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Abstract. This paper studies the relative Sobolev p-capacity in proper metric measure spaces
when 1 < p < co. We prove that this relative Sobolev p-capacity is Choquet. In addition, if the space
X is doubling, unbounded, admits a weak (1, p)-Poincaré inequality and has an “upper dimension”
Q@ for some p < @ < oo, then we obtain lower estimates of the relative Sobolev p-capacities in terms
of the Hausdorff content associated with continuous and doubling gauge functions h satisfying the
decay condition

0 [ (M)

This condition generalizes a well-known condition in R".

1. Introduction

In this paper (X, d, i) is a proper metric space. (That is, closed bounded subsets
of X are compact.) We assume that p is a nontrivial regular Borel measure which is
finite on bounded sets and positive on nonempty open sets. We shall impose further
restrictions on the space X and the measure u later.

The Sobolev p-capacity was studied by Maz’ya and Heinonen—Kilpeldinen—Martio
in R™ and by Kinnunen—Martio in metric spaces. The relative Sobolev p-capacity in
metric spaces was introduced by Bjorn in [3| when studying the boundary continuity
properties of quasiminimizers.

We develop a theory of the relative Sobolev p-capacity in a proper metric measure
space (X,d,u) when 1 < p < oo. We prove that this capacity is a Choquet set
function. In R™ it is known that sets of p-capacity zero have Hausdorff h-measure zero
provided that h: [0,00) — [0,00) is a homeomorphism satisfying the integrability

1/
condition fol <M) " % < 0. (See Theorem 4.1 in Reshetnyak [23], Theorem 3.1 in

tn—p

Martio [20] and Maz’ya [22].) A similar result was proved in R™ by Havin-Maz'ya and
Adams-Hedberg. Theorem 7.1 in Havin-Maz'ya [12| or Theorem 5.1.13 in Adams—
Hedberg [1] states that every set in R™ with zero p-capacity, 1 < p < n, has Hausdorff

h(t) 1/(p_1) @
tn—p t

h-measure zero provided that fol

In this paper, under the assumption that the metric measure space X is proper,
doubling, unbounded, and admits a weak (1, p)-Poincaré inequality, we extend Theo-
rem 4.1 from Reshetnyak [23] to metric spaces that in addition have an “upper dimen-
sion” @ with 1 < p < @ < oo, provided that the homeomorphisms h: [0, 00) — [0, 00)
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are doubling and satisfy the integrability condition fo (tQ—,p "

generalize the results obtained by Martio, Maz’ya and Reshetnyak in R". Some of the
ideas used here when proving the Choquet property of the relative Sobolev p-capacity
follow Kinnunen—-Martio [17] and [18].

< 00. Thus we

2. Preliminaries

In this section we recall the standard notation and definitions to be used through-
out this paper. Here and throughout this paper B(x,r) = {y € X : d(z,y) < r} is the
open ball with center € X and radius r > 0, while B(z,7) = {y € X : d(x,y) <r}
is the closed ball with center x € X and radius r > 0. For a positive number A,
A\B(a,r) = B(a,  \r) and AB(a,r) = B(a, \r).

Throughout this paper, C' will denote a positive constant whose value is not
necessarily the same at each occurrence; it may vary even within a line. C'(a,b,...)isa
constant that depends only on the parameters a, b, . . .. Here €2 will denote a nonempty
open subset of X. For £ C X, the boundary, the closure, and the complement of E
with respect to X will be denoted by OF, E, and X \ E, respectively; diam E is the
diameter of E with respect to the metric d and E CC F means that E is a compact
subset of F.

Let 2 C X be open. For a measurable function u: 2 — R, supp u is the smallest
closed set such that u vanishes on the complement of supp u. We also define

Lip(2) = {¢p: Q@ — R : ¢ is Lipschitz},
Lipy(Q2) = {p: Q — R : ¢ is Lipschitz and with compact support in Q}.

A measure p is said to be doubling if there exists a constant C' > 1 such that
1(2B) < Cu(B)

for every ball B = B(z,r) in X. A metric measure space (X, d, u) is called doubling
if the measure p is doubling. Under the assumption that the measure p is doubling,
it is known that (X, d, u) is proper if and only if it is complete.

A path in X is a continuous map ~ from an interval I of R to X. Whenever ~
is rectifiable, we use the arc length parametrization v: [0,l,] — X, where [, is the
length of the curve 7.

A nonnegative Borel function p on X is an upper gradient of a real-valued function
uw on X if for all rectifiable paths v: [0,[,] — X,

u(2(0) ~ ur(t)] < [ pas.
v
Let 1 < p < oo be fixed from now on throughout the paper. If the above inequality
fails only for a curve family with zero p-modulus, (see for example Section 2.3 in
Heinonen—Koskela [15]), then p is called a p-weak upper gradient of u. It was proved
by Koskela-MacManus in [19] that the LP-closure of the set of all upper gradients of
u that are in L? is precisely the set of all p-weak upper gradients of v that are in LP.

Definition 2.1. We say that X supports a weak (1,p)-Poincaré inequality if
there exists C' > 0 and A\ > 1 such that for all balls B with radius r, all measurable
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functions v on X and all upper gradients ¢ of u we have

@ Tl A (u(im I d") -

In the above definition of the Poincaré inequality, we can equivalently assume
that g is a p-weak upper gradient of u. (See the discussion before Definition 2.1.) If
(2) holds with A = 1, then we say that X satisfies a (1, p)-Poincaré inequality.

In this paper we use a version of Sobolev-type spaces on a metric measure space
X defined by Shanmugalingam in [25]|. There are several other definitions of Sobolev-
type spaces in the metric setting; see Hajtasz [10|, Heinonen—Koskela [15], Cheeger
[6], and Franchi-Hajtasz—Koskela [9]. It has been shown that under reasonable hy-
potheses, the majority of these definitions yields the same space; see Franchi—Hajtasz—
Koskela [9] and Shanmugalingam [25].

We define the space N'#(X) to be the collection of all p-integrable functions u
on X that have a p-integrable p-weak upper gradient g on X. This space is equipped

with the norm
1/p
lullsuscs) = [ ladn+int [ gpan)
X X

where the infimum is taken over all p-weak upper gradients of u. The Newtonian
space on X is the quotient space

N'(X) = N'(X)) ~

with the norm [[u||n1s(x) = [|u[ 51 (x), where u ~ v if and only if [|u —v][ 51,y = 0.

The space N'?(X) equipped with the norm || - ||y1.» is a lattice; see Shanmu-
galingam [25]|. Corollary 3.7 in Shanmugalingam [26] shows that every u € NP has
a minimal p-weak upper gradient g, in the sense that g, < g holds pu-a.e. for all p-
weak upper gradients of u. Theorem 1.1 in Bjérn—Bjérn—Shanmugalingam [2] shows
that if (X, d, p) is a proper and doubling metric measure space that admits a weak
(1, p)-Poincaré inequality, then all the functions in N'?(X) are quasicontinuous in
X. We also note that if u € N (X) and v is a bounded Lipschitz function, then
uv € N'P(X) and the function |u|g, + |v|g, is a p-weak upper gradient of uv.

3. Relative Sobolev capacity

In this section, we establish a general theory of the relative Sobolev p-capacity
in proper metric measure spaces. We recall that if (X, d,p) is a proper metric
measure space, then the Sobolev p-capacity of a set £ C X is (see Bjorn—Bjorn—
Shanmugalingam |[2])

Cap,(E) = inf{[Jul [y, : u € ()},
where
A (E)={u€ N"”(X):u=1onE}.
A property is said to hold p-quasieverywhere (or p-q.e.) if it holds everywhere ex-
cept on a set of Sobolev p-capacity zero. We recall (see Bjorn—Bjorn—Shanmugalingam

[2]) that if the space (X, d, u1) is proper, doubling and admits a weak (1, p)-Poincaré
inequality, then Cap,, is an outer capacity, that is

Cap,(E) = inf{Cap,(U) : E C U, U open}.
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In order to introduce the relative Sobolev p-capacity, we need Newtonian spaces
with zero boundary values.

Definition 3.1. Suppose 2 C X is an open set. We let (see Bjorn [3| and
Shanmugalingam [26])

Ny P(Q) = {u e N*(X) :u =0 p-qe on X\ Q}.
We note that if Cap,(X \ Q) = 0, then Ny?(Q) = N'#(X). It is also known
that if (X, d, ) is a proper and doubling metric measure space that satisfies a weak
(1, p)-Poincaré inequality, then Lipo(Q) is dense in N, * () with respect to the N

norm whenever 2 is an open subset of X.
For & C Q we define

A(E, Q) = {u € N;*(Q) : u > 1 on a neighborhood of E}.

We call A(E, Q) the set of admissible functions for the condenser (E,Y). The relative
Sobolev p-capacity of the pair (F, Q) is denoted by

cap,(F, Q) = inf { / ghdp:ue A(E,Q)}.
Q

(See Bjorn [3].) If A(E,Q) = 0, we set capg (F,Q) = oo. Since A(E,) is closed
under truncations from below by 0 and from above by 1 and since the minimal p-weak
upper gradients do not increase under these truncations, we may restrict ourselves
to those admissible functions u for which 0 < u < 1.

3.1. Basic properties of the relative Sobolev capacity. A capacity is a
monotone, subadditive set function. The following theorem expresses, among other
things, that this is true for the relative Sobolev p-capacity.

Theorem 3.2. Suppose that (X,d, ) is a proper metric measure space. Let
) C X be a bounded open set. The set function E — capp(E, ), E C Q, enjoys the
following properties:

(i) If Ey C Es, then cap,(Fy, Q) < cap,(E», Q).

(i) If @y C Qy are open, bounded and E C )y, then

Capp(EJ Q2) S Capp(Ea Ql)

(iii) cap,(F, Q) = inf{cap,(U,Q2) : E C U C Q, U open}.
. (iv) If K; is a decreasing sequence of compact subsets of Q with K = (), K;,
then

cap, (K, Q) = lim cap,(K;, Q).

(v)IfE, CEyC...C E=;2, Ei CQ, then
cap,(F, ) = lim cap, (£, 2).

(vi) If E = J;2, E; C Q, then

cap,(E, Q) < Z cap,(E;, Q).

i=1
Proof. We follow Kinnunen—Martio [17] and [18]. Properties (i)—(iv) are imme-
diate consequences of the definition.
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(v) Monotonicity yields
hm Capp(Ei7 Q) < capp(E, Q)
11— 00
To prove the opposite inequality, we may assume without loss of generality that

lim; . cap,(E;, Q) < oo. Let € > 0 be fixed. For every i = 1,2,... we choose
u; € A(F;,Q2), 0 <wu; <1 and a corresponding minimal upper gradient g, such that

(3) |9

Since () is bounded and 0 < u; < 1 for every ¢ = 1,2,..., it follows via (3) that
u; is a bounded sequence in N& P(€)). Hence there exists a subsequence, which we
denote again by wu; and functions u,g € LP(€2) such that u; — u weakly in LP(2)
and g,, — g weakly in LP(Q2) as i — oo. Using Mazur’s lemma simultaneously for u;
and g¢,,, we obtain sequences v; and g; such that v; € A(FE;,Q2), v; — w in LP(Q) and
p-a.e. and g; — g in LP(2), where g is a p-weak upper gradient of u and g; is a p-
weak upper gradient of v;, 7 = 1,2,.... (See Lemma 3.1 in Kallunki-Shanmugalingam
[16].) These sequences can be found in the following way. Let i be fixed. Since every
subsequence of u; converges to u weakly in LP(£2), we may use the Mazur lemma for
the subsequence u;, 7 > ig. Similarly and simultaneously, we use the Mazur lemma for
the subsequence g,,, ¢ > 7y. We obtain finite convex combinations v;, and g;, of the
functions w; and g,,, ¢ > iy as close as we want in LP(€2) to u and g respectively. For
every ¢ = ig, %9+ 1, ... there is an open neighborhood O; of E;, such that u; =1 in O;.
The intersection of finitely many open neighborhoods of E;, is an open neighborhood
of E;,. Therefore, v;, equals 1 in an open neighborhood U, of E;,. It is easy to see
that g;, is a p-weak upper gradient for v;,. Moreover, since for every i = 1,2,... we
have

o) < cap,(Ei, Q) +e < jli_)ngo cap,(E;, Q) +e.

i”(ﬂ) < cap,(E;, Q) + ¢ < lim cap,(E;, Q) + ¢,

J—00

ngi

we obtain from the convexity of the p-seminorm and (3) that

(4> ||g7-)i [L)P(Q) < ||gi||11;p(Q) < Jlggo Capp(Ej7 Q) +e

for every ¢ = 1,2, .... Passing to subsequences if necessary, we may assume that for
every 1 = 1,2,... we have

(5) [lvigr = villorg@) + 1git1 = gillri) < 27"

For j =1,2,... we set
w; = Sup v;.
(2]
It is easy to see that w; = limy_.. w;; pointwise in X, where w;; is defined for
every k > j by
Wj k= Sup v;.

k>i>j
We notice that w;;, € A(E;, Q) with p-weak upper gradient g, ; whenever j < k < oo,
where g, is defined by

9jk = Sup gi.
k>i>j
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Moreover,
k—1 k—1

(6) Wy & < (% + Z |vz+1 z| and 9i.k < g; + Z |gz+1 gi |
i=j i=j

whenever j < k < co. We define g; by

9;=9; + Z |9i+1 — il
i=j
Then, since w; = limy_,o w; pointwise in X, it follows easily from (6) that g; is a
p-weak upper gradient of w;. We obviously have g, < g; p-a.e. in X.
The convexity and reflexivity of LP(€2) x LP(Q2) together with Mazur’s lemma and
formula (6) imply that w; € Ny?(Q) with

oo
wy <vj+ Y |vign — vl
i=j

pointwise in X. It is easy to see that w; = 1 in a neighborhood of £ and this shows,
since w; € NyP(Q), that in fact w; € A(F,Q) and hence cap,(E,Q) < ||guw; |75
We notice that

(7) 195120y < [1g5llzr@) + Y lgit1 = gill ooy < 11gylliny + 277

for every j > 1. Therefore, for all sufficiently large j we have via (4) and (7) that
capy,(E, Q) < ||gu;|[1r i) < 19511y < lim cap,(E;, Q) + 2e.

By letting € — 0, we get the converse inequality so (v) is proved.

(vi) To prove the countable subadditivity, we need to prove the finite subaddi-
tivity first. It is enough to prove this for two sets because then the general finite
case follows by induction. So let £ and E5 be two subsets of 2. We can assume
without loss of generality that cap,(F1,Q2) + cap,(Fs, Q) < oo. Let u; € A(E;, Q)
with minimal upper gradients g,, such that

0<wu; <1 and ||gu,

o) < capy(E;, ) +¢ fori=1,2.

Then u = max(uy, ug) belongs to A(E; U Ey, Q) and g = max(gu,, gu,) is a p-weak
upper gradient of u. Therefore

cap, (B U B, Q) < ||gull1r @) < 1191110 ) < N19ullLo) + 19u I20
< cap,(Fu, Q) + cap,(E2, ) + 2.

Letting ¢ — 0 we complete the proof in the case of two sets, and hence the general
finite case.

The general case follows from the finite case together with (v). The theorem is
proved. 0

A set function that satisfies properties (i), (iv), (v) and (vi) is called a Choquet
capacity (relative to ). We may thus invoke an important capacitability theorem of
Choquet and state the following result. See Appendix II in Doob [7].



Sobolev capacity and Hausdorff measures in metric measure spaces 185

Theorem 3.3. Suppose that (X, d, j1) is a proper metric measure space. Suppose
that 2 is a bounded open set in X. The set function E + cap,(E,Q), E C €, is a
Choquet capacity. In particular, all Borel subsets (in fact, all analytic) subsets E of
Q) are capacitable, i.e.,

cap,(E, Q) = sup{cap,(K,Q) : K C E compact}

whenever E' C () is analytic.

It is easy to see that
cap, (K, Q) = cap,(9K, Q)

whenever K is a compact subset of 2.

Remark 3.4. Suppose that (X, d, u) is a proper and doubling metric measure
space that satisfies a weak (1, p)-Poincaré inequality. If K is a compact subset of the
open set 2 C X, we get the same p-capacity for (K, 2) if we restrict ourselves to a
smaller set of admissible functions, namely

W(K,Q) ={u € Lipy(f2) : u=1 in a neighborhood of K}.

Indeed, let u € A(K,Q); we may clearly assume that v = 1 in a neighborhood
U cc Q of K. Then we choose a cut-oftf Lipschitz function 1, 0 < n < 1 such that
n=1in X\U and 5 = 0 in a neighborhood U of K, U cC U. Now, if w; € Lipy(Q) is
a sequence converging to u in Nol’p(Q), then ¢, = 1—n(1—¢,) is a sequence belonging
to W (K, Q) which converges to 1 —n(1 —u) in Ny*(Q). But 1 — n(1 — u) = u. This
establishes the assertion, since W (K, Q) C A(K,(). In fact, it is easy to see that if
K C () is compact we get the same p-capacity if we consider

W(K,Q) ={u € Lipy() : u=1on K}.

It is also useful to observe that if ¢ € Ny*() is such that ¢ —p € NyP(Q\ K) for
some ¢ € W(K,Q), then

mmamséﬁm

Following an argument very similar to the one from Theorem 3.2, one can con-
clude:

Theorem 3.5. Suppose that (X,d,pu) is a proper and doubling metric mea-
sure space satisfying a weak (1,p)-Poincaré inequality. The set function E
Cap,(E), E C X, is a Choquet capacity. In particular:

(i) If By C Es, then Cap,(E;) < Cap,(Es).

(ii) If E =\, E, then

Cap,(E) < Z Cap,(E).

Since Lipg(X) is dense in N'P(X) with respect to the N'P norm whenever
(X,d, ) is a proper and doubling metric measure space satisfying a weak (1,p)-
Poincaré inequality, one can prove (by using an argument similar to the one from
Remark 3.4) the following lemma:
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Lemma 3.6. Suppose (X,d, i) is a proper and doubling metric measure space
satisfying a weak (1, p)-Poincaré inequality. If K C X is compact, then
Cap,(K) = inf{[|u|[{1,(x) 1 v € #(K) N Lipo(X)}.

We recall the following relation between the relative Sobolev capacity and the
global Sobolev capacity. (See e.g. Lemma 2.6 in Bjorn—-MacManus—Shanmugalingam
[4] and Lemma 3.3 in Bjorn [3].)

Lemma 3.7. Suppose (X,d, i) is a proper and unbounded doubling metric mea-
sure space that satisfies a weak (1, p)-Poincaré inequality. Then for every A > 1 there
exists a constant C' > 0 such that

Cap,(E N B(z,7))
O)\(l +7’p)
forevery E C X, x € X and r > 0.

Definition 3.8. We say that cap,(£) = 0 if cap,(E N Q,Q) = 0 for every
bounded and open €2 C X.

< cap,(E N B(z,r), B(x,\r)) < C\(1+7r"")Cap,(EN B(z,7))

Remark 3.9. If (X,d,pu) is a proper and unbounded doubling metric mea-
sure space that satisfies a weak (1, p)-Poincaré inequality, one can prove (by using
Lemma 3.7 together with the Choquet property of the relative Sobolev capacity) that
cap,(E) = 0 if and only if Cap,(E) = 0. It is also easy to see by using the afore-
mentioned Lemma that if £ is a bounded subset of X, then cap,(E) = 0 if and only
if there exists {2 a bounded and open neighborhood of E such that cap,(£,2) = 0
provided that (X,d, u) is proper, doubling, unbounded and satisfies a weak (1, p)-
Poincaré inequality.

4. Hausdorff measures and relative Sobolev capacity

In this section we examine the relationship between Hausdorff measures and the
relative Sobolev p-capacity under some extra assumptions satisfied by the space X.

4.1. Generalized Hausdorff measure. Let h be a real-valued, strictly increas-
ing function on [0, 00) such that lim; .o h(t) = A(0) = 0 and lim;_, h(t) = co. Such
a function A is called a measure function. A measure function h is called doubling if
there exists a constant C' > 0 such that

(8) h(10t) < C h(t) for all £ > 0.

The smallest constant C' such that (8) holds is denoted by C'(h) and is called the
doubling constant of h.
Let 0 < 6 < oo. Throughout this subsection €2 is a closed subset of X. For £ C )

we define
A) o(E) =inf Y " h(ry),

where the infimum is taken over all coverings of E/ by open sets G; in {2 with diameter
r; not exceeding 0. The set function A7, is called the h-Hausdorff content relative to

Q. Clearly Ai,ﬂ is an outer measure for every ¢ € (0, oo| and every closed set 2 C X.
We write A (E) for A} x(E).

Moreover, for every E' C (2, there exists a Borel set E such that E C E C Q and
A) o(E) = A o(E). Clearly A o(E) is a decreasing function of 4. It is easy to see
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that A o (E) < A) o, (E) for every § € (0,00] whenever € and , are two closed
sets in X such that £ C Q; C €. This allows us to define the h-Hausdorff measure
relative to ) of £ C ) by

MualE) = sup Af o(E) = lim A o(E).

The measure Ay, o is Borel regular; that is, it is an additive measure on Borel sets of
Q2 and for each E C € there is a Borel set G such that £ C G C Q and Ay o(F) =
ApLa(G). (See [8, p. 170] and [21, Chapter 4].) We denote A, (E) := Ay x(E). If
h(t) = t°, we write A for Ays x. It is immediate from the definition that Ay(E) < oo
implies A, (E) = 0 for all @ > s. The smallest s > 0 that satisfies A,(E) = 0 for all
a > s is called the Hausdorff dimension of E.

For €2 C X closed and § > 0, the set function A%Q has the following property:

(i) If K; is a decreasing sequence of compact sets in 2, then

Ai,Q(m K;) = Zlgglo Az,Q(Ki)'
i=1
Moreover, if 2 is a compact subset of X and h is a continuous measure function,
then Afm satisfies the following additional properties:
(i) If E; is an increasing sequence of arbitrary sets in 2, then

AZ,Q(U E;) = lim Aig(Ez)
i=1

(i) A o(E) = sup{A) o(K) : K C E compact} whenever E C € is a Borel
set. (See Chapter 2:6 in Rogers [24].) In other words, A} is a Choquet capacity
whenever 2 is a compact subset of X and h is a continuous measure function.

If h:[0,00) — [0,00) is a measure function that is a homeomorphism, we know
that Ap(E) = 0 if and only if AP°(E) = 0. (See Proposition 5.1.5 in Adams-Hedberg
[1].) If h(t) = t°, 0 < s < 00, we write A for A .

We prove now the following version of Cartan’s lemma in doubling metric measure
spaces.

Lemma 4.1. (Cartan’s lemma) Suppose (X, d, i) is a doubling metric measure
space. Let o be a finite compactly supported positive measure on X. Let h: [0, 00) —
[0,00) be a doubling measure function that is also a homeomorphism. If A > 0 and

Ay={r e X :0(B(x,r)) < @ for all r > 0},

then AP(X \ Ay\) < CAo(X), where C > 0 is the doubling constant of h.
Proof. We can assume without loss of generality that o(X) > 0. Let M > 0 be
such that h(M) = Ao(X). For each x € X \ A, there exists a radius r, > 0 such that
h(ry) < Ao(B(z,1)) < Ao (X) = h(M).

Since h is strictly increasing, the choice of M implies that the supremum of all such
radii is less than M. Moreover, X \ A, is bounded. Indeed, this is obvious if X is

bounded. If X is unbounded, then X'\ Ay C B(a,r+ M), where B = B(a,r) is a ball
containing the support of o. This allows us to apply Theorem 1.16 in Heinonen [13]
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and select a countable sequence of points (z;) in X \ A, such that the corresponding
balls B(z;,r,,) are pairwise disjoint and such that

X\ Ay C | Blai, 5ra,).

Therefore

AR(X N\ AY) <) h(10r,,) < CY h(re,) < CAY_o(B(ai,rs,)) < CAo(X).

The lemma follows. O

Remark 4.2. It is easy to see that when X is unbounded the preceding theorem
in fact yields
10M
Ah,ﬁ(a,rﬂlM)(X \ Ay) < Cro(X).
Now we prove the following relation between a Lipschitz function with compact
support and its p-weak upper gradients.

Lemma 4.3. Let (X,d, ) be a doubling metric measure space that satisfies a
weak (1,p)-Poincaré inequality and let B = B(zo,r) be a ball in X with 0 < r <
(1/8)diam X. Let u be a function in Lipy(B(xo,r)) and let g be a p-weak upper
gradient of u. There exists a constant Cy > 0 depending only on p and on data of X

such that
3r 1 1/p
u(z)| < C / (—/ grd ) dt
=) B ) S

Proof. There exists a similar result when p = 1, obtained by Bjorn-Onninen when
proving Theorem 3 in [5]. The proof for the case p > 1 is similar but we present it
for the convenience of the reader. We can assume without loss of generality that «
is nonnegative and that x € B(zg,r). We can also assume that g = 0 p-a.e. outside
B(zg,7). We let ; = 2r (2\) 7 and B; = B(x,7;), j =0,1,2,..., where A > 1 is the
constant from the (1, p)-Poincaré inequality. Since u is a Lipschitz function, every
point in X is a Lebesgue point for u. Therefore

for every x € X.

1
u(r) = lim—/ wdp
= 2B Iy,

1 / 1
=—— [ udu+ —/ (w —up,) du,
1(Bo) J g, ]2; w(Bjt1) JB,.,

where up, = p(B;)™* fBj wdp. Tt is easy to see that B(zg,r) C By = B(x,2r) since
x € B(zg,r). The first term on the right-hand side can be estimated using the
Sobolev inequality (see e.g. Proposition 3.1 in Bjérn [3| or the proof of Theorem
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13.1 in Hajtasz—Koskela [11]), while the second term is estimated by the weak (1, p)-
Poincaré inequality as follows

u(z) < Cro <u(130) /BO q" du) " + Cgrj (/L()\LBJ) /)\B]- a du)

3r 1 1/p
cof (o [ )"
o \B(z,t) Jp@y
This finishes the proof. O

1/p

4.2. The Main result and special cases. We now state and prove our main
result.

Theorem 4.4. Suppose 1 < p < @ < oo. Let (X,d, ) be a proper and un-
bounded doubling metric measure space that supports a weak (1, p)-Poincaré inequal-
ity. Suppose h: [0,00) — [0, 00) is a doubling homeomorphism. We also suppose that
there exists a constant C,, > 0 such that
(9) (B, 1)) = C 1

for allt > 0 and x € X. Then there exists a positive constant C depending only on
the doubling constant of h, on p, and on data of X such that

AF(ENB B
3 ( N (x07 T)])) < Cl cap (E N B(.CC(),T), B(x(h 27’))
( 6T( h(t) )1/pﬂ) .
0 tQ—p t

for every E C X, every xo € X and every r > 0.

(10)

Proof. We assume first that E is compact. There is nothing to prove if we have

- . 67 h(t) 1/p dt
Ay (EN B(xg, 7)) =0 or /0 (tQP) 5 =

So we can assume without loss of generality that
67 1/p
— h(t dt
A (E N B(xg,r)) >0 and I(r):/ ( <)) — <
, \tQr t

Let € € (0,1/2) be fixed. We choose u. € W(E N B(xg,7), B(xg,2r)) with its
corresponding minimal p-weak upper gradient g,_ such that

/ gge dp < capp(E ﬂE(mo, r), B(xo,2r)) + 2¢.
B(z9,2r)

We can assume without loss of generality that u. > 0. We define

7.(4) = [ gt du
A
if A C X is a Borel set. Suppose that a > 0 and let

h(t)(1 =€)

p
Boc={r € X :0.(B(z,t)) < for all ¢ > 0}.

oP
For z € B, . we have via (9) and Lemma 4.3

ue(z) < m/:r (wy/pdt,

- « t@
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where ()} is the constant from Lemma 4.3. If we let

a=CYre, v h{t) v dt = CYrCL1
— m 0 tQ - o 0 (T)7
0

then we notice that N B(xg,7) C {r € X : u.(z) > 1 —¢} C X \ By.. Therefore
from Lemma 4.1 and the choice of « it follows that

AF(E N Blaa)) < C)(1 =) PC,GE16Y [ ot du

Letting ¢ — 0 we obtain the desired conclusion when E is compact.

We assume now that E is an arbitrary set. Since there exists a Borel set E
containing £ such that

AZO(E) = AZO(E) and Capp(Eﬂ§<x07T)7B<x072T)) = Capp(EOE(xO7T)7B(x072r))7

we can assume that E is Borel. We choose M > 0 such that

h(M) = 2pcapp(§(x0, ), B(xo,2r)) + 2P.
From the fact that cap,(-, B(zo,2r)) is a Choquet capacity, the discussion before
Lemma 4.1, the choice of M and Remark 4.2, it follows that the claim holds also
when FE' is Borel. This finishes the proof. O

Remark 4.5. It follows easily that if X is a proper and unbounded doubling
metric measure space as in Theorem 4.4 with ) — s < p < @, then there exists a
constant C' = C(Q, p, s, C,,) such that

A(E N B(a, R))
(11) Rs—Q+p
whenever £ C X, R > 0, and a € X. (We use h(t) = t°.) Inequality (11) was also
obtained by Heinonen—Koskela in [15, Theorem 5.9] for compact sets.

< Ccap,(E N B(a, R), B(a,2R))

Theorem 4.4 has the following corollary.

Corollary 4.6. Suppose 1 < p < @ < oo. Let (X,d,u) be a proper and un-
bounded doubling metric measure space as in Theorem 4.4. Let EE C X be such that
cap,(E) = 0. Then

(i) Ap(E) = 0 for every doubling homeomorphism h: [0,00) — [0, 00) satisfying
(1).

(ii) The Hausdorff dimension of E is at most Q) — p.

(iii) The set X \ E is connected.

Note that for every e > 0 we can take h = h.: [0,00) — [0, 00) in Corollary 4.6,
where h.(t) = |Int|7P~¢ for every t € (0,1/2) when p = Q. When 1 < p < ) we can
take h.(t) = t9=P*¢ for every t > 0.

Proof. It is enough to prove the first claim for £ bounded because Aj° is a
countably subadditive set function and A, (F) = 0 if and only if A7°(E) = 0 whenever
h is a continuous measure function. So we assume that E is bounded. Let B =
B(wo,7) be a ball containing £. We have cap,(E, B(z,2r)) = 0. An appeal to
Theorem 4.4 yields the first claim. The second claim is a consequence of (i) because
for every s > @ — p, the function hy: [0,00) — [0,00) defined by hs(t) = t° satisfies
(1). The third claim is a consequence of the Poincaré inequality. 0
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Remark 4.7. Since we have

1 h(t) 1/(p-1) dt
; o-p 7 < X0

whenever h is a doubling homeomorphism satisfying (1), Corollary 4.6 follows also
via Theorem 3 and Example 2 in Bjérn—Onninen [5].

4.3. Upper bounds for relative capacity in terms of Hausdorff mea-
sures. We recall the following upper bounds for the relative capacity (see Lemma 7.18
in Heinonen [13] and Lemma 3.3 in Bjérn [3]).

Theorem 4.8. Let 1 < p < ) < oo be fixed. Suppose (X,d,u) is a proper
and unbounded metric measure space. We also suppose that there exists a constant
C), > 0 such that

(12) u(B(x,t)) < Ct?

forallt >0 and x € X.
(i) Suppose 1 < p < Q. There exists a constant C' depending only on data of X
such that

Capp<B($0> T)a B(.%’(), R)) < CTQ_pa

for every xo € X and every pair of positive numbers r, R such that 2r < R.
(ii) Suppose p = Q. There exists a constant C' depending only on data of X such
that

r

mmdB@@rLB@mRﬁg(YOnE)PQ,

for every xo € X and every pair of positive numbers r, R such that 2r < R.

We also get upper bounds of the relative capacity in terms of some Hausdorff
measures. Similar estimates were obtained by Heinonen-Kilpeldinen-Martio [14] in
R"™ and by Kinnunen—Martio (see |17, Theorem 4.13]) in metric spaces.

Theorem 4.9. Let 1 < p < @ < oo be fixed. Suppose (X,d, i) is a proper and
unbounded metric measure space such that the upper mass bound (12) holds for the
measure . Let h: [0,00) — [0,00) be a homeomorphism such that for 0 <t < 3 we

have
t@-p ifp < Q,
h‘(t) = { 1 1\1-p Ipp o Q
(Ing) " ifp=0@Q.
Then there exists a constant depending only on the data of X such that
cap,(E,Q) < CAy(E)

whenever £ C () CC X with E compact and ) open.

Proof. The proof is similar to the proof of Theorem 2.27 in Heinonen—Kilpeldinen—
Martio [14]. We present it for the convenience of the reader. Let § be the distance
from E to the complement of 2. We can assume without loss of generality that
0 < 1. We fix € < %. We cover the compact set E by finitely many open balls
B(x;,7;) such that r; < §. Since we can assume that the balls B(z;,7;) intersect £,
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we have B(z;,3) C Q. By using Theorem 4.8 together with our choice of £, we have

S C’T?_p if p <@,

5)) <

cap, (B(x;,r;), B(x;,
pp( ( ), B( O 2@-1 <1n 74_11> P if p= Q.

Here C' is the constant from Theorem 4.8. Using Theorem 3.2 (ii) and (vi) we get
cap,(E,Q) < anpp( (xi,7:),Q) < anpp (xi,7i), .TZ, —)) < th Ti).

Taking the infimum over all such coverings and letting ¢ — 0, we conclude
cap,(E,Q) < CAy(E). O
We close this section with sufficient conditions to get sets of relative Sobolev
p-capacity zero.

Lemma 4.10. Suppose (X,d, ) is a proper and unbounded doubling metric
measure space that admits a weak (1, p)-Poincaré inequality. Let E be a compact
set in X. If there exists a constant M > 0 such that

cap,(E,Q) < M < oo
for all open sets € containing E, then capp(E) = 0.

Proof. It is enough to prove (see Remark 3.9) that cap,(E,Q) = 0 for every
bounded and open 2 D E. We let 2 be a bounded fixed open neighborhood of E.
We choose a descending sequence of open sets

9291339233---33ﬂ9i:E

and we choose p; € A(E,€;), 0 < ¢; <1 with ¢; =1 on F and
(13) /ggid,u<capp(E,Qi)+1§M—|—1fori:1,2,....
Q;

Since 2 is bounded and 0 < ¢; < 1 for every ¢ = 1,2,..., it follows via (13) that
@; 1s a bounded sequence in Ng P(€2). We notice that ¢; converges pointwise p-a.e.
to a function ¢ which is 1 on £ and 0 on X \ E. We also notice that g, converges
pointwise p-a.e. to 0. Hence, from Mazur’s lemma (|27, p. 120]) and the reflexivity
of LP(Q) x LP() it follows that there exists a subsequence denoted again by ; such
that (i, g,,) converges weakly to (1, 0) in LP(2) x LP(€2) and a sequence @; of convex
combinations of ¢;,

Ji Ji
= Z)\iﬂ'@j, )\i,j > 07 Z/\i,j =1,
j=i g=t

such that (¢;, gz,) converges to (¢,0) in LP(£2) x LP(Q2). The closedness of A(E, ;)
under finite convex combinations implies that ¢; € A(E,();) for every integer i > 1.
Therefore

0 < cap,(F,Q) < limsup/ 95.dp = 0. O
0

1—00
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Theorem 4.11. Let 1 < p < @ < oo be fixed. Suppose (X, d, j1) is a proper and
unbounded metric measure space such that the upper mass bound (12) holds for the
measure ji. Let E be a subset of X.

(i) Suppose 1 < p < Q. Then Ag_,(E) < oo implies cap,(E) = 0.

(ii) Suppose p = Q. Let h: [0,00) — [0,00) be an increasing homeomorphism
such that h(t) = (In})'"7 for all t € (0, 3). Then A,(E) < oo implies cap,(E) = 0.

Proof. Since Ay, is a regular outer measure, it is enough to assume that E is Borel.
Let € be a bounded and open subset of X. We want to show that cap,(£N€2, Q) = 0.

Since cap,( -, ) is a Choquet capacity, we can assume without loss of generality that
E N Qis compact. We choose a descending sequence of open sets

Q=0 DDQQDD”-DDﬂQi:EﬂQ.

Then from Theorem 4.9 we have
cap,(ENQ, Q) < CA(ENQ) < CAp(E)  for every i =1,2,....

By using the argument from Lemma 4.10 for the set £ N (2, we obtain the desired
conclusion. This finishes the proof. U
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