω. We can assume
without loss of generality that capp(E1, Ω) + capp(E2, Ω) < ∞. Let ui ∈ A(Ei, Ω)
with minimal upper gradients gui

such that

0 ≤ ui ≤ 1 and ||gui
||pLp(Ω) < capp(Ei, Ω) + ε for i = 1, 2.

Then u = max(u1, u2) belongs to A(E1 ∪ E2, Ω) and g = max(gu1 , gu2) is a p-weak
upper gradient of u. Therefore

capp(E1 ∪ E2, Ω) ≤ ||gu||pLp(Ω) ≤ ||g||pLp(Ω) ≤ ||gu1||pLp(Ω) + ||gu2||pLp(Ω)

≤ capp(E1, Ω) + capp(E2, Ω) + 2ε.

Letting ε → 0 we complete the proof in the case of two sets, and hence the general
finite case.

The general case follows from the finite case together with (v). The theorem is
proved. ¤

A set function that satisfies properties (i), (iv), (v) and (vi) is called a Choquet
capacity (relative to Ω). We may thus invoke an important capacitability theorem of
Choquet and state the following result. See Appendix II in Doob [7].
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Theorem 3.3. Suppose that (X, d, µ) is a proper metric measure space. Suppose
that Ω is a bounded open set in X. The set function E 7→ capp(E, Ω), E ⊂ Ω, is a
Choquet capacity. In particular, all Borel subsets (in fact, all analytic) subsets E of
Ω are capacitable, i.e.,

capp(E, Ω) = sup{capp(K, Ω) : K ⊂ E compact}
whenever E ⊂ Ω is analytic.

It is easy to see that

capp(K, Ω) = capp(∂K, Ω)

whenever K is a compact subset of Ω.

Remark 3.4. Suppose that (X, d, µ) is a proper and doubling metric measure
space that satisfies a weak (1, p)-Poincaré inequality. If K is a compact subset of the
open set Ω ⊂ X, we get the same p-capacity for (K, Ω) if we restrict ourselves to a
smaller set of admissible functions, namely

W (K, Ω) = {u ∈ Lip0(Ω) : u = 1 in a neighborhood of K}.
Indeed, let u ∈ A(K, Ω); we may clearly assume that u = 1 in a neighborhood

U ⊂⊂ Ω of K. Then we choose a cut-off Lipschitz function η, 0 ≤ η ≤ 1 such that
η = 1 in X \U and η = 0 in a neighborhood Ũ of K, Ũ ⊂⊂ U. Now, if ϕj ∈ Lip0(Ω) is
a sequence converging to u in N1,p

0 (Ω), then ψj = 1−η(1−ϕj) is a sequence belonging
to W (K, Ω) which converges to 1− η(1− u) in N1,p

0 (Ω). But 1− η(1− u) = u. This
establishes the assertion, since W (K, Ω) ⊂ A(K, Ω). In fact, it is easy to see that if
K ⊂ Ω is compact we get the same p-capacity if we consider

W̃ (K, Ω) = {u ∈ Lip0(Ω) : u = 1 on K}.
It is also useful to observe that if ψ ∈ N1,p

0 (Ω) is such that ϕ− ψ ∈ N1,p
0 (Ω \K) for

some ϕ ∈ W̃ (K, Ω), then

capp(K, Ω) ≤
∫

Ω

gp
ψ dµ.

Following an argument very similar to the one from Theorem 3.2, one can con-
clude:

Theorem 3.5. Suppose that (X, d, µ) is a proper and doubling metric mea-
sure space satisfying a weak (1, p)-Poincaré inequality. The set function E 7→
Capp(E), E ⊂ X, is a Choquet capacity. In particular:

(i) If E1 ⊂ E2, then Capp(E1) ≤ Capp(E2).
(ii) If E =

⋃
i Ei, then

Capp(E) ≤
∑

i

Capp(Ei).

Since Lip0(X) is dense in N1,p(X) with respect to the N1,p norm whenever
(X, d, µ) is a proper and doubling metric measure space satisfying a weak (1, p)-
Poincaré inequality, one can prove (by using an argument similar to the one from
Remark 3.4) the following lemma:
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Lemma 3.6. Suppose (X, d, µ) is a proper and doubling metric measure space
satisfying a weak (1, p)-Poincaré inequality. If K ⊂ X is compact, then

Capp(K) = inf{||u||pN1,p(X) : u ∈ A (K) ∩ Lip0(X)}.
We recall the following relation between the relative Sobolev capacity and the

global Sobolev capacity. (See e.g. Lemma 2.6 in Björn–MacManus–Shanmugalingam
[4] and Lemma 3.3 in Björn [3].)

Lemma 3.7. Suppose (X, d, µ) is a proper and unbounded doubling metric mea-
sure space that satisfies a weak (1, p)-Poincaré inequality. Then for every λ > 1 there
exists a constant Cλ > 0 such that
Capp(E ∩B(x, r))

Cλ(1 + rp)
≤ capp(E ∩B(x, r), B(x, λr)) ≤ Cλ(1 + r−p)Capp(E ∩B(x, r))

for every E ⊂ X, x ∈ X and r > 0.

Definition 3.8. We say that capp(E) = 0 if capp(E ∩ Ω, Ω) = 0 for every
bounded and open Ω ⊂ X.

Remark 3.9. If (X, d, µ) is a proper and unbounded doubling metric mea-
sure space that satisfies a weak (1, p)-Poincaré inequality, one can prove (by using
Lemma 3.7 together with the Choquet property of the relative Sobolev capacity) that
capp(E) = 0 if and only if Capp(E) = 0. It is also easy to see by using the afore-
mentioned Lemma that if E is a bounded subset of X, then capp(E) = 0 if and only
if there exists Ω a bounded and open neighborhood of E such that capp(E, Ω) = 0
provided that (X, d, µ) is proper, doubling, unbounded and satisfies a weak (1, p)-
Poincaré inequality.

4. Hausdorff measures and relative Sobolev capacity

In this section we examine the relationship between Hausdorff measures and the
relative Sobolev p-capacity under some extra assumptions satisfied by the space X.

4.1. Generalized Hausdorff measure. Let h be a real-valued, strictly increas-
ing function on [0,∞) such that limt→0 h(t) = h(0) = 0 and limt→∞ h(t) = ∞. Such
a function h is called a measure function. A measure function h is called doubling if
there exists a constant C > 0 such that

(8) h(10t) ≤ C h(t) for all t > 0.

The smallest constant C such that (8) holds is denoted by C(h) and is called the
doubling constant of h.

Let 0 < δ ≤ ∞. Throughout this subsection Ω is a closed subset of X. For E ⊂ Ω
we define

Λδ
h,Ω(E) = inf

∑
i

h(ri),

where the infimum is taken over all coverings of E by open sets Gi in Ω with diameter
ri not exceeding δ. The set function Λ∞h,Ω is called the h-Hausdorff content relative to
Ω. Clearly Λδ

h,Ω is an outer measure for every δ ∈ (0,∞] and every closed set Ω ⊂ X.

We write Λδ
h(E) for Λδ

h,X(E).

Moreover, for every E ⊂ Ω, there exists a Borel set Ẽ such that E ⊂ Ẽ ⊂ Ω and
Λδ

h,Ω(E) = Λδ
h,Ω(Ẽ). Clearly Λδ

h,Ω(E) is a decreasing function of δ. It is easy to see
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that Λδ
h,Ω2

(E) ≤ Λδ
h,Ω1

(E) for every δ ∈ (0,∞] whenever Ω1 and Ω2 are two closed
sets in X such that E ⊂ Ω1 ⊂ Ω2. This allows us to define the h-Hausdorff measure
relative to Ω of E ⊂ Ω by

Λh,Ω(E) = sup
δ>0

Λδ
h,Ω(E) = lim

δ→0
Λδ

h,Ω(E).

The measure Λh,Ω is Borel regular; that is, it is an additive measure on Borel sets of
Ω and for each E ⊂ Ω there is a Borel set G such that E ⊂ G ⊂ Ω and Λh,Ω(E) =
Λh,Ω(G). (See [8, p. 170] and [21, Chapter 4].) We denote Λh(E) := Λh,X(E). If
h(t) = ts, we write Λs for Λts,X . It is immediate from the definition that Λs(E) < ∞
implies Λα(E) = 0 for all α > s. The smallest s ≥ 0 that satisfies Λα(E) = 0 for all
α > s is called the Hausdorff dimension of E.

For Ω ⊂ X closed and δ > 0, the set function Λδ
h,Ω has the following property:

(i) If Ki is a decreasing sequence of compact sets in Ω, then

Λδ
h,Ω(

∞⋂
i=1

Ki) = lim
i→∞

Λδ
h,Ω(Ki).

Moreover, if Ω is a compact subset of X and h is a continuous measure function,
then Λδ

h,Ω satisfies the following additional properties:
(ii) If Ei is an increasing sequence of arbitrary sets in Ω, then

Λδ
h,Ω(

∞⋃
i=1

Ei) = lim
i→∞

Λδ
h,Ω(Ei).

(iii) Λδ
h,Ω(E) = sup{Λδ

h,Ω(K) : K ⊂ E compact} whenever E ⊂ Ω is a Borel
set. (See Chapter 2:6 in Rogers [24].) In other words, Λδ

h,Ω is a Choquet capacity
whenever Ω is a compact subset of X and h is a continuous measure function.

If h : [0,∞) → [0,∞) is a measure function that is a homeomorphism, we know
that Λh(E) = 0 if and only if Λ∞h (E) = 0. (See Proposition 5.1.5 in Adams–Hedberg
[1].) If h(t) = ts, 0 < s < ∞, we write Λ∞s for Λ∞ts,X .

We prove now the following version of Cartan’s lemma in doubling metric measure
spaces.

Lemma 4.1. (Cartan’s lemma) Suppose (X, d, µ) is a doubling metric measure
space. Let σ be a finite compactly supported positive measure on X. Let h : [0,∞) →
[0,∞) be a doubling measure function that is also a homeomorphism. If λ > 0 and

Aλ = {x ∈ X : σ(B(x, r)) ≤ h(r)

λ
for all r > 0},

then Λ∞h (X \ Aλ) ≤ Cλσ(X), where C > 0 is the doubling constant of h.

Proof. We can assume without loss of generality that σ(X) > 0. Let M > 0 be
such that h(M) = λσ(X). For each x ∈ X \Aλ there exists a radius rx > 0 such that

h(rx) < λσ(B(x, rx)) ≤ λσ(X) = h(M).

Since h is strictly increasing, the choice of M implies that the supremum of all such
radii is less than M. Moreover, X \ Aλ is bounded. Indeed, this is obvious if X is
bounded. If X is unbounded, then X \Aλ ⊂ B(a, r+M), where B = B(a, r) is a ball
containing the support of σ. This allows us to apply Theorem 1.16 in Heinonen [13]
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and select a countable sequence of points (xi) in X \Aλ such that the corresponding
balls B(xi, rxi

) are pairwise disjoint and such that

X \ Aλ ⊂
⋃
i

B(xi, 5rxi
).

Therefore

Λ∞h (X \ Aλ) ≤
∑

i

h(10rxi
) ≤ C

∑
i

h(rxi
) ≤ Cλ

∑
i

σ(B(xi, rxi
)) ≤ Cλσ(X).

The lemma follows. ¤

Remark 4.2. It is easy to see that when X is unbounded the preceding theorem
in fact yields

Λ10M
h,B(a,r+11M)

(X \ Aλ) ≤ Cλσ(X).

Now we prove the following relation between a Lipschitz function with compact
support and its p-weak upper gradients.

Lemma 4.3. Let (X, d, µ) be a doubling metric measure space that satisfies a
weak (1, p)-Poincaré inequality and let B = B(x0, r) be a ball in X with 0 < r <
(1/8)diam X. Let u be a function in Lip0(B(x0, r)) and let g be a p-weak upper
gradient of u. There exists a constant C0 > 0 depending only on p and on data of X
such that

|u(x)| ≤ C0

∫ 3r

0

(
1

µ(B(x, t))

∫

B(x,t)

gp dµ

)1/p

dt

for every x ∈ X.

Proof. There exists a similar result when p = 1, obtained by Björn–Onninen when
proving Theorem 3 in [5]. The proof for the case p > 1 is similar but we present it
for the convenience of the reader. We can assume without loss of generality that u
is nonnegative and that x ∈ B(x0, r). We can also assume that g = 0 µ-a.e. outside
B(x0, r). We let rj = 2r (2λ)−j and Bj = B(x, rj), j = 0, 1, 2, . . . , where λ ≥ 1 is the
constant from the (1, p)-Poincaré inequality. Since u is a Lipschitz function, every
point in X is a Lebesgue point for u. Therefore

u(x) = lim
j→∞

1

µ(Bj)

∫

Bj

u dµ

=
1

µ(B0)

∫

B0

u dµ +
∞∑

j=0

1

µ(Bj+1)

∫

Bj+1

(u− uBj
) dµ,

where uBj
= µ(Bj)

−1
∫

Bj
u dµ. It is easy to see that B(x0, r) ⊂ B0 = B(x, 2r) since

x ∈ B(x0, r). The first term on the right-hand side can be estimated using the
Sobolev inequality (see e.g. Proposition 3.1 in Björn [3] or the proof of Theorem
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13.1 in Hajłasz–Koskela [11]), while the second term is estimated by the weak (1, p)-
Poincaré inequality as follows

u(x) ≤ Cr0

(
1

µ(B0)

∫

B0

gp dµ

)1/p

+ C

∞∑
j=0

rj

(
1

µ(λBj)

∫

λBj

gp dµ

)1/p

≤ C0

∫ 3r

0

(
1

µ(B(x, t))

∫

B(x,t)

gp dµ

)1/p

dt.

This finishes the proof. ¤
4.2. The Main result and special cases. We now state and prove our main

result.

Theorem 4.4. Suppose 1 < p ≤ Q < ∞. Let (X, d, µ) be a proper and un-
bounded doubling metric measure space that supports a weak (1, p)-Poincaré inequal-
ity. Suppose h : [0,∞) → [0,∞) is a doubling homeomorphism. We also suppose that
there exists a constant Cµ > 0 such that

(9) µ(B(x, t)) ≥ C−1
µ tQ

for all t > 0 and x ∈ X. Then there exists a positive constant C1 depending only on
the doubling constant of h, on p, and on data of X such that

(10)
Λ∞h (E ∩B(x0, r))(∫ 6r

0
( h(t)

tQ−p )1/p dt
t

)p ≤ C1 capp(E ∩B(x0, r), B(x0, 2r))

for every E ⊂ X, every x0 ∈ X and every r > 0.

Proof. We assume first that E is compact. There is nothing to prove if we have

Λ∞h (E ∩B(x0, r)) = 0 or
∫ 6r

0

(
h(t)

tQ−p

)1/p
dt

t
= ∞.

So we can assume without loss of generality that

Λ∞h (E ∩B(x0, r)) > 0 and I(r) =

∫ 6r

0

(
h(t)

tQ−p

)1/p
dt

t
< ∞.

Let ε ∈ (0, 1/2) be fixed. We choose uε ∈ W (E ∩ B(x0, r), B(x0, 2r)) with its
corresponding minimal p-weak upper gradient guε such that∫

B(x0,2r)

gp
uε

dµ < capp(E ∩B(x0, r), B(x0, 2r)) + 2ε.

We can assume without loss of generality that uε ≥ 0. We define

σε(A) =

∫

A

gp
uε

dµ

if A ⊂ X is a Borel set. Suppose that α > 0 and let

Bα,ε = {x ∈ X : σε(B(x, t)) ≤ h(t)(1− ε)p

αp
for all t > 0}.

For x ∈ Bα,ε we have via (9) and Lemma 4.3

uε(x) ≤ C
1/p
µ C0(1− ε)

α

∫ 6r

0

(
h(t)

tQ

)1/p

dt,
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where C0 is the constant from Lemma 4.3. If we let

α = C1/p
µ C0

∫ 6r

0

(
h(t)

tQ

)1/p

dt = C1/p
µ C0I(r),

then we notice that E ∩ B(x0, r) ⊂ {x ∈ X : uε(x) > 1 − ε} ⊂ X \ Bα,ε. Therefore
from Lemma 4.1 and the choice of α it follows that

Λ∞h (E ∩B(x0, r)) ≤ C(h)(1− ε)−pCµC
p
0I(r)p

∫

X

gp
uε

dµ.

Letting ε → 0 we obtain the desired conclusion when E is compact.
We assume now that E is an arbitrary set. Since there exists a Borel set Ẽ

containing E such that

Λ∞h (E) = Λ∞h (Ẽ) and capp(E∩B(x0, r), B(x0, 2r)) = capp(Ẽ∩B(x0, r), B(x0, 2r)),

we can assume that E is Borel. We choose M > 0 such that

h(M) = 2pcapp(B(x0, r), B(x0, 2r)) + 2p.

From the fact that capp( · , B(x0, 2r)) is a Choquet capacity, the discussion before
Lemma 4.1, the choice of M and Remark 4.2, it follows that the claim holds also
when E is Borel. This finishes the proof. ¤

Remark 4.5. It follows easily that if X is a proper and unbounded doubling
metric measure space as in Theorem 4.4 with Q − s < p ≤ Q, then there exists a
constant C = C(Q, p, s, Cµ) such that

(11)
Λ∞s (E ∩B(a,R))

Rs−Q+p
≤ Ccapp(E ∩B(a,R), B(a, 2R))

whenever E ⊂ X, R > 0, and a ∈ X. (We use h(t) = ts.) Inequality (11) was also
obtained by Heinonen–Koskela in [15, Theorem 5.9] for compact sets.

Theorem 4.4 has the following corollary.

Corollary 4.6. Suppose 1 < p ≤ Q < ∞. Let (X, d, µ) be a proper and un-
bounded doubling metric measure space as in Theorem 4.4. Let E ⊂ X be such that
capp(E) = 0. Then

(i) Λh(E) = 0 for every doubling homeomorphism h : [0,∞) → [0,∞) satisfying
(1).

(ii) The Hausdorff dimension of E is at most Q− p.
(iii) The set X \ E is connected.

Note that for every ε > 0 we can take h = hε : [0,∞) → [0,∞) in Corollary 4.6,
where hε(t) = | ln t|−p−ε for every t ∈ (0, 1/2) when p = Q. When 1 < p < Q we can
take hε(t) = tQ−p+ε for every t ≥ 0.

Proof. It is enough to prove the first claim for E bounded because Λ∞h is a
countably subadditive set function and Λh(E) = 0 if and only if Λ∞h (E) = 0 whenever
h is a continuous measure function. So we assume that E is bounded. Let B =
B(x0, r) be a ball containing E. We have capp(E, B(x0, 2r)) = 0. An appeal to
Theorem 4.4 yields the first claim. The second claim is a consequence of (i) because
for every s > Q − p, the function hs : [0,∞) → [0,∞) defined by hs(t) = ts satisfies
(1). The third claim is a consequence of the Poincaré inequality. ¤
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Remark 4.7. Since we have
∫ 1

0

(
h(t)

tQ−p

)1/(p−1)
dt

t
< ∞

whenever h is a doubling homeomorphism satisfying (1), Corollary 4.6 follows also
via Theorem 3 and Example 2 in Björn–Onninen [5].

4.3. Upper bounds for relative capacity in terms of Hausdorff mea-
sures. We recall the following upper bounds for the relative capacity (see Lemma 7.18
in Heinonen [13] and Lemma 3.3 in Björn [3]).

Theorem 4.8. Let 1 < p ≤ Q < ∞ be fixed. Suppose (X, d, µ) is a proper
and unbounded metric measure space. We also suppose that there exists a constant
Cµ > 0 such that

(12) µ(B(x, t)) ≤ Cµt
Q

for all t > 0 and x ∈ X.
(i) Suppose 1 < p < Q. There exists a constant C depending only on data of X

such that
capp(B(x0, r), B(x0, R)) ≤ CrQ−p,

for every x0 ∈ X and every pair of positive numbers r, R such that 2r ≤ R.
(ii) Suppose p = Q. There exists a constant C depending only on data of X such

that

capQ(B(x0, r), B(x0, R)) ≤ C

(
ln

R

r

)1−Q

,

for every x0 ∈ X and every pair of positive numbers r, R such that 2r ≤ R.

We also get upper bounds of the relative capacity in terms of some Hausdorff
measures. Similar estimates were obtained by Heinonen–Kilpeläinen–Martio [14] in
Rn and by Kinnunen–Martio (see [17, Theorem 4.13]) in metric spaces.

Theorem 4.9. Let 1 < p ≤ Q < ∞ be fixed. Suppose (X, d, µ) is a proper and
unbounded metric measure space such that the upper mass bound (12) holds for the
measure µ. Let h : [0,∞) → [0,∞) be a homeomorphism such that for 0 < t ≤ 1

2
we

have

h(t) =

{
tQ−p if p < Q,(
ln 1

t

)1−p if p = Q.

Then there exists a constant depending only on the data of X such that

capp(E, Ω) ≤ CΛh(E)

whenever E ⊂ Ω ⊂⊂ X with E compact and Ω open.

Proof. The proof is similar to the proof of Theorem 2.27 in Heinonen–Kilpeläinen–
Martio [14]. We present it for the convenience of the reader. Let δ be the distance
from E to the complement of Ω. We can assume without loss of generality that
δ ≤ 1. We fix ε < δ2

4
. We cover the compact set E by finitely many open balls

B(xi, ri) such that ri < ε
2
. Since we can assume that the balls B(xi, ri) intersect E,
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we have B(xi,
δ
2
) ⊂ Ω. By using Theorem 4.8 together with our choice of ε, we have

capp(B(xi, ri), B(xi,
δ

2
)) ≤





C rQ−p
i if p < Q,

C 2Q−1
(
ln 1

ri

)1−p

if p = Q.

Here C is the constant from Theorem 4.8. Using Theorem 3.2 (ii) and (vi) we get

capp(E, Ω) ≤
∑

i

capp(B(xi, ri), Ω) ≤
∑

i

capp(B(xi, ri), B(xi,
δ

2
)) ≤ c

∑
i

h(ri).

Taking the infimum over all such coverings and letting ε → 0, we conclude

capp(E, Ω) ≤ CΛh(E). ¤
We close this section with sufficient conditions to get sets of relative Sobolev

p-capacity zero.

Lemma 4.10. Suppose (X, d, µ) is a proper and unbounded doubling metric
measure space that admits a weak (1, p)-Poincaré inequality. Let E be a compact
set in X. If there exists a constant M > 0 such that

capp(E, Ω) ≤ M < ∞
for all open sets Ω containing E, then capp(E) = 0.

Proof. It is enough to prove (see Remark 3.9) that capp(E, Ω) = 0 for every
bounded and open Ω ⊃ E. We let Ω be a bounded fixed open neighborhood of E.
We choose a descending sequence of open sets

Ω = Ω1 ⊃⊃ Ω2 ⊃⊃ · · · ⊃⊃
⋂
i

Ωi = E

and we choose ϕi ∈ A(E, Ωi), 0 ≤ ϕi ≤ 1 with ϕi = 1 on E and

(13)
∫

Ωi

gp
ϕi

dµ < capp(E, Ωi) + 1 ≤ M + 1 for i = 1, 2, . . . .

Since Ω is bounded and 0 ≤ ϕi ≤ 1 for every i = 1, 2, . . . , it follows via (13) that
ϕi is a bounded sequence in N1,p

0 (Ω). We notice that ϕi converges pointwise µ-a.e.
to a function ψ which is 1 on E and 0 on X \ E. We also notice that gϕi

converges
pointwise µ-a.e. to 0. Hence, from Mazur’s lemma ([27, p. 120]) and the reflexivity
of Lp(Ω)×Lp(Ω) it follows that there exists a subsequence denoted again by ϕi such
that (ϕi, gϕi

) converges weakly to (ψ, 0) in Lp(Ω)×Lp(Ω) and a sequence ϕ̃i of convex
combinations of ϕi,

ϕ̃i =

ji∑
j=i

λi,jϕj, λi,j ≥ 0,

ji∑
j=i

λi,j = 1,

such that (ϕ̃i, gϕ̃i
) converges to (ψ, 0) in Lp(Ω)× Lp(Ω). The closedness of A(E, Ωi)

under finite convex combinations implies that ϕ̃i ∈ A(E, Ωi) for every integer i ≥ 1.
Therefore

0 ≤ capp(E, Ω) ≤ lim sup
i→∞

∫

Ω

gp
ϕ̃i

dµ = 0. ¤
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Theorem 4.11. Let 1 < p ≤ Q < ∞ be fixed. Suppose (X, d, µ) is a proper and
unbounded metric measure space such that the upper mass bound (12) holds for the
measure µ. Let E be a subset of X.

(i) Suppose 1 < p < Q. Then ΛQ−p(E) < ∞ implies capp(E) = 0.
(ii) Suppose p = Q. Let h : [0,∞) → [0,∞) be an increasing homeomorphism

such that h(t) = (ln 1
t
)1−p for all t ∈ (0, 1

2
). Then Λh(E) < ∞ implies capp(E) = 0.

Proof. Since Λh is a regular outer measure, it is enough to assume that E is Borel.
Let Ω be a bounded and open subset of X. We want to show that capp(E∩Ω, Ω) = 0.
Since capp( · , Ω) is a Choquet capacity, we can assume without loss of generality that
E ∩ Ω is compact. We choose a descending sequence of open sets

Ω = Ω1 ⊃⊃ Ω2 ⊃⊃ · · · ⊃⊃
⋂
i

Ωi = E ∩ Ω.

Then from Theorem 4.9 we have
capp(E ∩ Ω, Ωi) ≤ CΛh(E ∩ Ω) ≤ CΛh(E) for every i = 1, 2, . . . .

By using the argument from Lemma 4.10 for the set E ∩ Ω, we obtain the desired
conclusion. This finishes the proof. ¤
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